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Abstract

Shear bands are micron size narrow bands of intense plastic deformations that form in metals
subjected high strain rates such as in impact or blast. Their formation is associated with
significant heating and they are also considered material instabilities which precede fracture.
The aim of this work is to develop fast converging Isogeometric elements for monolithic so-
lution of shear bands and appropriate parallel and iterative solvers that are robust through
all the deformation stages: homogeneous, onset of instability and stress collapse. To this
end, we propose irreducible and hybrid NURBS quadrilateral elements that are stable and
locking free and lead to high rates of convergence. To solve the resulting linearized systems,
a novel Schur based domain-decomposition preconditioners are proposed based on constitu-
tive/conservation laws splitting. The elements and solvers are implemented in parallel and
shows excellent scaling performance compared to standard solvers.
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1. Introduction: Governing equations of shear bands

Recent work on shear band [8, 2] reformulated the numerical model as a mixed formula-
tion of coupled thermo-mechanical set of equations with diffusive regularization. Diffusion
serves to introduce an implicit length scale, governed by competition between shear heating
and conduction, and will regularize the problem in the softening regime. The problem is
thus modeled using the following system of four coupled equations

ρü−∇ · σ − f ext = 0

Ṫ − κ∆T − χσ̄γ̄p = 0

σ̇ − Celas :
(
ε̇− ε̇p − ε̇T

)
= 0

˙̄γp − g(σ̄, T, γ̄p) = 0

(1)
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where u, T, σ and γ̄p are the displacement, temperature, stress and equivalent plastic strain
variables respectively. These fields are underlined according to their tensorial order (u is
a first order tensor and the strain ε = ∇su is a second order tensor), σ̄ is the equivalent

stress defined as σ̄ =
√

3
2
S : S with S = σ− I:σ

3
I, κ and χ are the thermal conductivity and

the Taylor-Quinney coefficient, finally ∇ · • and ∇s• denotes the divergence and symmetric
gradient operators.
Time integration is performed using the Newmark-β algorithm (β = 1

4
, γ = 1

2
), the nonlin-

ear problem is solved with a Newton algorithm and Eq. 1 is linearized using a first order
approximation of the residual with a Gâteaux derivative

R(u+ εδu) ≈ R(u) +
dR

dε
(u+ εδu)

∣∣∣∣
ε=0

, (2)

for instance Juσδσ is computed as follows

Juσδσ =
dRu(σ + εδσ)

dε

∣∣∣∣
ε=0

=
d

dε

(∫
Ω

wuρ
∂2u

∂t2
+∇ wu · (σ + εδσ)dΩ−

∫
Γt

wut̄dΓt

)∣∣∣∣
ε=0

=

∫
Ω

∇ wu · δσdΩ,

(3)

finally the spacial discretization is obtained using the finite element method. This procedure
results in a succession of linear algebra problems that we solve at each Newton iteration

Juu JuT Juσ Juγ̄p

JTu JTT JTσ JT γ̄p

Jσu JσT Jσσ Jσγ̄p

Jγ̄pu Jγ̄pT Jγ̄pσ Jγ̄pγ̄p



δu

δT
δσ

δγ̄p

 =


Ru

RT

Rσ

Rγ̄p

⇔
[

Jαα Jαη

Jηα Jηη

][
δα
δη

]
=

[
Rα
Rη

]
(4)

This Jacobian matrix is non-symmetric due to the thermo-mechanical couplings and to the
nonlinearities introduced by the plasticity. The plastic nonlinearities affect the problem
differently depending on the stage of the shear band: onset of plasticity, thermal softening
and stress collapse see Fig. 1, this leads to varying properties for the Jacobian such as
varying coupling strength and varying condition number with strong degradation of the
spectral radius during the stress collapse phase that can lead to ill-conditioned linear systems.
However with this approach the shear band localization is naturally regularized and it has
been shown to lead to mesh insensitive simulations.

2. Isogeometric discretization of shear bands

The choice of shape functions in the discretization of Eq. 4 is critical to achieve stability
and fast convergence of the simulation. Previous work [8] utilized the Pian and Sumihara
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Figure 1: Typical stress-strain curve for the formation of a shear band with the beginning of the three stages
marked as: 1© onset of plasticity, 2© thermal softening, 3© stress collapse.

shape functions associated with linear shape functions for the displacement and temperature
and Gauss points variables for the equivalent plastic strain. The use Pian and Sumihara
shape functions reduced considerably the amount of volumetric locking during the shear
band formation due to the J2 plastic flow law.

Here to retain this property and increase the convergence rate of the formulation, dis-
placement and temperatures are discretized using isogeometric concepts [2]. In this frame-
work it is not possible to use Pian and Sumihara’s approach anymore so we rely on the
B-bar technique associated to the higher order NURBS shape functions to overcome volu-
metric locking. Functions continuous across elements are not suited for the discretization
of the equivalent plastic strain since it leads to oscillations and non-physical behaviors of
the material. Finally the stress has been shown to be stable even when discretized with
NURBS shape functions of lower order than the displacement which is somewhat counter
intuitive. Mesh insensitive simulation with low level of volumetric locking are achieved with
the proposed elements as presented in Fig. 2

The convergence of the HNSQ convergence with different shape functions order is com-
pared to the Pian and Sumihara on a plate under uniaxial tension with a central imperfection.
We can see from Table 1 that the HNSQ element proves to be more accurate and to converge
faster than the PSSQ element.
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Figure 2: Left: mesh insensitive results using INSQ element. Right: comparison of volumetric locking
for Pian and Sumihara (PSSQ), hybrid NURBS (HNSQ2) and Irreducible NURBS (INSQ) shear band
quadrilateral elements.

PS P1 P2 P3 P4

10×10 3.4835e-03 1.8633e-03 1.8442e-04 2.7998e-04 5.9015e-05
20×20 8.7363e-04 6.1263e-05 3.3638e-06 6.5635e-07 2.1772e-07
30×30 3.9042e-04 1.7651e-05 1.0837e-06 2.1221e-07 6.6989e-08
40×40 2.2004e-04 2.4556e-06 2.2975e-07 1.0033e-07 0.0000e+00

Table 1: Left: k-refinement and h-refinement comparison for HNSQ and PSSQ elements. Right: patch of
four INSQ elements, red dots (•) indicate control points for displacement and temperature, black crosses
(+) indicate nodes for stress and equivalent plastic strain.
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Figure 3: Sparsity pattern of a single Jacobian quadratic INSQ element matrix in the linear elastic (left)
and nonlinear plastic (right) regime. The green dots (•) indicate nonzero terms and the black lines show
the limits of the blocks in the matrix.

3. Parallel preconditioner for shear bands

The cost of inverting the linearized system Eq. 4 becomes quickly prohibitive as mesh
resolution increases due to the large amount of degrees of freedom per nodes (8 dofs/node in
2D and 11 dofs/node in 3D). To reduce the cost and improve the scaling associated to invert-
ing J we propose to use a Schur complement S that follows the conservation/constitutive
laws split introduced with the α/η notation of Eq. 4 to construct a preconditioner for a
gmres solver applied to J. Forming S = Jαα − JαηJ

−1
ηη Jηα can be expensive depending

on the element chosen (expensive for HNSQ, cheap for INSQ) so we use an approxima-
tion S∗ = Jαα − Jαη [diag (Jηη)]

−1 Jηα. Finally S∗ is inexactly inverted using either of two
approximations:

1. a second Schur complement leading to a preconditioner denoted PSr and called Schur-
Schur

(S∗)−1 ≈
[
1 −(S∗

uu)
−1S∗

uT

0 1

] [
(S∗

uu)
−1 0

0 S−1
inner

] [
1 0

−S∗
Tu(S

∗
uu)

−1 1

]
(5)

with Sinner = S∗
TT − S∗

Tu [diag(S∗
uu)]

−1 S∗
uT , or

2. a non-overlapping multiplicative Schwarz preconditioner denoted PSz and called Schur-
Schwarz

(S∗)−1 ≈ B0 + B1B1SB0 with B0 =

[
(S∗

uu)
−1 0

0 1

]
and B1 =

[
1 0
0 (S∗

TT )−1

]
(6)

Weak and strong scaling of the proposed preconditioners are presented and compared to
the scaling of an LU solver in Fig. 4. As we can see the proposed preconditioners exhibit
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superior scaling properties compared to the LU solver making them useful alternatives for
large system of equations. This is especially true for the Schur-Schwarz solver. Weak scaling
tests reveal that both preconditioners also have better weak scaling than the LU solver and
that the Schur-Schur preconditioner exhibit the best weak scaling capabilities see [3].
However as we will see in the next section, more optimized preconditioners can be obtained
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Figure 4: Top: Strong scaling of preconditioners PSr and PSz compared to an LU solver on a 320,000
equations system. Bottom: Weak scaling of the preconditioners compared to an LU solver 8000 equations
per node.

if elements with discontinuous shape functions for stress and equivalent plastic strain field
(such as INSQ or PSSQ) are used to discretize Eq. 4.

4. Modified domain decomposition predonditioner

Using the conservation/constitutive laws split presented in Eq. 4 as well as discontinuous
shape functions (Pian and Sumihara or irreducible) for σ and γ̄p a Schur complement can be
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used to efficiently eliminate the η variables and the linear solves required during the Newton
iterations are re-cast as {

Sδα = Rα − JαηJ
−1
ηη Rη

δη = J−1
ηη (Rη − Jηαδα)

(7)

with S = Jαα − JαηJ
−1
ηη Jηα. In this form the computational effort is greatly reduced com-

pared to the cost associated with solving for the monolithic Jacobian. The computational
effort is now concentrated in solving for the Schur complement matrix denoted S.

In our approach S is approximately solved for using a preconditioned generalized minimal
residual (gmres) iterative solver. To reduce further the cost of the simulation the localized
nature of shear bands is leveraged using a domain decomposition approach [4]. The zone
where the shear bands develops is is assigned to a subdomain denoted Ωsb and called shear
band subdomain, the zone not affected by the shear band is denote Ωh and is called the
healthy zone see Fig. 5. The domain decomposition technique used is a modified additive
Schwarz method (ASM) such that at each Newton iterations the matrix associated to the
healthy subdomain is kept identical to the initial matrix associated to that subdomain.
Hence the inverse of the preconditioner PASM0 is expressed as

P−1
ASM0

=
(
Slinh
)−1

+ S−1
sb (8)

where Slinh and Ssb are defined according to the method proposed by Cai et al. [5]
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Figure 3: Healthy and shear band subdomains (red dots), with overlap nodes (cyan dots) for the
coarse mesh. 13
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Figure 5: Representation of the healthy (left) and shear band (middle) subdomain containing the red nodes
• and their overlap sets containing the blue nodes •. Equivalent plastic strain field (right) at the end of the
simulation.

With this definition the cost required to invert the preconditioner is low because Slinh is
inverted only once and then reused throughout the simulation. This is highly advantageous
since Ωh is typically large compared to Ωsb. However if too much plastic strain develops in
Ωh the approximation Sh ≈ Slinh will lead to a slow convergence of the gmres solver.
In summary the algorithm used to invert the linearized systems at each Newton iterations
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is written as {
gmres(S,Rα − JαηJ

−1
ηη Rη,P

−1
ASM0

)→ xα
J−1
ηη (Rη − Jηαxα)→ xη

. (9)

The preconditioner is tested on the benchmark example shown in Fig. 5 with three
different mesh resolution: coarse, medium and fine. It is compared to other solvers and pre-
conditioners: an LU solver applied to the monolithic Jacobian LU(J), an LU solver applied
to the Schur complement matrix LU(S), a gmres preconditioned by an ILU(0) algorithm
applied to the Schur complement matrix gmres(S, ILU(0)) and finally ASM which is similar
to ASM0 without the approximation Sh ≈ Slinh hence in ASM the matrix associated with
the healthy subdomain is updated and has to be inverted at each Newton iteration. The
results associated this benchmark example are presented in Table 2.

Mesh LU(J) LU(S) GMRES(S,ILU(0)) ASM ASM0

Coarse 373.36 401.91 399.93 401.31 332.81
Medium 1272.19 1260.48 1256.41 1242.89 1034.71

Fine 2909.45 2715.76 5015.37 1947.29 1828.12

Table 2: CPU times [s] for the simulation of the shear band under compression problem for three different
meshes

On all the meshes the proposed preconditioner is performing best in terms of simulation
time. Its performance is closely followed by that of the ASM preconditioner which provides
almost as good a strong scaling as the ASM0 preconditioner does.
The ILU(0) preconditioner performs very well on the coarsest mesh but its scaling is very
poor. Furthermore, as expected the LU(J) and LU(S) preconditioners have the worst scal-
ing, LU(J) performing slightly better than LU(S) on the coarsest mesh because of the time
associated with the computation of the Schur complement, but forming the Schur comple-
ment proves to be a good option as the mesh is refined.

Finally the preconditioner is tested on a second benchmark: a square plate under uniax-
ial tension with an imperfection at its center, but for increasing polynomial order of NURBS
shape functions. The preconditioner is compared to other state-of-the-practice solvers and
results are presented in Table 3.
We observe that for low polynomial order the proposed preconditioners are not too ad-
vantageous but as the polynomial order is increased the performance of the proposed pre-
conditioner improves compared to the other solution schemes. As it is the case for the first
benchmark, the proposed preconditioner performs better on larger meshes even for low order
elements see [4].

Conclusion

This work develops high order NURBS elements and iterative solvers for a difficult
thermo-mechanics problem associated with the formation and propagation of shear bands.
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Order LU(J) LU(S) GMRES(S,ILU(0)) ASM ASM0

P1 31.71 30.58 30.51 32.82 33.62
P2 105.40 89.07 84.48 92.92 88.97
P3 315.05 254.55 251.24 253.56 252.48
P4 799.05 638.55 646.20 652.25 626.40

Table 3: CPU times [s] for the simulation of the shear band under compression problem for four different
polynomial orders on a 20 by 20 elements mesh

These elements are shown to yield high convergence rates, alleviate volumetric locking and
provide mesh independent results thanks to the implicit length scale introduced by the ther-
mal diffusion. Specialized domain-decomposition preconditioners that take into account the
physics and the specific discretization are developed and implemented for parallel computing
and show excellent performance.
Future work will extend the solvers to the full brittle-ductile dynamic fracture model and
account for adaptive and simultaneous propagation of shear bands and brittle cracks.
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