Charles Morgenstern An Efficient Iterative Method for Acoustic Wave Propagation

Colorado School of Mines
Applied Mathematics & Statistics
1500 Illinois St
Golden
Colorado 80401
cmorgens@mymail.mines.edu
Mahadevan Ganesh

We consider the time-harmonic acoustic wave propagation governed by the variable coefficient Helmholtz partial differential equation (PDE) with absorbing boundary conditions. The standard Galerkin variational formulation of the Helmholtz model and the associated finite element method (FEM) discretization provide a robust computational framework for simulation of acoustic wave propagation in general media with curved and non-smooth boundaries. We develop a non-standard FEM computer model to simulate the Helmholtz problem and demonstrate the efficiency of the approach compared to the standard formulation.