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Abstract

We present a Multilevel Quasi-Monte Carlo algorithm for the solution of elliptic partial differential
equations with random coefficients and inputs. By combining the multilevel sampling idea with randomly
shifted rank-1 lattice rules, the algorithm constructs an estimator for the expected value of some functional
of the solution. The error analysis of this estimator provides a formula for the optimal number of samples at
each level. The efficiency of the method is illustrated on a three-dimensional subsurface flow problem with
lognormal diffusion coefficient. This example is particularly challenging because of the small correlation
length, and thus the large number of uncertainties that must be included. We numerically show that it is
possible to achieve a cost almost inversely proportional to the requested tolerance on the root-mean-square
error.

1 Introduction

In a mathematical model for a real-life process, the parameters are often unknown or subject to uncertainty.
Many models take the form of a partial differential equation (PDE), and the parameters can be random
variables, processes or fields. Monte Carlo (MC) techniques are a standard method for solving such stochastic
PDEs, however, they are often considered impractical due to their expense. Recently, the Multilevel Monte
Carlo (MLMC) method has been successfully applied to many different problems, showing significant gains
over classical MC, see [7] or [2]. The MLMC method is a combination of classical Monte Carlo sampling and
a multigrid idea. The method is quite general, and does not impose strong restrictions on the estimators
used to compute the contributions on each of these grids. This has resulted in many possible variants of
the method, such as level-dependent estimators [22] and Quasi-Monte Carlo (QMC) estimators |9]. Here, we
present a practical QMC variant, based on a heuristic for the optimal number of samples at each grid. We
apply our algorithm to a subsurface flow example in three dimensions with a small correlation length and
several thousand uncertainties.

The outline of this paper is as follows. After introducing the model problem below, section [3]introduces the
classical Multilevel Monte Carlo method. In section |4} we discuss the basics of Quasi-Monte Carlo quadrature
and introduce so-called rank-1 lattice rules. Next, we formulate a new Multilevel Quasi-Monte Carlo method
and a complexity theorem that bounds the cost of this estimator. Finally, in section [6] we present some
numerical results that demonstrate the superiority of the new Multilevel Quasi-Monte Carlo method.

2 The Model Problem

A central problem in groundwater studies is the steady-state flow in random porous media. This flow can be
described by the random elliptic partial differential equation

-V (k(z;w)Vp(x;w) = f(x) forxze D, we, (1)

where D is a bounded domain in R?, with d = (1,2, 3), and © a sample space. The diffusion coefficient k(x;w)
represents the permeability of the porous medium and is modelled as a random field on D x 2. A random field
is the generalisation of a stochastic process into multiple (spatial) dimensions. The solution p(x;w) represents
the unknown hydrostatic pressure head and is itself also a random field on D x .

A commonly used model for k(x;w) is a lognormal distribution, k¥ = log Z, where Z is an underlying
Gaussian field. The spatial covariance between two locations & and y of this random field is given by a
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covariance function or kernel. A covariance function that is often used in literature for application is the
exponential covariance

A

The parameters A and o are the correlation length and variance of the random field k(z;w). For subsurface
flow, the parameter range of interest for the correlation length is A < |D|. The variance o2 depends on the
material.

Several techniques exist to produce samples of a random field, such as the polynomial chaos expansion [23],
circulant embedding [11] or the Karhunen-Loeve (KL) expansion [6]. We will focus on the latter approach.
The KL expansion

cov(Z(x), Z(y)) == 0% exp <_||£B—y||p> z,y€D. (2)

Z(@:w) = 3 Vo fu(@)6n () (3)

represents the random field Z(x;w) as a linear combination of a number of eigenvalues 6,, and eigenfunctions
fn, with A(0,1)-distributed random numbers &, (w) as coefficients. The eigenvalues 6,, and eigenfunctions f,
are the eigenvalues and eigenfunction of the covariance integral operator associated with . In practice, the
infinite sum in equation must be truncated after s terms, with s € N called the stochastic dimension of
the problem. The s-dimensional vector of random variables {&,}5_; will be denoted as & € R®. Throughout
this paper, we will use the l-norm (p = 1) in . Then, analytical expressions for the eigenvalues 6, and
eigenfunctions f,, of the covariance operator are available, see [2] or [6].

Our goal is to compute certain statistical quantities, such as a mean or variance, of some functional G of
the solution p(x;w) to . This functional G = G(p) is known as the quantity of interest. We will focus on
the expected value of the quantity of interest, E[G(p)].

The classical Monte Carlo method approximates the expected value of the quantity of interest G by a
sample average. Taking samples of G typically requires three steps:

1. Generate a random vector £ € R® and take a sample of k(x;w) = log Z(x;w).

2. Solve the resulting deterministic PDE with a method of choice. In the numerical experiments further
on, we will use a finite volume discretisation, combined with an algebraic multigrid solver.

3. Compute the quantity of interest by applying G to the computed solution.

Note that these three steps compute a truncated and discretised version of the quantity of interest G = G(p),
denoted as G§ := G(p}), with h the discretisation parameter or set of such parameters.

3 Multilevel Monte Carlo Methods

Here, we review the main idea of Multilevel Monte Carlo methods [7,/13]. Consider a sequence {hs}l_,
he = ho2~¢. With every ¢ we associate a discretisation grid of PDE , with discretisation parameter hy.
For example, in the finite volume method considered in the numerical experiments, hy corresponds to the size
of the cells involved in the discretisation. The integers ¢ = 0...L are called levels. As the level number /¢
increases, the PDE is solved on an increasingly finer grid. Correspondingly, we index the approximations to
the quantity of interest G on level ¢ as Gj.

In a classical sampling method, the discretisation grid of the PDE is fixed, and samples are only taken on
a sufficiently fine grid. In a multilevel sampling method, one avoids estimating E[G] directly on level L, but
instead take samples on all levels £ =0... L.

We define the difference operator, denoted as A, by

AG, = Gy —Gy_q %f€>0.
Gy ifl=0

Note that, since Gy is a random variable, also AGy is a random variable. Using this definition, the expectation

of G can be expressed as
L

E[GL] = ) EIAG].

£=0



Let AQy be an unbiased estimator for E[AG/], then the multilevel estimator can be expressed as

L
M=) AQ,~E[G]. (4)

£=0
If the sequence of approximations Gg,G1,... convergences in mean square to G, then the variance of the

differences VIAGy] — 0 as £ — oco. Thus, fewer and fewer samples are needed on the finer grids, where samples
become increasingly more expensive. Assuming the variance will be the largest at £ = 0, most samples will
be taken on the coarse grid, where samples are cheap. The cost reduction associated with multilevel sampling
methods is due to the fact that most of the uncertainty is captured by realisations on the coarse grid, and only
few realisations are needed on the fine grids.

In the Multilevel Monte Carlo (MLMC) method, a standard Monte Carlo estimator is used for each of the
terms E[AGY], i.e.,

Ne—1 Loy Ne—1

AQ, = Nig Z AG(&,), and, hence, Myc = Z N, Z AG(&n), (5)
n=0

£=0 £ n=0

where we stressed the dependence of G on &. Denote V; := V[AG/] and let W, be the amount of work to
compute a single realisation of AGy. Then, by independence, we find that for the MLMC estimator

E[Myo] =E[G1] and V[Myo] =Y %

It is important to note that AG(&,) in (b)) comes from using the same random numbers &€ on both levels £ and
¢ — 1, in order to assure that the variance V} is low.
The objective of estimator is to compute M to sufficient accuracy, for example with a root-mean-square
error (RMSE) bounded by a tolerance parameter € > 0:
E[(M —-E[G])?] <e. (6)

The quantity under the square root is the mean-square error (MSE), which can be expanded as
MSE(M) =E [(./\/l — IE[G])Q] = E[(M — E[M])?] + (E[M — G])2 = V[M] + Bias(M, G)*. (7)

The first term in is the variance of the estimator, often referred to as the statistical error. The second term
is the square of the bias of the estimator, Bias(M, G). A sufficient condition to satisfy () is that both terms
in the MSE are smaller than €2/2. Alternatively, following [3], a splitting 6 € (0,1) is often proposed between
bias and statistical error:

Bias(M, G) < (1 —6)e (bias constraint) (8)
prob[|[M —E[M]| < O] > 1 —v,

(statistical constraint) 9)

where prob stands for probability. This allows control of both accuracy e and failure probability v. Using this
0, the statistical constraint can be relaxed when the estimated bias on a certain level is smaller than ¢/2.

By the Central Limit Theorem and by the assumption that the estimator has an asymptotic normal
distribution, one can rewrite the statistical constraint @ as

Oe

2
< | ——m — 2 : — €
VIM] < <<I>1(1 — 1//2)) (# TOL, )", with TOL,

ETE) .

where @ is the cumulative distribution function of N'(0,1). See [3] for details and a proof of the asymptotic
normality assumption.

Central to the success of multilevel sampling methods, are effective techniques to determine the number of
samples Ny, required on each level ¢, in order to achieve a specified accuracy. For MLMC, N, can be computed
by minimising the total amount of work subject to the statistical constraint ,

L L
. Vi 2
Total k = N .t — < (0TOL. )" . 11
min Tota Wor ;:0 Wi s ;:0 ~, < (ATOL,,) (11)



begin
L:=—1; 6 :=1/2; converged := 0;
repeat
L—L+1,;
take N samples at level L and compute sample variance and bias;
if bias < ¢/2 then 6 < 1 — bias/¢; fi;
compute optimal number of samples at each ¢ < L with (12);
update samples at each ¢ < L;
if L > 2 then recompute bias and check for convergence with (8); fi;
until converged;
end

Algorithm 1: Algorithm for Multilevel Monte Carlo (MLMC) simulation.

By using the method of the Lagrange multipliers, one finds that for all £ =0,...,L

L
s [V
Ny = (§TOL,,,) 2,/W‘; > VW = Vi /W, (12)
m=0

where the notation x =~ y means ¢ < y and y < z. The notation z < y means that x < cy with ¢ > 0. In
numerical simulations, one rounds (12 to [N,], the smallest integer not less than Nj.
A complete MLMC algorithm is formulated as Algorithm [T} We clarify some of the remaining components.
The bias can be estimated as AGy|
. L
Bias(M, Q) = 5o _ 1’ (13)
where « is defined in Theorem |1} see [7] for details. A certain number of samples, the so-called warm-up
samples, are needed to get an initial estimate for the bias and the mean in and . If this number of
samples N* exceeds the optimal number of samples, performance detoriation may arise, see [21]. This often
happens on the fine grids, where the required number of samples is small. We find in our numerical examples
that N* = 16 is a good trade-off. Next, note that the splitting parameter 6 € (0,1) will be active only in the
last iteration, where the (estimated) bias is smaller then €¢/2. In all other iterations, # = 0.5. This means that
the algorithm will spend less time in the last iteration. Finally, note that the algorithm can also return an
error estimate,

error = Bias(M, G) + &7 (1 — a/2) v/ V[Muc].

In the next two sections, we will propose a Quasi-Monte Carlo adaptation of the MLMC method. The
method differs from the method in |16], in that a heuristic for the number of samples N, at each level will be
used, instead of doubling the required number of samples when the statistical error is too big. This also allows
for efficient parallel execution, hence further improving performance.

4 Quasi-Monte Carlo Quadrature

The Quasi-Monte Carlo (QMC) method is an equal-weight cubature rule to approximate high-dimensional
integrals over the unit cube [0, 1]°:

1(f) = /[ @~ () = + 3 i)

The formula is seemingly identical to the Monte Carlo estimator. However, instead of ¢,, € [0,1]° being i.i.d.
uniform random numbers, the points t,, are chosen deterministically to be better than random. Some common
techniques for generating these points are rank-1 lattice rules [4] and digital nets [5]. Rather than the usual
O(N -1/ 2) convergence behaviour for Monte Carlo methods, QMC can, under certain conditions, achieve an
integration error O(N~*) with A > 1/2, see [18]. In our work, we will use the rank-1 lattice rule approach.

Definition 1. An N-point rank-1 lattice rule in s dimensions is a QMC method with cubature points

tn:{%}, n=0,.. N—1, (14)



where z € Z* is an s-dimensional generating vector, and {-} denotes the fractional part.

For integrands with sufficient smoothness and progressively less important dimensions, there exists lattice
rules for which the integration error decays as O(N—1%¢) for all € > 0 [4]. A generating vector z can be
constructed using a component-by-component (CBC) algorithm with cost O(sNlog N + s2N) for so-called
POD-weights, see [20] for details on the CBC construction and [17] for POD weights. Our cost model for the
proposed MLQMC estimator does not incorporate the cost of the CBC algorithm. This is justified by the fact
that the same lattice rule can be used for any PDE in the same problem class. Hence, it can be constructed
in advance.

The classical MC method comes with a probabilistic error bound of the form o(f)/v/N, where o2 =
Is(f%) — (Is(f))? is the variance of f. This error estimate comes for free, since o(f) can be estimated using the
same samples used to approximate Is(f). Unfortunately, QMC methods do not provide such an error bound,
since the points are chosen deterministically. However, this feature can be recovered when using random shifts:
each point in the lattice rule is shifted by a vector of U(0, 1)-distributed random numbers, i.e.,

t, = {”—;JFA} n=0...N—1.

We will denote the corresponding lattice rule as Qs n(f; A). A probabilistic error estimate for the QMC
method can be obtained by choosing K of these shifts Aj,...,Ag. The approximation for the integral
becomes

K
O () = 2 > Qun(r: Av)
k=1

Since Q, n(f; A1),..., Qs N(f; Ak) are i.i.d. random variables, the variance Va over these K estimators can
be used to construct a confidence interval for QfN(f)7 see [15].
A tool for analysing convergence of QMC methods is the so-called worst-case error, defined as

ewor(t1,...,tn) = sup |Is(f) — Qs n] (15)
fesn
171l <1

for some Banach space of functions 7. In the case of randomly-shifted rank-1 lattice rules, 7 is the weighted
and unanchored Sobolev space of functions on [0, 1]%, with square integrable mixed first-order derivatives. Its

norm is given by
olul ¢ ?
2
= ; sg)d dy,,,
Hf”s,'y \/[O n (/[0 1o lul 8y (yu Y }\u) yu) Yu

uC{l e}

with {1 : s} as shorthand notation for {1,2...s} and 8" f/dy, the mixed first-order derivative with respect
to the active variables y, and the inactive variables yyq.4y\, integrated out. For details, we refer to [15].
Using , we have the QMC error bound

IIs(f) — Qs N(f)] < ewor(t1,. .., tn)| flloe forall fe 2.

There is also a probabilistic counterpart of this error bound, using random shifts:

VEIL() — @5 ()P < LKewor(tl,...,tn)HfH% for all f € 2, (16)

with the shift-averaged worst-case error defined as

e (...t \// ez (1 + A . t, + A)dA.
[0,1]°

To apply the QMC method to compute the expectation of a quantity of interest, one must reformulate
that expectation as an integral over the unit cube [0, 1]°. This can be done by means of a change of variables,
see [10]. Unfortunately, after this mapping, the resulting function no longer belongs to the proposed function
space . Strictly speaking, a different function space setting must be considered, see [15], for which specific
generating vectors z can be constructed. However, motivated by [19], we will assume that a similar bound
as is true for functions defined on R® and pick a standard generating vector from [14].



begin
L:=—1; 6 :=1/2; converged := 0;
repeat
L—L+1;
generate K random shifts Ay k=1... K and take N* samples at level L;
compute sample variance VA [AG] and bias;
if bias < ¢/2 then 0 < 1 — bias/e; fi;
compute optimal number of samples at each ¢ < L with (20);
update samples at each ¢ < L using the random shifts Ay 4;
if L > 2 then recompute bias and check for convergence with (8); fi;
until converged;
end

Algorithm 2: Algorithm for Multilevel Quasi-Monte Carlo (MLQMC) simulation.

5 Multilevel Quasi-Monte Carlo Quadrature

In this section, we construct the Multilevel Quasi-Monte Carlo (MLQMC) estimator by combining the Mul-

tilevel Monte Carlo method with the randomly-shifted rank-1 lattice rules introduced in the previous section.

To obtain an expression for the optimal number of samples at each level, we must first find an expression for

the variance of the new estimator. Next, we can formulate the same optimisation problem as and solve

for Ny. Finally, we introduce an algorithm for MLQMC simulation and derive a theoretical cost estimate.
First, we extend to a Multilevel Quasi-Monte Carlo estimator, i.e.,

L L K Ny—1
1 1
Mamc = E QfNZ(AGg) = E e g ﬁ g AGq (tn + Agy) - (17)
£=0 £=0 k=1 n=0

This involves a total of K(L + 1) different shifts Ay . Note that QX (AG/) is an unbiased estimator for
AG,. By analysing the error of the MLQMC estimator Mqwmc, we will obtain a heuristic for the number of
lattice points N, at each level. The variance of the estimator can be elaborated as follows,

L

a YOy (AGY)

£=0

L

=Y " Va [QFy,(AG))], (18)

£=0

Va[Maquc] =

by independence and unbiasedness of the shifts Ay . Using the definition of variance and assuming a bound
like also holds here under the correct function space setting, we can bound as

L
alMauc] =) Ea [|QFy, (AG)) — EA[AG)]
=0
L 1 L 1 2
<3 L ) AGHE <Y & () 1AGH 2
=0 =0

We assumed the use of a QMC method that converges as O(1/N?*) with Cs x a constant that depends only
on the dimension of the integral and the point set. Given this bound, we can now formulate the optimisation
problem

Cax
min Total Work = K%MWZ s.t. Z (N’\) |AG|% < (TOL,,)*. (19)

Using the method of the Lagrange multipliers, can be written as a problem without constraints. The
solution of the original optimisation problem is a critical point of the Lagrangian

L L
1 [(Csn
E(Nz,u)=KZNEWz+M<Z (NA) |AGe|2, <9T0L6,y>2).

£=0 £=0




10725 T T T 11T T T 11110 T T T TTI IR 1073 LN T T T T T TTTIT |-
= B . —e— MC level 0
] o - e- QMC level 0 ||
1073 & E g 1075 - -
< r ] E;_{ 10-6 |- -
[ 1 n
1074 E = 107 b \\ =
= B ..
N 7 10—8 |- AN —
|- - \.
~
10—5 T Y N A Y B A A 10—9 T Y A T W N TI A YA RiT
100 10t 102 108 104 102 108 104 10° 106
n total number of points
(a) (b)

Figure 1: (a) Decay of the eigenvalues 6, in the KL expansion (3). In our numerical tests, we
will use s = 2000 terms. (b) Estimation of the convergence parameter A of the QMC lattice
rule. We find A =~ 0.85.

First-order optimality conditions stipulate that

oL 1 C2 )
N KW, + u?(*Zk)W”AGZH% =0,

and hence,

N, = P 2)‘C§,A||AG5H%
‘e KW,

The above derivation extends the one for the classical Monte Carlo method, which corresponds to A = 1/2,
Ny =1 and K the number of i.i.d. samples. From the analysis of the MLMC estimator in one has that in
that case K ~ \/Vp/Wy, see . Hence, the extended analysis is valid for both MLMC and MLQMC if we
propose C2 , | AG¢||%, < Vi. This leads to the following heuristic estimate for the optimal number of samples

at each level:
1V \ B &
Ny > | (0TOLe,) "' (W‘) > AR VWA (20)
m=0

Note that this value is in agreement with equation for A =1/2.

A theoretical cost estimate for a MLQMC algorithm has been proposed and proven in [16]. The results
can be adapted in a straightforward way to cover our algorithm. The only (minor) difference in the following
theorem is that we neglect the influence of s on the cost (i.e., we keep s fixed).

Theorem 1. Suppose there are nonnegative constants o, 8 and 7y such that
(i) |E[QL — QI < ht

(ii) Ea[Qf N, (AG)] = E[AG]

(iii) ValQfiw, (AG)] S KNy by,

(iv) cost(QﬁfN[(AGg)) < KNgh,

Then, for any € > 0, there exists a choice of L and Ny, ..., Ny such that

e~/ when B > 2d)\
MSE(M) £ € and cost(M) < { e /X (loge—1)Y N+ yhen B = 2d) . (21)
e/ A=(d=B/(2X))/ex when B < 2d\

All components are now in place to formulate an algorithm for MLQMC simulation, see Algorithm [2} The
same remarks given for Algorithm [I] also apply here.
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Figure 2: (a) and (b): Estimation of the parameters « = 1.55 and 8 =~ 3.28 in Theorem
Using v ~ 1, we derive that the asymptotic cost bound is O(e~?) for MLMC and O(e~*%¢) for
MLQMC.

6 Numerical Results

We numerically demonstrate the performance of the MLMC and MLQMC estimators and illustrate their
superiority over standard MC estimation.

Consider the 3-dimensional PDE with a diffusion coefficient characterised by with correlation length
A = 0.075, variance 02 = 1 and coarsest mesh size hg = 1/4. This is a particularly challenging problem because
of the slow decay of the eigenvalues 6,, in expansion , see Figure A lot of terms must be kept to assure a
sufficiently small truncation error. Here, we will use s = 2000, i.e., the random space is of dimension 2000. The
spatial geometry is a simple flow cell D = [0,1]® with Dirichlet boundary conditions p(0) = 1 and p(1) = 0.
There is no outflow through the other boundaries, i.e., we assume homogeneous Neumann conditions, and
set the source term f = 0. As a quantity of interest, we will consider a point evaluation of the pressure
at * = [0.214,0.369,0.857]. Further parameters are N* = 16 warm-up samples and a failure probability
a = 10%. The number of shifts is chosen as K = 16. In our application, this appears to be a good trade-off
between an accurate variance estimation without affecting the convergence rate of the method. We pick a
generating vector z from [14]. All simulations are performed on a shared memory computer with 20 2.8GHz
processors and 64GB RAM.

To predict the asymptotic bound on the cost of both MLMC and MLQMC in Theorem I} we need values for
the parameters v, A\, a and 3. The discretised PDE problem is solved using a conjugate gradient method with
the algebraic multigrid preconditioner from the HSL Mathematical Software Library, see [1]. This choice leads
to a numerically determined parameter value of v &~ 1.0753. The parameter A, also needed in the MLQMC
algorithm, is estimated as A =~ 0.85, see Figure Figure shows the behaviour of the expected value of
the quantity of interest Gy and the difference AGy for different levels. The slope of the line is approximately
-1.55, hence E[AG,] = (1/hy)~1%%, or a ~ 1.55. Similarly, Figure shows the behaviour of the variance
of Gy and AG,. We find 8 ~ 3.28. Since v ~ 1, we expect from Theorem [1| a cost O(¢~2) for MLMC and
O(e 136 for MLQMC.

To check these bounds on the cost, we plot a cost versus accuracy graph in Figure Note the logarithmic
scale on the time-axis: for e = 1e-4 we reduced the simulation time from 1h 36min for MLMC to only 21min
for MLQMC. We compare the experimentally achieved cost bounds with the derived bounds from Theorem

theoretical —experimental

method cost bound cost bound
MLMC =200 €228
MLQMC 6_1'36 6_1'31

Notice that there is a good agreement between the experimental and theoretical error bounds, both for MLMC
and MLQMC. For reference we include the results of a classical Monte Carlo method for the first few tolerances
in Figure Note that the observed cost €353 is far from the expected €2, since the MC simulations are
performed at different finest levels, to get a sufficient decrease of the bias.
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Figure 3: (a): Cost versus accuracy graph for MLMC and MLQMC. (b): Normalized proba-
bility density function (pdf) along the z-axis, for y = z = 0.5.

The MLMC and MLQMC estimators still have all the benefits of the classical Monte Carlo method: samples
can be taken in parallel, one can obtain a probability density function (pdf) of the quantity of interest and the
expected value of multiple quantities of interest can be obtained from a single simulation. For the latter, the
quantity of interest with the highest variance V; will determine the number of samples to be taken at level /¢,
see . Figure for example, shows the (normalized) pdf of a point evaluation of the pressure along the
z-axis, for y = z = 0.5.

7 Conclusions and Further Work

We proposed a Multilevel Quasi-Monte Carlo (MLQMC) algorithm for simulating partial differential equations
with random coefficients. We focused on problems with lognormal diffusion coefficient arising in subsurface
flow problems. The MLQMC method combines ideas from the classical Multilevel Monte Carlo (MLMC)
method with rank-1 lattice rules.

This gives a new improved complexity result that achieves a cost almost proportional to the requested
tolerance on the expected value of some quantity of interest. As opposed to the work in and ﬂgﬂ, we
derived an explicit expression for the optimal number of samples at each of the levels. All of these samples can
be taken in parallel, further boosting performance. Moreover, our algorithm uses the advanced error splitting
presented in , allowing control of both error and failure probability.

Numerical results illustrate the superiority of the new MLQMC algorithm over classical Monte Carlo and
Multilevel Monte Carlo simulation. In our experiments, we obtained a decrease in simulation time w.r.t. MLMC
by a factor 4.5 for the smallest achievable tolerance. With respect to classical Monte Carlo, the improvement
goes up to several orders of magnitude.

Future research will focus on combining the MLQMC estimator with other variance reduction techniques,
such as higher-order digital nets |5], and the recently proposed Multi-Index Monte Carlo method .
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