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Abstract. We develop compatible relaxation algorithms for smoothed aggregation-based multi-
grid coarsening. In the proposed method, we use the geometry of the given discrete problem on
the finest level to coarsen the system together with compatible relaxation to form the sparsity
structure of the interpolation operator and then apply energy minimization techniques to compute
its entries. Of particular interest in this work is the idea to use a geometric coarsening algorithm
based on a new more sharp variant of compatible relaxation. The proposed method is competitive
with classical AMG in terms of its convergence properties for scalar anisotropic diffusion problems
and allows explicit control of operator complexities. We present preliminary numerical experiments
for a two-level scheme that demonstrate the potential of the proposed algorithm.

1. Introduction

We consider developing geometric-algebraic multigrid (GAMG) solvers for a given linear system
of algebraic equations

(1.1) Au = f ,

coming from various discretizations of the scalar elliptic diffusion problem

(1.2)

{
−∇ · (a(x)∇u) = f in Ω

u = 0 on ∂Ω

where Ω ∈ Rd. We consider the case d = 2 and Ω = [0, 1] × [0, 1] and assume that the coefficient
a(x) has a jump discontinuity of several orders in magnitude. The discrete solution and right side
satisfy u, f ∈ Rnc and A ∈ Rnc×nc is a symmetric and positive definite matrix. Multigrid solvers for
solving (1.1) involve a smoother, with error transfer operator given by I−M−1A, and a coarse-level
correction, with error transfer operator given by I −ΠA = I − PA−1c P TA. The resulting two-level
method, from which a multilevel method is defined recursively, reads

(1.3) ETG = (I −ΠA)(I −M−1A).

Typically, the smoother M is fixed and then the prolongation operator P is constructed in an
automated setup algorithm to complement the smoothing process. The setup algorithm constructs
the interpolation matrix P and then computes the coarse level matrix using the Galerkin definition
Ac = P TAP . Hence, the main task in AMG is to construct a stable interpolation operator P such
that a certain approximation property holds and both P and Ac are sparse matrices. Numerous
algorithms have been developed for constructing matrix-dependent interpolation, going back to
the original classical AMG algorithm [3, 4]. In this work, we construct the coarse grids using the
geometry of the finest-grid discretization as in [7] and compute P and Ac = P TAP using compatible
relaxation [2, 5] and energy minimizing algebraic multigrid [12, 15, 17, 6, 13].

In terms of developing multigrid methods for multicore systems there are two main issues that
must additionally be considered. First, when the size of the problem decreases on coarse levels a
large number of processors become idle. This issue is in general unavoidable since both geometric
and algebraic multigrid methods achieve their optimality by treating global components of the
error on increasingly coarser levels. Various techniques have been proposed to deal with this
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issue, including using asynchronous multigrid methods [10] and multilevel domain decomposition
methods [1] in which each processor owns the given problem on a local subdomain on the finest
level and then owns an increasingly larger part of the fine domain on coarser levels.

The second issue concerns the communication required on coarse levels to compute residuals and
coarse level corrections, which in turn is directly related to the fill in of the coarse level operators
Ac = P TAP in an algebraic multigrid method. Our work focuses on treating this latter issue
by using the geometry of the given problem and its discretization to coarsen the system together
with compatible relaxation to form the sparsity structure of the interpolation operator and energy
minimization to compute its entries.

2. Notation and preliminaries

The following identity which specifies the convergence rate of the two-level method is used in
designing algorithms for constructing AMG interpolation

(2.1) ‖ETG(P )‖2A = 1− 1

supv κ(v)
, κ(v) =

‖(I −Π∗)v‖2∗
‖v‖2A

,

where Π∗ is the (·, ·)∗ = (·, ·)
M̃

orthogonal projection on range(P ), with M̃ = M +MT −A denot-
ing the symmetrized smoother. The design of AMG methods is motivated by an approximation
property of the coarse space, which given the prolongation operator P is defined as

(2.2)
‖(I −ΠX)v‖2X

‖v‖2A
≤ η ∀v ∈ Rnc ,

where ΠX is the X-orthogonal projection on range(P ), with X a suitably chosen symmetric and
positive definite operator. We note that the left side in (2.2) will precisely determine the convergence

rate if we choose X = M̃ . If X is not equal but spectrally equivalent to M̃ , namely,

σ−10 (Xv,v) ≤ (M̃v,v) = ‖v‖2∗ ≤ σ1(Xv,v),

then we then have that

‖(I −ΠX)‖X ≤ ‖(I −Π∗)‖X ≤ σ0‖(I −ΠX)‖X
‖(I −Π∗)‖∗ ≤ ‖(I −ΠX)‖∗ ≤ σ1‖(I −ΠX)‖X

As a consequence, the two-level method is a uniform contraction in ‖ · ‖A-norm if and only if η is

uniformly bounded for some X which is spectrally equivalent to M̃ .
A more practical situation is obtained when assuming only σ1 is known which then gives a

sufficient condition for uniform convergence. A typical choice for X, which motivates the clas-
sical AMG approach, is X = D (the diagonal of A). For many smoothers (for example Gauss-
Seidel method for sparse matrices, Richardson method for finite difference equations), we have that

(M̃v,v) ' (Dv,v). More generally, one assumes that M̃ = M +MT −A is an SPD matrix, which
is a necessary and sufficient condition for the convergence of the smoother. The following measure
considered in [8] then gives a more general approximation property involving the smoother

(2.3) µ(PZp,v) :=
‖(I − PZp)v‖2

M̃

‖v‖2A
.

Here, Zp : Rn → Rnc and we require that ZpP = I such that PZp is a projection. Note that for
fixed P , this gives a bound on the convergence rate of the two-level method, since the measure
immediately gives the bound κ(v) ≤ µ(PZp,v) all v. That is, if we assume that

(2.4) µ(PR,v) ≤ K ∀v ∈ Rn \ {0}
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is satisfied for some constant K. Then K ≥ 1 and

(2.5)
∥∥(I −M−1A)(I − πA)v

∥∥
A
≤
(

1− 1

K

)1/2

‖v‖A .

Hence, if P is constructed so that measure (2.3) is bounded by a constant for all v 6= 0, then the
resulting two-level method converges uniformly.

In such setting, sufficient conditions for two-level convergence are obtained by considering the
optimal min−max solution to (2.3)

(2.6) µ? = min
P

max
v 6=0

µ(PZp,v),

with fixed Zp. Then, for a given set C, µ? gives an upper bound on K for all possible choices
of P . Hence, µ? can be veiwed as a mesaure of the quality of C. Define Zs : Rnf → Rn, where
nf = n− nc, such that ZpZs = 0. Note that then any error v can be written as

(2.7) v = Zsvf + ZTp vc,

for some vf and vc. The smoother needs to be effective on the space Range(Zs).
Considering the more general measure

(2.8) µX(PZp,v) :=
‖(I − PZp)v‖X

‖v‖2A
,

obtained by replacing M̃ in µ(PZp,v) by any given SPD matrix X it follows that the arg min of
µX satisfies P T∗ AZs = 0 and the minimum is

(2.9) µ?X =
1

λmin((ZTs XZs)
−1(ZTs AZs))

.

Moreover, the arg min of µX is given by

(2.10) P? = [Zs Z
T
p ]

(
(ZTs AZs)

−1ZTs AZ
T
p

I

)
= (I − Zs(ZTs AZs)−1ZTs A)ZTp ,

which gives a generalization of the so-called ideal interpolation in classical AMG.
Assuming that the coarse variables have been constructed so that µ?X is bounded for all v 6= 0,

then using a P that satisfies the following stability property also implies convergence of the resulting
two-level method

〈APZpv, PZpv〉 ≤ η 〈Av, v〉 for all v,(2.11)

where η ≥ 1 is a constant. This more general result is interesting because it allows for vari-
ous approaches of defining interpolation. Moreover, it separates the tasks of selecting the coarse
variables and defining interpolation. We note that (2.11) has been used extensively in the liter-
ature [12, 15, 17, 6] to derive various techniques for constructing an energetically stable P . In

addition, since M̃ is SPD, we can apply the result in (2.10) and (2.9) for X = M̃ . Hence, if the
generalized approximation property holds for some K and P is stable, then the convergence of the
two-level method follows.

If we consider finding the operator P that minimizes µ?X and let (·, ·)∗ = (X·, ·), then given
nc = |C| and setting P∗ = ZTp =

[
φ1, φ2, · · · , φnc

]
, where φk solves the generalized eigenvalue

problem

(Aφk,w) = µk(φk,w)∗ ∀w ∈ Rn,
with µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µnc ≤ · · · ≤ µn and (φk, φl)∗ = δkl, we have

µ?X =
1

µnH+1
.
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To see this we set Zs =
[
φnc+1, · · · , φn

]
. Then, ZpZs = 0, ZpP = I and ZTs X

−1AZs = diag(λnc+1, · · · , λn).
The result follows from the earlier result that

µ?X =
1

λmin((ZTs XZs)
−1(ZTs AZs))

.

Hence, the P∗ that minimizes κ(v) also minimizes the measure µ?X . Note that the result suggests
that the coarse space must consist of small eigenvalues of X−1A.

In the classical AMG formulation of interpolation

P =

[
W
I

]
} F
} C ,

where C ⊂ {1, ..., n} and F = {1, ..., n} \ C, and W ∈ R|F |×|C| defines the interpolation weights.
Similarly, consider the splitting such that

(2.12) A =

[
Aff Afc
Acf Acc

]
, Zp =

[
0 I

]
and Zs =

[
I
0

]
.

Then, W∗ = −A−1ffAfc, which gives the ideal interpolation operator often used in analyzing the

classical AMG derivation of interpolation. Moreover, if we minimize (Av,v) for a given vc, this is
the same as minimizing

min
vf

(Affvf ,vf ) + 2(Afcvc,vf ) + 2(Accvc,vc).

The last term can be dropped since vc is fixed and the minimizer of minvf
(Affvf ,vf ) + 2(f ,vf ),

with f := Afcvc is vf = A−1ff f , or vf = A−1ffAfcvc and, hence,

(SAwc,wc) = inf
v:vc=wc

(Av,v),

where v =

[
∗
wc

]
, and SA = P T∗ AP = Acc−AtfcA

−1
ffAcf The latter result then shows that using the

ideal interpolation operator also minimizes the constant η in the stability estimate given in (2.11).
This observation motivates our choice of using energy minimization techniques to form P [12, 15].

Specifically, given a set of aggregates, {Ωi}nc
i=1 such that ∪iΩi = Ω, consider

(2.13) χ = {Q : Qji = 0 for all j /∈ Ωi and Q1c = e}.

Here, e is an arbitrary nonzero element of Rn. Then, the interpolation that we use in our algorithm
is defined as the unique solution of the following constrained minimization problem:

(2.14) P = arg min J(Q) := trace(QTAQ), Q ∈ χ.

It is well known that the i-th column of the solution to (2.14) is given by

(2.15) [P ]i = IiA
−1
i ITi Mae, M−1a =

nc∑
i=1

IiA
−1
i ITi ,

where Ii ∈ Rn×ni and (Ii)kl = δkl if both k and l are in Ωi and zero otherwise, and Ai = ITi AIi.
Typically, the constraint vector e is chosen as a near kernel component in an attempt to satisfy the
above mentioned weak approximation property (2.2).
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2.1. Compatible relaxation. Compatible relaxation, as defined by Brandt [2], is a modified re-
laxation scheme that keeps the coarse-level variables invariant. From our assumption that ZpZs = 0
it follows that we can define the compatible relaxation iteration as

(2.16) vk+1 = (I − (ZTs MZs)
−1(ZTs AZs))vk,

where the convergence rate of this iteration is related to the measure µ? in (2.6) as follows

(2.17) µ? ≤ ∆2

2− ω
· 1

1− ρs
.

Here ∆ ≥ 1 measures the deviation of M from its symmetric part [8] and

(2.18) ρs =
∥∥(I −M−1s As)

∥∥
As
,

with Ms = (ZTs MZs) and As = (ZTs AZs). Note that, although we use ρ to represent the spectral
radius of a matrix, the quantity ρs is in general only an upper bound for the spectral radius of
compatible relaxation; it is equal to the spectral radius when M is symmetric.

If iteration (2.16) is fast to converge, then µ? is bounded, that is, fast convergence of CR implies
a coarse variable set of good quality and the existence of a P such that the resulting two-level
method is uniformly convergent. One can then estimate the value of ρs in (2.18) in practice by
running the compatible relaxation iteration in (2.16) and monitoring its convergence. In classical
AMG, we have

Zp =
[

0 I
]

and Zs =

[
0
I

]
and the iteration in (2.16) is just simple F -relaxation that is striaghtforward to compute. We note
that though this variant of CR is user-friendly, it has been observed in practice that its spectral
radius does not provide an accurate prediction of the convergence rate of the two-level method with
ideal interpolation in general [6].

However, when P =

[
W
I

]
,W = −A−1ffAfc and Zs =

[
0
I

]
then it is easy to show that

(2.19) I − P (P TAP )−1P TA = ZS(ZTSAZS)−1ZTSA =

(
If −W
0 0

)
,

implying that µ?, the optimal min−max solution to (2.3), can be accurately estimated in practice
if an estimate of A−1ff is available. Moreover, the fast convergence of the F -relaxation form of CR

implies that Aff is well conditioned and that A−1ff can be efficiently estimated using a polynomial

approximation [6]; in our tests we use the Conjugate Gradient iteration to form an approximation.
As discussed in [9], to use CR in the smoothed aggregation (SA) setting we use the fact that

spectral radius of ETG remains unchanged if we replace P by PZ for any nonsingular matrix Z.
Thus, CR can be used to estimate ‖ETG‖A by using a post-scaled version of a given interpolation
operator, e.g., in the SA setting we consider one can reorder the prolongation operator so that it
has the form

(2.20) P =

[
Pf
Pc

]
for some invertible matrix Pc. Coarse variables are then represented by columns of P−1c . But, from
the observation above, the interpolation operator

(2.21) P̄ = PP−1c =

[
W
I

]
,

can be used. Here, the appropriate form for the coarse variables is given as in the classical AMG
setting where coarsening based on the CR can be implemented as in [5, 6].
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Figure 4.1. Distribution of the jump coefficient a(x). Left: Distribution of P1 and
P3; Right: Distribution of P2 and P4.

3. Geometric-Algebraic Multigrid Algorithm

The GAMG algorithm we propose uses (mesh dependent) CR based coarsening to determine the
number of basis functions required for each aggregate in order to determine the sparsity structure
of interpolation together with energy minimization to compute its nonzero entries. The overall
algorithm is outlined as follows.

(a) Use the given fine grid to choose a quad tree (or oct-tree in 3d) to define the sets of
aggregates on all levels using the approach proposed in [7] and developed for GPUs in [16].

(b) For each level of the resulting multilevel hierarchy initialize C = {seed points of the aggregates}.
(c) While CR convergence is too slow

C = C ∪ {i : node i has the largest point-wise error in the aggregate Ωi}.
(d) Multiply the resulting tentative P by the system matrix A to obtain the sparsity pattern,

as in smoothed aggregation [14].
(e) Compute the nonzero entries of P using energy minimization [17].

In the above algorithm, the number of basis functions to use in a given aggregate Ωi is given by
the cardinality of C ∩ Ωi. We note that the standard aggregation algorithm normally uses a seed
point about which the aggregates are formed. These points make natural first choices for C in step
(b) of the above algorithm.

4. Numerical Results

In our tests, we consider four different test problems defined on structured grids, corresponding
to different distributions of the diffusion coefficient a(x) in (1.2). The first two problems, P1 and
P3, are ones where the interfaces of the jumps do not intersect, namely,

a(x) =

{
1 x ∈ Ω1 ,

10−kij x ∈ Ω \ Ω1 ,
(4.1)

where the domain Ω1 corresponds to the one given by the white regions in the plot on the left in
Figure 4.1. For problem P1, kij = k ∈ Z+ for all i, j, and for problem P3 kij ∈ {1, 2, . . . , 8}, where
the values are selected randomly with uniform distribution (using build-in Matlab function randi).
In the next two problems, P2 and P4, we consider a checkerboard pattern for the distribution of
the jumps, where now Ω1 corresponds to the white regions in the plot on the right in Figure 4.1.
For problem P3, the distribution in Ω \ Ω1 is again uniform with kij = k ∈ Z+ for all i, j and for
problem P4 we select the value kij randomly as in problem P2.

We use a cell-centered finite volume method for discretizing P1-P4 and choose a structured grid
0 = x0 < x1 < · · · < xN+1, xi = i

N+1 , and 0 = y0 < y1 < · · · < yN+1, yj = j
N+1 . Note that
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h = hx = hy = 1
N+1 . Here, each cell [xi−1, yj−1] × [xi, yj ] is used as the control volume and the

unknowns are located at each cell center (xi− 1
2
, yj− 1

2
) = (xi−1 + h

2 , yj−1 + h
2 ).

To define a(x) on the interfaces of neighboring subdomains we use a harmonic average, e.g., for
an interface S∗ we have a− 6= a+ in general, where a− = a(x) in the volume on one side of the
interface S∗ and a+ = a(x) in the volume on the other side of S∗. We then write the discretized
system as

(4.2) aeui+1,j + awui−1,j + anui,j+1 + asui,j−1 − (ae + aw + an + as)ui,j = fi,j ,

where fi,j =
∫
V fdV and V is the control volume [xi−1, yj−1]× [xi, yj ] and a∗ are harmonic averages

of a(x) on the two neighboring cells as in [11]. We assume Dirichlet boundary condition and if an
edge S∗ is on the boundary of Ω, we set ui+ 1

2
,j = 0.

Spectral radius of ETG with ideal P
k = 1 k = 2 k = 4 k = 8

Size P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

162 .259 .255 .297 0.442 .250 .250 .290 .651 .250 .250 .286 .753 .250 .250 .285 .828
322 .261 .256 .302 0.491 .251 .251 .303 .703 .250 .250 .293 .890 .250 .250 .290 .943

642 .261 .256 .304 0.492 .251 .251 .305 .706 .250 .250 .296 .952 .250 .250 .292 .991
1282 .261 .256 .305 0.495 .252 .251 .306 .723 .250 .250 .301 .961 .250 .251 .296 .994

Compatible relaxation iteration (2.19)

k = 1 k = 2 k = 4 k = 8

Size P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

162 .240 .235 .249 .209 .233 .231 .244 .210 .232 .231 .239 .217 .232 .231 .231 .225
322 .245 .243 .253 .198 .241 .241 .250 .204 .240 .241 .247 .205 .240 .241 .239 .220
642 .244 .242 .252 .200 .239 .239 .250 .205 .239 .239 .247 .216 .239 .239 .237 .225

1282 .234 .237 .220 .202 .240 .240 .231 .206 .240 .240 .236 .214 .240 .240 .238 .223

Table 4.1. Spectral radius of two-grid methods with ideal interpolation (top) and
results for compatible relaxation (bottom) applied to Problems P1-P4.

4.1. Compatible relaxation and aggregation. We begin our numerical experiments by apply-
ing the sharp variant of compatible relaxation from (2.19) to problems P1-P4. We choose regular
2 × 2 aggregates to coarsen the problem and use standard full-coarsening (h → 2h) to define the
coarse variable set C ⊂ Ω that are viewed as the seed points for the aggregates. The results of the
tests for varying mesh spacing h and different choices of the problem size N ×N and jump discon-
tinuity defined by parameter k are given in the tables in Table 4.1. The table at the top contains
approximations of the spectral radius of ETG for the chosen full coarsening together with ideal
interpolation. And the bottom table contains estimates of the two-grid convergence rate obtained
by running 5 steps of the iteration (2.19) starting with a random initial guess, where the action of
A−1ff is approximated by L = 2 diagonally preconditioned Conjugate Gradient iterations.

Here we see that the CR converges quickly for all problems and choices of the parameters except
for Problem P4. Moreover, it is clear that one can obtain an accurate estimate of µ? using the sharp
CR iteration with few inner PCG iterations, again in all cases except for Problem P4. This poor
performance for Problem P4 is of course expected since in this case Aff is not well conditioned
and the convergence of F -relaxation in this case is ρ = .983. Overall, these results suggest that
full coarsening is not a good choice for problem P4, that is, it suggests that a single basis function
for each 2 × 2 aggregate is not sufficient to obtain a good solver for Problem P4 in general. We
note that if we instead consider red-black coarsening for problem P4, then F -relaxation becomes an
exact solve, i.e., the spectral radius of this iteration is zero and Aff is well conditioned. With the
same red-black coarsening the sharp CR iteration with 2 inner PCG iterations gives an estimate
of the spectral radius of ρ = .248 for the case k = 8 with h = 1/25, where the true spectral radius
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is .250. We note that the approach gives similar results for other problem sizes and values of k for
this problem. Hence, in practice one can run F -relaxation until the iteration converges quickly and
then use the sharp variant to obtain a more accurate estimate of µ?.

Problem P1
k = 1 k = 2 k = 4 k = 8

Size ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac)

162 0.177 5 128 1,026 0.185 5 128 1,026 0.186 5 128 1,026 0.186 5 128 1,026

322 0.180 5 512 4,354 0.187 5 512 4,354 0.191 5 512 4,354 0.186 5 512 4,354
642 0.186 5 2,048 17,922 0.188 5 2,048 17,922 0.188 5 2,048 17,922 0.188 5 2,048 17,922

1282 0.186 5 8,192 72,706 0.188 5 8,192 72,706 0.188 5 8,192 72,706 0.189 5 8,192 72,706

Problem P2
k = 1 k = 2 k = 4 k = 8

Size ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac)

162 0.182 5 128 1,026 0.183 5 128 998 0.191 2 128 998 0.193 2 128 998

322 0.191 5 512 4,354 0.192 4 512 4,354 0.192 2 512 4,294 0.189 2 512 4,294

642 0.196 5 2,048 17,922 0.194 4 2,048 17,798 0.193 2 2,048 17,798 0.188 2 2,048 17,798
1282 0.196 5 8,192 72,706 0.194 4 8,192 72,454 0.194 5 8,192 72,454 0.189 2 8,192 72,454

Problem P3
k = 1 k = 2 k = 4 k = 8

Size ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac)

162 0.203 5 128 1,026 0.195 5 128 1,026 0.203 5 128 1,026 0.204 5 128 1,026

322 0.200 5 512 4,354 0.205 5 512 4,354 0.206 5 512 4,354 0.204 5 512 4,354
642 0.200 5 2,048 17,922 0.203 5 2,048 17,922 0.203 5 2,048 17,922 0.202 5 2,048 17,922
1282 0.203 5 8,192 72,706 0.205 5 8,192 72,706 0.205 5 8,192 72,706 0.203 5 8,192 72,706

Problem P4
k = 1 k = 2 k = 4 k = 8

Size ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac) ρ #It nc nnz(Ac)

162 0.201 5 128 1,026 0.226 5 128 1,026 0.216 5 128 1,026 0.218 5 128 1,026
322 0.210 5 512 4,354 0.229 5 512 4,354 0.236 5 512 4,354 0.234 5 512 4,354
642 0.215 5 2,048 17,922 0.230 5 2,048 17,922 0.250 5 2,048 17,922 0.240 5 2,048 17,922

1282 0.217 5 8,192 72,706 0.229 5 8,192 72,706 0.252 5 8,192 72,706 0.251 5 8,192 72,706

Table 4.2. Two level results for classical AMG applied to Problems P1-P4

4.2. GAMG results. In Table 4.2, we present two-level results of classical AMG applied to prob-
lems P1-P4 for sake of comparison. The classical AMG algorithm is applied as a black box method
with strength of connection parameter θ = .25. We report the problem size on the fine-mesh, the
spectral radius of the two-level method, ρ, the number of two-grid PCG iterations needed to reduce
the residual by eight orders of magnitue, the size of the coarse level problem, nc, and the number
of nonzero entries in the coarse-level matrix, nnz(Ac) for k = 1, 2, 4, 8. We note that classical
AMG performs well for all problems, including P4. The good performance of the method for P4
suggests that full coarsening is not a good choice for this problem, since the two-grid method with
full coarsening and ideal interpolation performs poorly in this case as reported in Table 4.1.

Next, in Table 4.3 we report results for the algorithm outlined in Subsection 3, where we use
regular 2 × 2 aggregates to coarsen the problem and a single basis function for each aggregate to
define a tentative interpolation operator and then apply one smoothing step to form the sparsity
structure of P . The entries in P are then computed using the energy minimization (2.15), where
the constraint vector is computed by applying 15 Gauss Seidel sweeps to Ae = 0 starting with an
initial guess as the constant vector.

The approach performs well for all tests except for Problem P4, where the performance is just
slightly better than the results obtained using classical AMG with full coarsening and ideal inter-
polation. It is clear that this improved performance of the GAMG method over classical AMG with
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ideal interpolation is related to the more general form of interpolation used in smoothed aggrega-
tion, but we are still investigating this behavior in order to obtain a complete understanding of this
issue. We note that the method outperforms classical AMG (with better convergence rates and
lower grid and operator complexities) in all cases except for Problem P4. We note in addition that
the GAMG solver results in 12 nonzero entries per row while classical AMG has at most 9 nonzero
entries per row. Though the GAMG algorithm results in additional fill-in in the coarse-level matrix,
the sparsity is set explicitly and, hence, known a priori.

Again, the poor performance of the GAMG method for P4 suggests that strength of connection
may be needed to adjust the support of the basis functions given on each aggregate and/or add
additional basis functions may be required in order to obtain effective interpolation. The latter
observation is further supported by the CR results from the previous section, which indicate that
two basis functions are needed for this problem when using regular 2× 2 aggregates.

Problem P1
k = 1 k = 2 k = 4 k = 8

Size ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH)

162 0.119 5 64 762 0.111 5 64 762 0.122 5 64 762 0.121 5 64 762
322 0.122 5 256 3,012 0.119 5 256 3,012 0.138 5 512 3,012 0.140 4 256 3,012

642 0.149 5 1,024 12,676 0.152 5 1,024 12,676 0.151 5 1,024 12,676 0.155 5 1,024 12,676

1282 0.151 5 4,096 40,626 0.155 5 4,096 40,626 0.161 5 4,096 40,626 0.161 5 4,096 40,626

Problem P2
k = 1 k = 2 k = 4 k = 8

Size ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH)

162 0.108 5 64 762 0.107 5 64 762 0.117 5 64 762 0.119 5 64 762

322 0.113 5 256 3,012 0.117 5 256 3,012 0.121 5 512 3,012 0.130 4 256 3,012
642 0.119 5 1,024 12,676 0.122 5 1,024 12,676 0.127 5 1,024 12,676 0.138 5 1,024 12,676
1282 0.120 5 4,096 40,626 0.121 5 4,096 40,626 0.140 5 4,096 40,626 0.140 5 4,096 40,626

Problem P3
k = 1 k = 2 k = 4 k = 8

Size ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH)

162 0.081 3 64 762 0.090 3 64 762 0.103 4 64 762 0.105 4 64 762
322 0.111 4 256 3,012 0.105 4 256 3,012 0.111 4 512 3,012 0.112 4 256 3,012
642 0.118 4 1,024 12,676 0.117 4 1,024 12,676 0.118 4 1,024 12,676 0.123 4 1,024 12,676

1282 0.118 4 4,096 40,626 0.119 4 4,096 40,626 0.120 4 4,096 40,626 0.124 4 4,096 40,626

Problem P4
k = 1 k = 2 k = 4, 6 k = 8

Size ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH) ρ #It nH nnz(AH)

162 0.216 6 64 762 0.322 6 64 762 0.518 8 64 762 0.543 8 64 762
322 0.210 6 256 3,012 0.355 7 256 3,012 0.550 9 256 3,012 0.838 13 256 3,012
642 0.215 6 1,024 12,676 0.361 7 1,024 12,676 0.578 9 1,024 12,676 0.902 18 1,024 12,676
1282 0.216 6 4,096 40,626 0.360 7 4,096 40,626 0.580 9 4,096 40,626 0.931 20 4,096 40,626

Table 4.3. Results of GAMG algorithm applied to Problems P1-P4.

5. Conclusion

We proposed a GAMG algorithm for constructing an energy minimization form of interpolation
that is suitable for multilevel methods for solvering scalar diffusion problems with discontinuous
coefficients. The method uses the fine mesh to construct the aggregates and a new sharp variant of
compatible relaxation to determine the number of basis functions needed per aggregate to obtain
effective interpolation. We demonstrated the components of the algorithm in a simplified two-
grid setting on structured meshes. Our current research focuses on extending the method to
handle general unstructured meshes and anisotropic problems which in turn requires deriving a
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more general form of interpolation that uses in addition strength of connection and adaptive and
bootstrap multigrid techniques.
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