EHDG: AN EXPONENTIALLY CONVERGENT ITERATIVE SOLVER
FOR HDG DISCRETIZATIONS OF HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS. *
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Abstract. We present a scalable and efficient iterative solver for high-order hybridized discon-
tinuous Galerkin (HDG) discretizations of hyperbolic partial differential equations. It is an interplay
between domain decomposition methods and HDG discretizations. In particular, the method is a
fixed-point approach that requires only independent element-by-element local solves in each iteration.
As such, it is well-suited for current and future computing systems with massive concurrencies. We
rigorously show that the proposed method is exponentially convergent in the number of iterations
for transport and linearized shallow water equations. Furthermore, the convergence is independent
of the solution order. Various 2D and 3D numerical results for steady and time-dependent problems
are presented to verify our theoretical findings.
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1. Introduction. The discontinuous Galerkin (DG) method was originally de-
veloped by Reed and Hill [8] for the neutron transport equation, first analyzed in [5],
and then has been extended to other problems governed by partial differential equa-
tions (PDEs) [3]. Roughly speaking, DG combines advantages of classical finite vol-
ume and finite element methods. In particular, it has the ability to treat solutions
with large gradients including shocks, it provides the flexibility to deal with complex
geometries, and it is highly parallelizable due to its compact stencil.

However, for steady state problems or time-dependent ones that require implicit
time-integrators, DG methods typically have many more (coupled) unknowns com-
pared to the other existing numerical methods, and hence more expensive in general.

In order to mitigate the computational expense associated with DG methods,
Cockburn, coauthors, and others have introduced hybridizable (also known as hy-
bridized) discontinuous Galerkin (HDG) methods for various types of PDEs, see
e.g. [2,7]. The upwind HDG framework proposed in [1] provides a unified and a
systematic construction of HDG methods for a large class of PDEs. In HDG dis-
cretizations, the coupled unknowns are single-valued traces introduced on the mesh
skeleton, i.e. the faces, and the resulting matrix is substantially smaller and sparser
compared to standard DG approaches. Once they are solved for, the usual DG un-
knowns can be recovered in an element-by-element fashion, completely independent
of each other. Nevertheless, the trace system is still a bottleneck for practically large-
scale applications, where complex and high-fidelity simulations involving features with
a large range of spatial and temporal scales are necessary.

Meanwhile, Schwarz-type domain decomposition methods (DDMs) have been in-
troduced as procedures to parallelize and solve partial differential equations numeri-
cally, where each iteration involves the solutions of the original equations on smaller
subdomains [6]. Among the many DDMs, Schwarz waveform relaxation methods and
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optimized Schwarz methods [9], have attracted substantial attention over the past
decade since they can be adapted to the physics of the underlying problems and thus
lead to very efficient parallel solvers for challenging problems. We view the HDG
method as an extreme DDM approach in which each subdomain is an element.

While either HDG community or DDM community can contribute individually
towards advancing its own field, the potential for a true breakthrough may lie in
bringing together the advances from both sides and in exploiting opportunities at
their interfaces. Unlike [4], we blend the HDG method and optimized Schwarz idea
to produce a efficient and scalable iterative approach for HDG methods. One of
the main features of the proposed approach is that it has exponential convergence
rate, and for that reason we term it as eHDG. The method can be viewed as a fixed-
point approach that requires only independent element-by-element local solves in each
iteration. As such, it is well-suited for current and future computing systems with
massive concurrencies. We rigorously show that the proposed method is exponentially
convergent in the number of iterations for transport and linearized shallow water
equations. Furthermore, the convergence is independent of the solution order. The
theoretical findings will be verified on various 2D and 3D numerical results for steady
and time-dependent problems.

2. Notations for HDG discretizations. In this section we introduce com-
mon notations and conventions to be used in the following sections where we pro-
pose and rigorously analyze the eHDG approach for scalar and systems of hyper-
bolic PDEs in both steady and time-dependent cases. Let us partition an open
and bounded domain Q € R? into N, non-overlapping elements K;,j=1,...,Nq
with Lipschitz boundaries such that Q, := UéV:SllKj and Q = Q. Here, h is de-
fined as h := maxje(1,... N, diam (K;). We denote the skeleton of the mesh by
Ep 1= uj.V;laK j, the set of all (uniquely defined) faces e. We conventionally identify
n~ as the normal vector on the boundary 0K of element K (also denoted as K ™)
and nT = —n~ as the normal vector of the boundary of a neighboring element (also
denoted as K). Furthermore, we use n to denote either n~ or n™ in an expres-
sion that is valid for both cases, and this convention is also used for other quantities
(restricted) on a face e € &p,.

For simplicity in writing we define (-,-), as the L2-inner product on a domain
K € R? and (-,-) as the L2-inner product on a domain K if K € Rl We
shall use ||| := ||| 2(x) as the induced norm for both cases and the particular
value of K in a context will indicate which inner product the norm is coming from.
We also denote the e-weighted norm of a function u as [[ull, g := [[Veulg for any
positive e. We shall use boldface lowercase letters for vector-valued functions and in
that case the inner product is defined as (u,v)y = >.i", (u;,v;)g, and similarly
(W, v) = > (u;,v;) g, where m is the number of components (u;,i =1,...,m)
of u. Moreover, we define (0, v)q = > rcq, (W, V) and (u,v), =3 o (u,v),
whose induced (weighted) norms are clear, and hence their definitions are omitted. We
employ boldface uppercase letters, e.g. L, to denote matrices and tensors. In addition,
subscripts are used to denote the components of vectors, matrices, and tensors. We
define PP (K) as the space of polynomials of degree at most p on a domain K.

3. Construction of eHDG methods for linear hyperbolic PDEs. In this
section, we define eHDG methods for scalar and system of hyperbolic PDEs. For
the clarity in exposition, we consider the transport equation and linearized shallow
water system, and extension of the proposed approach to other hyperbolic PDEs is
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straightforward. To begin, let us consider the transport equation
B-Vu=f in, Q, (3.1a)
u=g ondQ, (3.1b)

where 02 is the inflow part of the boundary 9. An upwind HDG discretization [1]
for (3.1) consists of the following local equation for each element K

—(u,V-(B) g+ (B-nu+|B8-n|(u—10),v)5 = (f,v)g, YvePP(K), (3.2)
and conservation conditions on all edges e in the mesh skeleton &:
([B-nu+|B8-n|(u—1a)],u), =0, VuecPr(e).

Inspired by the upwind HDG approach [1] and the optimized Schwarz method
[9], we introduce an eHDG iterative method for the transport equation (3.1) as in
Algorithm 1. In particular, the approximate solution u**! at the (k + 1)th iteration
restricted on element K is defined as the solution of the following local equation,
Yo € PP (K),

- (uk+1a V- (BU))K + <ﬁ . nukJrl + |ﬁ : n| (uk+1 - ﬂk) ’U>8K = (fv U)Ka (33)
where, by introducing the average operator as 2{(-)} := (-)~ 4+ (-)*, we define

a* = {{u" sgn(B-n)}} + {u"}}. (3.4)

Algorithm 1 eHDG solver for transport equation (3.1)
0

Ensure: Given initial guess u°, compute the initial trace 4° using (3.4).
1: while not converged do

2. Solve the local equation (3.3) for u*
3. Compute 45! using (3.4).

4:  Check convergence. If yes, exit, otherwise continue

5: end while

+1 k

using trace

Since (3.1) is linear, it is sufficient to show that eHDG converges for the homoge-
neous equation with zero forcing f and zero boundary condition g.

THEOREM 3.1. Assume —V -3 > a > 0, i.e. (3.1) is well-posed. The above
eHDG for homogeneous transport equation (3.1) converges exponentially with respect
to the number of iterations k. In particular, there exist J < Ng; such that

k|2 k(2 C(k) | o2
| H%‘ﬁ,gh + [|u H\ﬁ.n\,gh < = llu H|g.n|,gh» (3.5)
where C(k) is a polynomial in k of order at most J and is independent of p.
We next consider the following oceanic linearized shallow water systems

P ¢ o [ 2u o [ ®v 0
Pv T\ o0 Y\ @0 —fou —ydv+ 2

where ¢ = gH is the geopotential height with ¢ and H being the gravitational con-
stant and the perturbation of the free surface height, ® > 0 is a constant mean
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flow geopotential height, ¢ := (u,v) is the perturbed velocity, v+ > 0 is the bot-
tom friction, 7 := (75, 7,) is the wind stress, and p is the density of the water. Here,
f = fo+B (y — ym) is the Coriolis parameter, where fy, 8, and y,, are given constants.

Again, for simplicity of the exposition and analysis, let us employ the backward
Euler discretization for temporal derivatives and HDG for spatial ones. Since the
unknowns of interest are those at the (m + 1)th time step, we can suppress the time
index for clarity of the exposition. Furthermore, since the system (3.6) is linear, a
similar argument as in the previous sections shows that it is sufficient to consider
homogeneous system with zero initial condition, boundary condition, and forcing. An
eHDG algorithm can be proposed for the homegeneous system as follows

(Gre), - (0057 700) o (w7 B (501 8) ) o

Py k1 6@2 N
_ g+t Z¥2 <<I> k > — (FuFH! _ Ayt
( At a<p2>K ( ¢ ) 8x)K+ (b ng, g2 5K (f v TRU 74102)[{’

Pyktl 8303 o
P k+1 P k i = (—f® k+1 P k+1
( At 7%03>K ( ¢ ) ay>K+< d) n27<p3>8K ( f u YU 7903)K7

where @1, 2 and 3 are the test functions, and similar to the transport equation we
define

" = {o ) + Ve {{9* nf}.

Our goal is to show that (@F*+1, pYht! converges to zero.

THEOREM 3.2. With a suitable mesh size h, the time step At and the order p,
then the approximate solution at the kth iteration (¢k, ﬂk) decays exponentially and
the rate depends on h,p and At.

4. Numerical results. In this section various numerical results supporting the
theoretical results are provided for 2D and 3D transport equations and the linearized
shallow water equation.

4.1. 2D steady state transport equation with smooth solution. In this
example we choose 3 = (y,z). Also we take the forcing and the exact solution to be
of the following form:

1
u® = — sin(mwz) cos(my), (4.1a)
™

f = ycos(mx) cos(my) — x sin(wx) sin(my). (4.1b)
Here the domain  is [0,1] x [0,1] with 2 = 0 and y = 0 as inflow boundaries. A
structured quadrilateral mesh is used for all the numerical simulations performed.
Figure 4.1 shows the h-convergence of the HDG discretization with eHDG iterative

solver. The convergence is optimal i.e. (p+1) for a polynomial order p. The tolerance
criteria for the eHDG solver is set as follows:

|||uk — Ue||L2(Q) — Huk_l — ue||L2(Q)| < 10719, (4.2)

Thus the succesive difference in L? norm of error between numerical solution and
exact solution is used as a criteria for tolerance in this case.
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Fig. 4.1: h-convergence of the HDG method using the eHDG solver.

Figure 4.2 shows the convergence history of the eHDG solver in the log-linear
scale. As proved in Theorem 3.1 the eHDG is exponential convergent in the iteration
k. Also the stagnation region observed near the end of each curve is due to the
fact that for a particular mesh size h and polynomial order p we can achieve only as
much accuracy as prescribed by the HDG discretization error and cannot go beyond
that. The numerical results for different solution orders also verify the fact that the
convergence of eHDG method is independent of the polynomial order p. This can also
be seen from the 4th column of Table 4.1.

- = =N, =1024p=4

log o (error in L *-norm)
log , (errorin L -norm)

0 20 40 60 80 100 120 140 160 18 0 20 40 60 80 100 120 140 160 180 20
iterations iterations

(a) Error history for p=1,2 (b) Error history for p=3,4

Fig. 4.2: Convergence of eHDG for different h and p for 2D transport smooth solution.
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Table 4.1: Iterations for 2D transport equation with smooth and discontinuous solu-

tions and 3D steady state transport equation

N (2D) || Noi(3D) || p || 2D smooth | 2D discontinuous | 3D steady
16 81 1 45 59 33
64 64 || 1 67 84 o1

256 512 || 1 107 129 79
1024 4096 || 1 177 209 130
16 8 2 47 61 39
64 64 || 2 67 87 o1
256 512 || 2 101 133 76
1024 4096 || 2 179 214 131
16 81 3 46 65 39
64 64 || 3 66 92 49
256 512 || 3 108 135 79
1024 4096 || 3 186 211 136
16 81 4 45 66 35
64 64 || 4 68 90 51
256 512 || 4 112 128 83
1024 4096 || 4 189 198 143

4.2. 2D steady state transport equation with discontinuous solution.
In this case we take f = 0 and B = (1 + sin(wy/2),2). The domain  is [0, 2] x [0, 2]
and the inflow boundary condition is given as

1 r=00<y<2
g=1 sin®(rz) 0<z<1l,y=0
0 1<x<2,y=0

We choose a slight different stopping criteria to avoid the exact solution:
Huk — uk71||L2(Q) < 10710.

The evolution of solution with iterations obtained for 32 x 32 elements and polynomial
order 4 is shown in Figure 4.3. As shown from the 5th column of Table 4.1, due to
the discontinuity, the eHDG solver takes a slightly more iterations compared to the
smooth solution case, but the number of iteration is still (almost) independent of the
solution order. Also we observe that the solution evolves from inflow to outflow. This
can be proved rigorously, but for the space limitation, the proof is omitted.

4.3. 3D steady state transport equation. In this example we choose B =
(z,2,y) in (3.1) and the following exact solution:

1
u® = — sin(mwz) cos(my) sin(wz).
T

The forcing is selected in such a way that it corresponds to the exact solution selected.
Here, the domain is [0,1] x [0,1] x [0,1] with # = 0, y = 0 and z = 0 as inflow
boundaries. A structured 16 x 16 x 16 hexahedral mesh is used for all simulations.
The tolerance critera used is same as in section 4.1. Similar to the 2D example in
section 4.1, we obtain the optimal convergence rates as shown in Figure 4.1(b).
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(a) u at iteration = 16 (b) u at iteration = 64 (c) u at iteration = 192

Fig. 4.3: Evolution of solution with respect to iterations for upwind HDG

The convergence is independent of the polynomial order (see also the 6th column
of Table 4.1. The evolution of the eHDG solution with respect to iterations in Figure
4.4 shows the convergence of solution from inflow to outflow. Here, the solution order
is p=4.

4.4. 2D linearized shallow water equations. Here we consider equation
(3.6), and in that we are considering a linear standing wave, which is an oceanic
flow. For linear standing wave we take ® = g = 1, f = 0, v = 0 (zero bottom
friction), 7 = 0 (zero wind stress). The domain is [0,1] x [0,1] and wall boundary
condition is applied on the boundary. The following exact solution is taken

¢ = cos(mz) cos(my) cos(V/2mt), (4.3a)
1 . .

u= 7 sin(mz) cos(my) sin(v/27t), (4.3b)

v = 1 cos(mx) sin(my) sin(v/27t). (4.3¢)

V2

The convergence of the L? norm of the solution is presented in Figure 4.1. Here we
have taken At = 1076 and 10° time steps in order to show the theoretical convergence
rates and from Figure 4.1(c) we see that optimal convergence rate is obtained. The
number of iterations required per time step in this case is constant and is always
equal to 2 for all meshes and polynomial orders considered. The reason is that the
initial guess for each time step is taken as the solution in the previous time step.
Furthermore, the time step is small.
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(a) u at iteration =1 (b) w at iteration = 16

—

(c) u at iteration = 48 (d) u at iteration = 143

Fig. 4.4: Evolution of iterative eHDG solutions for 3D steady state transport equation.

Table 4.2: [terations per time step for 2D linearized shallow water equation and 3D
time dependent advection for different At

N (2D) || Na(3D) || p Al iDl?)E%llOVVAZViEel%—4 N :31]3_35’dveztt10;1 o
16 8 1 3 2 2 D
64 64 1 4 2 3 2

256 512 || 1 4 3 3 D)
1024 4096 || 1 4 3 3 2
16 8 | 2 4 2 2 5
64 64 2 4 2 3 2
256 512 || 2 5 D) 3 D)
1024 4096 || 2 6 3 3 9
16 8 3 4 2 3 D)
64 64 || 3 4 2 3 2
256 512 || 3 5 3 3 D)
1024 4096 || 3 6 3 4 2
16 8 || 4 4 2 3 D)
64 64 || 4 5 3 3 2
256 512 || 4 6 3 3 9
1024 4096 || 4 7 3 4 D)
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To compare with the 3D time-dependent advection in the next section, we choose
the time step of At = 1073 and At = 10~*, and tabulate the number of eHDG
iterations in Table 4.2. As can be seen, the number of iterations increases slightly as
we increase the solution order, and this is consistent with Theorem 3.2.

4.5. 3D time dependent transport equation. In this section we consider
the following time-dependent transport equation

ou
5 +V-(Bu) =7, (4.4)

and the exact solution is a Gaussian moving across the diagonal of a unit cube, i.e.,

ut — 6—5((z—O.2t)2+(y—0.2t)2+(z—0.2t)2)

)

Structured hexahedral mesh 8 x 8 x 8 is used and the solution order is p = 4. The
time step is chosen At = 0.01 and the simulation is run for 240 time steps. Figure
4.5 compares the numerical solution using the eHDG iterative solver and the exact
solution. The tolerance criteria the same as in Section 4.1, and the solver always
takes 9 iterations per time step. In table 4.2 we compare the iterations per time step
required to converge for two smaller time step sizes. Unlike shallow water equation,
transport equation with eHDG iterative solver has constant eHDG iterations as the
solution increases, and this is consistent with our theoretical result in Theorem 3.5.

(a) u at time = 0.5 (b) u at time =1.4 (c) u at time = 2.4

Fig. 4.5: eHDG solution for 3D time dependent transport equation

5. Conclusion. We have presented an iterative solver, namely eHDG, for HDG
discretizations of hyperbolic systems. The method exploits the structure of HDG
discretization and idea from domain decomposition methods. The key features of the
eHDG solver are: 1) it solves independent element-by-element local equations during
each iteration, 2) the number of iterations are independent of polynomial order, and
3) it achieves exponential convergence rate. These features make the eHDG solver
naturally suitable for higher order HDG methods in large scale parallel environments.
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