Abdulrahman Manea
A Massively Parallel Semicoarsening Multigrid for 3D
Reservoir Simulation on Multi-core and Multi-GPU
Architectures

Green Earth Sciences Building
Room 065
Stanford University
Stanford
CA 94305-2220
amanea@stanford.edu
Tchelepi Hamdi

In this work, we have designed and implemented a massively parallel version of
the Semicoarsening Black Box Multigrid Solver [1], which is capable of handling
highly heterogeneous and anisotropic 3D reservoirs, on a parallel architecture
with multiple GPUs. For comparison purposes, the same algorithm was also im-
plemented on a shared-memory multi-core parallel architecture using OpenMP.
The parallel implementation exploits the parallelism in every module of the orig-
inal Multigrid algorithm, including both setup stage and solution stage, without
modifying the original algorithm basic steps. The benefits of this approach are
twofold: maintaining the inherent strong linear convergence of the serial Multi-
grid algorithm, and making advantage of the shared-memory architecture to
minimize the need for communication.

The design of the algorithm uses a combination of plane relaxation and semi-
coarsening to efficiently handle anisotropies in 3D, [2]. Sense the z-direction
in most reservoir models is a direction of strong-coupling compared to the x-
and y- directions, semicoarsening is employed in the z-direction, and plane re-
laxation is used for relaxation on x-y planes. Besides solving 2D-systems for
plane-relaxation, during the setup stage, a set of 2D systems must be also solved
on each multigrid level to get an approximate representation of the exact pro-
longation operator described in [1]. For solving both types of 2D systems, we
used a parallel version of the 2D standard-coarsening operator-induced multi-
grid [3]. To be able to handle problems involving high anisotropies in the x-
and y- directions, we used alternating line-relaxation with zebra ordering to
parallelize across multiple line solves. For the coarsest-solve, we use multicolor
Gauss-Seidel algorithm, with four colors to handle the nine-point stencils of the
coarsest structured grid.

There are several differences in the 2D-solver requirements between the setup-
stage systems and the solution-stage systems. The setup-stage systems are
independent and directly parallelizable. On the other hand, for parallelizing



the solution stage systems, i.e. plane-relaxation, red-black coloring must be
used. Since the convergence of the overall semicoarsening multigrid algorithm
is very sensitive to the quality of the prolongation weights computed by the
2D-solves during the setup stagewhich are in turn are used to build the coarse-
grid operators in the standard Galerkin approach the setup stage 2D-solves are
carried out to tight residual tolerances using several multigrid cycles. On the
other hand, for plane relaxation, the accuracy requirements are much looser,
where a single multigrid cycle is found to be good enough for smoothing most
of the high-frequency error modes.

To have coalesced global memory access pattern on the GPU, the Diagonal
Sparse-Matrix Format [4] was used to store the system matrices at all the lev-
els. In both the 3D Semicoarsening Multigrid and the 2D Multigrid plane re-
laxation, V-cycling was used to avoid spending more time at coarser levels and
thus affecting the parallel efficiency. To minimize the expensive communication
through PCle between the host and a GPU and amongst GPUs, every 2D solve
is explicitly handled by a single GPU, where we avoid splitting a single 2D solve
between multiple GPUs.

Due to the inherent granularity difference between the GPU threads and the
Open-MP threads, each GPU thread is typically assigned one computational
point, whereas every relatively coarse OpenMP thread is typically assigned sev-
eral computational points. In addition, this inherent granularity difference also
affects the design of the tridiagonal solves during the line-relaxation. Since
OpenMP threads are coarse (as they are mapped to one physical core on the
host), it is suffices to assign a line or a small group of lines to a single thread,
where the tridiagonal systems can be efficiently handled using the serial Thomas
Algorithm. However, on the GPU, this approach would be very inefficient, as
it involves relatively large serial computational tasks, and would not generate
enough parallel work to utilize most of the available hardware resources. Thus,
the approach taken was to assign every computational point to a thread, where
threads operates in two stages, namely, a setup stage and a solution stage. In
the setup stage, the threads work on preparing the tridiagonal systems of one
red/black zebra line sweep, in parallel. Then, in the solution stage, the threads
solve those tridiagonal systems in one batch in parallel using NVIDIA’s CUS-
PARSE LIBRARY [5], which in turn uses a combination of both the Cyclic
Reduction and Parallel Cyclic Reduction algorithms.

The two versions were tested using various highly heterogeneous problems de-
rived from SPE10 Second Dataset and varying in size from tens of millions of
cells to hundreds of millions of cells. For problems with sizes large enough to sat-
urate the GPU resources, the Multi-GPU implementation is found to be faster
than the OpenMP implementation running on 12 Intel Xeon X5650 2.66GHz
cores. In addition, the inherent serial nature of multiplicative multigrid, along
with the approach taken to minimize the communication through PCle, is found
to limit the scalability beyond 3-4 GPUs.



References:

1. S. Schaffer. A semicoarsening multigrid method for elliptic partial differen-
tial equations with highly discontinuous and anisotropic coefficients.SIAM
J. Sci. Comput, 20(1):228242, 1998.

2. Dendy, Jo E., et al. ”Multigrid methods for three-dimensional petroleum
reservoir simulation.” Tenth SPE Symposium on Reservoir Simulation.

1989.

3. Alcouffe, R. E., et al. ”The multi-grid method for the diffusion equation
with strongly discontinuous coefficients.” STAM Journal on Scientific and
Statistical Computing 2.4 (1981): 430-454.

4. N. Bell, M. Garland, ”Efficient Sparse Matrix-Vector Multiplication on
CUDA”, NVIDIA Technical Report, NVR-2008-004, (2008).

5. NVIDIA Corporation, "NVIDIA CUDA CUSPARSE Library”, [Online].
Available: http://docs.nvidia.com/cuda/index.html



