Erin Molloy Is the ideal approximation operator always "ideal" for a particular C/F splitting? University of Illinois at Urbana-Champaign Department of Computer Science emolloy2@illinois.edu Luke Olson Jacob Schroder Given a coarse grid, the ideal prolongation operator is defined by $\mathbf{P}_{\star} = \begin{bmatrix} \mathbf{W} & \mathbf{I} \end{bmatrix}^T$, where the weight matrix, $\mathbf{W} = \mathbf{A}_{FF}^{-1} \mathbf{A}_{FC}$, interpolates a set of fine grid variable (F-points) from a set of coarse grid variable (C-points), and the identity matrix, \mathbf{I} , represents the injection of C-points to and from the coarse grid (Falgout and Vassilevski, 2004). In this talk, we consider \mathbf{P}_{\star} , constructed from both traditional C/F splittings and C/F splittings corresponding to aggregates, for several challenging problems. We demonstrate the effects of the C/F splitting on the convergence and complexity of \mathbf{P}_{\star} . Finally, we argue that \mathbf{P}_{\star} may be misleading in demonstrating the "ideal" nature of interpolation of a given C/F splitting by providing numerical evidence that hierarchies built using \mathbf{P}_{\star} converge more slowly than hierarchies built from alternative prolongation operators with the same C/F splitting. This is important as we wish to minimize the number of levels in a multigrid hierarchy by using a small set of \mathbf{C} points for which \mathbf{P}_{\star} may have poor convergence.