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In this talk, we discuss our efforts in leveraging eigensolvers (developed to solve
problems in computational science and engineering) in the spectral analysis
of graph and hypergraphs for community detection. In community detection,
the goal is to determine groupings of data objects given a set of relationships
amongst multiple objects. These relationships are often represented by mul-
tiple edges in a graph in a simplified model, transforming the relationship of
many objects into multiple pairwise relationships between objects. However,
a multiway relationship between objects can be more naturally represented by
an hyperedge, a generalization of an edge that contains one or more vertices.
A focus of our work is understanding the differences between these graph and
hypergraph models.

One method of detecting communities is through spectral analysis of the graph
or hypergraph. A common procedure is to form the graph or hypergraph Lapla-
cian, compute a few of its eigenpairs, and run kmeans on the subspace spanned
by those eigenvectors. Let the graph incidence matrix be G, the hypergraph in-
cidence matrix be H, and the diagonal matrices of vertex degrees and hyperedge
cardinality be D, and D, respectively. Then the symmetric normalized graph

Laplacian can be expressed as Lg = I — Dy_Gl/2 (GGT —-D ) D;GUQ, and the

symmetric normalized hypergraph Laplacian is Ly = I—D,, Hl ;i D;'HT D, ; /2,
These operators may be expressed explicitly as a matrix or implicitly as a series
of linear algebra operations. In practice, it may be unwise to explicitly build the
matrix L, especially with dynamic graphs that would require expensive updates
to L whenever the incidence matrix changed, so we have chosen to use the implic-
itly defined operator in our code. We've implemented the above methodology
in both a Matlab prototype and (more recently) a high performance computing
software framework based implementation. In initial experiments, we compared
the spectral analysis resulting from the graph and hypergraph models. For
unweighted G, we found that the clustering produced by performing spectral
analysis on L¢ is considerably worse than that produced by performing spectral
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analysis on Lpg; this is reflected both in our Matlab results and in the exist-
ing literature. When the edges of the graph corresponding to G are weighted
based on the cardinality of the associated hyperedge, the graph results improve
considerably and the clustering quality is similar. However, this graph model
still requires significantly more storage, as well as more operations per matrix-
vector multiplication (for implicitly stored operators), so the hypergraph model
is computationally advantageous.

We chose to implement these spectral clustering methods in the Trilinos frame-
work, in order to solve these problems at a large scale (with an eventual target
of hundreds of millions to billions of vertices). We leverage Trilinos’s efficient
parallel sparse eigensolver package Anasazi, which contains many popular eigen-
solvers such as Block Krylov Schur, LOBPCG, TraceMin, and the Riemannian
Trust Region method. Anasazi supports MPI+X, where X includes OpenMP,
CUDA, and Pthreads, and it has been used to solve data analytics problems
with over a billion vertices. We will be presenting results obtained from our
Trilinos-based code.

In recent work, we have been delving deeper into the eigensolver framework,
trying to better understand how to best use Anasazi in the context of data
science applications. One important issue is whether it is more effective to
compute the smallest eigenpairs of L or the largest eigenpairs of I — L. Although
these problems have different eigenvalues, the eigenvectors are the same and
thus both can be used in our spectral analysis. In general, it is easier to obtain
the largest eigenvalues of a matrix than it is to obtain the smallest ones, since
computing the smallest eigenpairs tends to require solving a series of linear
systems. However, I — Ls may not be symmetric positive definite, which can
pose challenges for eigensolvers; I — Ly has no such problem, as it is guaranteed
to be symmetric positive definite, which may be advantagous to the hypergraph
model. Another important issue that we will discuss is how many eigenpairs
should be provided to k-means and how accurate they should be. The separation
of the eigenvalues in the spectrum is one contributing factor to the running
time of the eigensolver. Another factor is the tolerance requested from the
eigensolver. In this talk, we will explore these questions in the context of Anasazi
and the eigensolvers it provides, each of which have unique pros and cons.



