
Ben Bergen
Task-Graph and Functional Programming Models: The

New Paradigm

P O Box 1663
MS B287

Los Alamos
NM 87545

bergen@lanl.gov

The Message Passing Interface (MPI) is an example of a distributed-memory
communication model that has served us well through the CISC processor era.
However, because of MPIs low-level interface, which requires the user to manage
raw memory buffers, and its bulk-synchronous communication model, MPI will
have great difficulty in scaling to exascale systems and beyond. Additionally,
the MPI model cannot be easily extended to include the fault tolerance and
resilience features that will be required to run at scale on modern computing
architectures. A new approach is needed.

A trend that is gaining momentum in the computer and computational science
communities is the use of data-driven models that employ task-graph runtimes
to map data and tasks onto a distributed system. This approach offers a higher
level of abstraction that frees the user from explicitly knowing the layout and
location of the data regions accessed by a task. Task and data dependencies
can be represented as a directed acyclic graph (DAG), allowing heuristics and
auto-tuning strategies to be applied at runtime to optimize the execution of
the DAG. This approach shows great promise. However, it will require a new
understanding of how our existing numerical methods can be mapped into this
model. At the same, there is an opportunity for us to influence the features and
requirements for implementations of task-graph models.

Although there are several efforts underway to develop useful task-graph imple-
mentations, the Legion project at Stanford University is a clear front-runner.
This presentation is part one of a two-part series designed to introduce some
of the Legion concepts to the audience. Here we discuss high-level task-graph
concepts and provide an example of how a geometric multigrid algorithm might
be implemented using a task-graph runtime.

1


