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SUMMARY

Convection in the Earth’s mantle can be described by a Stokes-type equation with strongly varying viscosity
values coupled to an energy equation. The dynamics of the mantle depend essentially on the underlying
viscosity structure. Computing the quasi-stationary flow field in each time step dominates the computational
cost of Earth mantle simulators. Therefore constructing efficient solvers is crucial for simulating Earth
mantle dynamics. In this article we consider a geometric multigrid method for the viscous operator of the
Stokes-type system and study the convergence behaviour for different smoothers and transfer operators.
We focus on two aspects, the influence of operator complexity, starting with a simplified form and ending
with its most general formulation, and the effects of highly discontinuous viscosity parameters. Systematic
numerical tests help to identify the most efficient multigrid components. Copyright (©) 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

While to us as human beings the ground on which we walk may appear 'rock-solid’ the surface
of our planet is actually in constant albeit very slow motion. The continental plates move at a rate
of centimetres per year. The reason for this movement are enormous forces acting deep below our
feet. Convective processes in the Earth’s mantle help the planet to rid itself of excess energy that is
either left from the time of its formation or generated by continued radioactive decay. The mantle
is a layer of Earth starting from below the crust at roughly 60 km and extending down to the core-
mantle-boundary at a depth of about 3.000 km. On geologic time-scales the rocks inside the mantle
behave like a highly viscous fluid. A single overturn of the material in the mantle takes about 100
mio. years.

A detailed understanding of these processes is of fundamental interest to geophysics, as they
are the driving force behind phenomena such as mountain building, back-arc volcanism and finally
earthquakes. While the basic principles are those of fluid dynamics and, thus, well understood,
there are essential details and parameters of mantle convection that are only poorly understood. Key
among these is the (dynamic) viscosity which describes the rheology of the mantle.

The interior of the Earth is not directly accessible to us. What we know about the inner structure of
our planet is derived from indirect observations and inverse reconstructions, such as measurements
of the Earth’s Geoid or Seismic Tomography. Consequently many research questions can only be
studied through numerical simulation. Therefore computational techniques have for a long time
played an important role in Geophysics.

A general mathematical description of mantle convection can be derived from the principles of
conservation of momentum, mass and energy. It is common practice to neglect inertial terms and
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the coriolis force due to their relative insignificance. For a detailed explanation and justification see
e.g. [1]. Doing so one arrives at

dive 4+ pg =0 (1a)
Op + div(pu) =0 (1b)
O(pe) + div(peu) + divgq—H —o:€=0 . (1c)

Here u represents velocity, p density, g gravitational acceleration, e internal energy density, H
volumetric radiogenic heat production rate and g heat flux per unit area. The terms o and € are
the stress and rate of strain tensor, respectively. These are coupled to each other, to velocity and to
pressure p via

. tré .1
a?u(e?l)pl, E:§<VU+(VU)T) , 2

where I represents identity and p dynamic viscosity. The energy equation (Ic) is re-cast in terms
of temperature 7' and the system is closed by adding an equation of state relating density to
pressure and temperature p = p (p,T). The precise details of the latter vary between models as
the composition and mineralogical behaviour of the mantle is also an open research problem.

Density can be split into two contributions p = prr + p. Here prer is a so called background
density that is derived from the time-constant hydrostatic pressure. The term p then represents the
density variations resulting from thermal expansion that drive the convection. The latter, however,
are very small compared to p¢. This allows to consider their effects only in the buoyancy term of
the momentum equation (1a) and to neglect them in the continuity equation (1b). This results in the
so called anelastic approximation

div(prefun) =0 .

This is similar to the Boussinesq approximation, but takes into account that the background density
increases by a factor of about two from the top to the bottom of the mantle, see e.g. [2]. Setting
O¢p = 0 and employing (2) results in the following generalised Stokes problem

L(u) - Vp=F(T) , div(v)=0, ©)

with an elliptic viscous operator L. In the case of an anelastic model we have v = pru and L is
given by

L) = div (s (Vu+ (V)" ) - %v (1 divu) @)

We denote (4) as the full operator. If, instead of the anelastic the Boussinesq approximation is
employed, we have v = u and the operator reduces to the epsilon operator

L(u) = div [u (Vu + (Vu>T)] . )
In the case of constant viscosity p = g the epsilon operator further simplifies to
L(u) = poAu (6)

and (3) becomes the standard Stokes problem.

Note that for both, the anelastic and the Boussinesq approximation, the explicit time-dependence
of the model is contained solely in the energy equation (1c) and enters the generalised Stokes part
only via changes in the buoyancy term. While the temporal discretisation of the energy equation
requires some care, see e.g. [3] and the references therein, the computationally most intensive part is
the solution of the generalised Stokes problem (3) one or more times per time-step. This is especially
challenging in global geodynamical simulations as they require meshes resolving the whole mantle
at resolutions fine enough to allow using realistic earth-like parameters, see e.g. [3, 4, 5].

A standard discretisation of the generalised Stokes problem, e.g. with Finite Elements as in
[3, 6, 7], leads to an algebraic system of the form

A BT][u] [f 7
B —-Cj||q] |9|
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Here A represents the discrete viscous operator L(u), B a discrete gradient, while B stems from
the discretisation of the continuity equation div(v) = 0. Global convection models prescribe no-
outflow boundary conditions, which together with standard ansatz functions result in B = B for
a formulation employing v = u. The C block might represent a stabilisation term, that is needed
only, if the ansatz functions for velocity and pressure are not inf-sup stable, see [7] for an example.
Vectors u and g contain the coefficients of the discrete velocity and pressure, while f and g represent
the discrete right-hand sides, potentially including contributions from the boundary conditions.

Due to the ellipticity of the viscous operator, most mantle convection codes today employ
multigrid as part of the solution strategy for (7) in one way or the other. One variant is to solve
the system using a pressure-correction scheme, which can also be seen as an outer iteration applied
to the system’s Schur complement S. It can be shown that S has bounded condition number
independent of the mesh size and, thus, the Schur complement system can be solved efficiently
with a (diagonally preconditioned) conjugate gradient method [6, 8].

The latter step involves an application of A~!. Here multigrid can be used in an inner iteration
to solve Ax = b and, thus, to evaluate the effect of multiplying S with a vector. This is the classic
method described in [8] and employed e.g. in [7, 9, 10, 11]. Other models solve (7) using directly
a suitable Krylov subspace method, such as e.g. MINRES, if (7) is symmetric. Multigrid then
commonly plays a role in the preconditioning of the A block. In [3] e.g. a flexible GMRES method
is employed for solving (7) which employs a right-preconditioner involving an approximate inverse
of A that is computed using a multigrid preconditioned CG method. A third alternative is to attempt
to solve the full saddle point problem (3) with multigrid directly. The difficulty here then lies with
finding a smoother that is efficient w.r.t. both smoothing property and algorithmic cost. In [12, 13]
a specially developed ACuTE smoother, an extension of the artificial compressibility method, is
employed for this purpose. As this third alternative is still less commonly employed we concentrate
here on multigrid methods for solving systems Ax = b.

In geodynamic models the mantle is typically represented as a thick spherical shell. The latter
is commonly discretised either using an icosahedral mesh [10, 14], a Yin-Yang grid [13] or a
(modified) cubed sphere [4, 15]. In all three approaches the computational mesh is generated by
structured refinement of a coarse base grid. This natural availability of a grid hierarchy makes
it possible to use geometric multigrid methods. This avoids the setup cost and the difficulties of
algebraic multigrid for systems of equations. It further permits a highly efficient scalable matrix-
free implementation [16]. Notable exceptions are models with fully adaptive unstructured meshes,
see e.g. [17], and models constructed using general purpose libraries such as [3].

While multigrid for the (vector) Laplacian has been extensively studied, including the pure
Stokes problem, the situation is different for the full operator (4). In this paper we focus on a
detailed investigation of the influence of growing complexity of the viscous operator L(u) on the
performance of geometric multigrid. We will do so first for constant viscosity and then also consider
the effects of large viscosity contrasts on the convergence properties.

The latter is of great relevance for convection models, since the radial viscosity profile of Earth is
known to exhibit strong discontinuities of several orders of magnitude. While the average viscosity
of the upper and lower mantle is believed to be on the order of 102! Pas and 1022 Pa s respectively,
the upper mantle contains a mechanically weak zone, the asthenosphere, with a significantly lower
viscosity. The extent of that zone and of the associated viscosity drop, which are coupled together,
are presently unknown, but the viscosity contrast may be up to four orders in magnitude large. This
radial variability is overlaid by lateral variations, as viscosity is influenced by temperature, pressure,
flow velocity and chemical composition. For further information see e.g. [18] and the references
therein.

2. STUDY SETUP

We now specify the setup of our study. The goal of the article is to present a detailed and
comprehensive investigation of the multigrid convergence properties in a prototype 2D setting. We
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consider the problem of solving

L(w) =f,

u=20,

V(z,y) € Q
Y(z,y) € 00

where L is the viscous operator of the generalised Stokes problem (3) and 2 = (0,1)? C R2. The
unknown function u is vector-valued with components u = (u1, us). Note that only the cases where
L is not the vector Laplacian (6) will exhibit a coupling between the two velocity components.

We discretise the spatial domain 2 using a regular grid €2;, composed of rectangular cells. A
nested hierarchy of grids for the multigrid method is constructed by full coarsening, i.e. we set

Q= {(ihy, jh) :0< i, j <2 =27}, le{l,.. L}

For our numerical experiments we will use L = 5 which results in a finest grid of 33 x 33 nodes.
Following the approaches in [9], [10] and [7] we employ nodal ansatz functions of 1% order,
i.e. we discretise with bi-linear finite elements. This results for every interior node of our mesh
in a 9-point stencil whose values are given by (2 x 2) tensors that express the coupling between the
two components of u at the two coupled nodes. Denoting by Sy, the stencil resulting for the vector
Laplacian, by Seps and Spy the stencils resulting for operators (5) and (4) and setting viscosity to be
1 =1 we obtain

[ 1 1 . 1
1 . 1 1
1 [ 1 ] [ _8 o] [ 1 ]
Slap = g . 1 . -8 . 1 ) (8)
[ 1 1 . 1
1 . 1 1
[ 2 -1 . 2 1
-1 2 4 1 2
1 [ 4 ] =16 - 1 [ 4 o]
Seps = 1 . . . —16 . . J ©)
[ 2 1 . 2 -1
1 2 4 -1 2
[ 14 -3 8 . 14 3
-3 14 . 20 3 14
1 [ 20 . [ —112 20 .
Sfull - % . 8 —~112 . 8 (10)
[ 14 3 8 . 14 -3 ]
3 14 . 20 -3 14

Note that, since our discrete ansatz functions are not divergence-free, Spy does not naturally
reduce to Scps and though we use constant pi, Seps is different from Siap, as div (Vu + (Vu)T> =
Au+ V(divu).

In the following we will study solvers for the linear system Apuj = f; resulting from the
discretisation on the finest grid level. An efficient multigrid method requires an optimal interplay
of different components. Besides the mesh coarsening strategy itself, one can adjust the type of
pre- and post-smoother, the number of smoothing steps, the cycling strategy, the intergrid transfer
operators used for prolongation (P) and restriction (R) and finally the approach for representing the
operator Ay on coarser levels.

Throughout the paper we will keep the following components fixed. Our cycling strategy will be
the standard V-cycle, since this is expected to be advantageous compared to more complex cycle
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types in a parallel setting. We also select the transpose of the prolongation operator for restriction,
R := P7. As prolongation operator itself we use bi-linear interpolation for the cases with constant
viscosity. This results in a natural embedding of the coarse grid finite element space into the finer
one. The Galerkin coarse grid approximation (GCA), i.e. the construction of the coarse grid operator
as A;_; := RA,P then coincides with the direct coarse grid approximation (DCA) which constructs
A;_; by employing the same discretisation approach on the coarse mesh Qﬁ;l. This will be different
for the case of operator-dependent transfers in the variable viscosity case, as described below.

In this article, we will test five different smoothers, namely Jacobi (JAC), Gauss-Seidel / Suc-
cessive over-relaxation in red-black (RB) and four-colour (4C) ordering as well as horizontal (X)
and vertical (Y) line-smoothing in zebra ordering. As we deal with a vector-valued function u the
smoothers are applied in a point-block fashion, i.e. both unknowns at a grid point are always relaxed
together. Since our discretisation leads to a 9-point stencil, a red-black ordering is not sufficient
to decouple the grid nodes into independent sets and, thus, a four-colour ordering was chosen.
Additionally we will vary the number v = (v1, 2) of pre- and post-smoothing steps and introduce
a relaxation parameter w. For this we limit our tests to the combinations v € {(0,1),(1,1),(2,2)}
and w € {0.8,1.0,1.5}.

Our main criterion for the analysis of the multigrid performance will be the computation of
the spectrum of the iteration matrix M. For our problem and choice of smoothers multigrid is a
linear iterative method. Thus, it can be expressed in matrix notation as ®MS(u, A, f) = Mu + N f,
where M is the iteration matrix and N = (I — M)A~'. The iteration then reads u(**t1) :=
Mu®) + N f for k € Ny. For a detailed account of linear iteration schemes and their representation
see e.g. [19]. The spectrum of M provides essential information on the convergence behaviour.
The spectral radius represents the asymptotic convergence rate. Furthermore the distribution of
eigenvalues yields additional insights. If there are isolated outliers of the spectrum that prevent better
convergence rates, then e.g. Krylov subspace acceleration may lead to much better performance.

Technically computation of the matrix M is straightforward. We select a basis of the 2 (2L — 1) 2
dimensional space of degrees of freedom on the finest grid Qﬁ given by

e (Tpgs k) = 6ip0jqbmp » 4,5 €{1,...,2" =1}, m € {1,2}

with x,, being an interior node of Q£ and k € {1,2} selecting one of the two velocity components
at the node. The columns of M are then obtained by applying a single V-cycle to e;’; as initial guess
using a zero right-hand side. The spectrum can then be computed using standard tools.

Next, we investigate the influence of discontinuous coefficients on the multigrid performance. We
define viscosity u as a cell-wise quantity and consider three different scenarios denoted by i1, p2
and p3. The first scenario represents the 2D analogue of a radial viscosity jump across an interface,
where we associate y with depth.

1, 0<y<05
) = 1
(. y) {777 05<y<l. (11)

The strength of the contrast can be adapted by choosing 7. The second scenario is a chequerboard
pattern as representative for a combination of radial and lateral variations

1, 0<z<0b5AN0L<y<])V0Oh<ax<l1lANO<y<0.5
uz(x,w:{ ( y<DVI y<05)

7, otherwise.

As viscosity is a cell-wise quantity, the two scenarios above are such that the jumps are resolved
on all levels of the mesh hierarchy. In realistic models, where viscosity depends on other quantities
such as temperature and pressure, and is, thus, unknown in advance, this cannot be achieved with a
static mesh. Thus, in the third scenario we position the interface such that it is resolved only on the
finest mesh and does not coincide with coarser meshes.

1, 0<z<05+h,AN05+hL<y<l)V
us(z,y) = (054+h, <2z <1A0<y<05+hy) (13)
n, otherwise.
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It is well known that the convergence of multigrid may significantly deteriorate in the presence of
strongly varying or discontinuous coefficients. This can be improved by using operator-dependent
transfers as detailed e.g. in [20]. We are going to compare standard bi-linear interpolation to an
approach originally presented in [9]. In a nutshell the idea there is as follows. As viscosity is
isotropic and, thus, represented by a scalar quantity, prolongation for both velocity components,
resp. their corrections, is constructed similarly. The first step is to reduce the stencils Seps Or Spyyp to
scalar 9-point stencils by replacing the tensor-valued entries by their traces.

In the second step interpolation weights are computed for the fine grid nodes lying on coarse grid
edges. This construction follows [20], i.e. the stencil for the fine grid node is compacted to 1D by
operator lumping and the two weights for the two coarse grid values are chosen such that

AIDPU =0 . (14)

Here A p is the local 1D stencil at the fine grid node and v is a coarse grid function. As a last step,
four weights are computed to interpolate from the values at the four corners of a coarse grid cell to
the fine grid node in its centre. This can be done using the condition APv = 0 at the central fine
grid node using its 2D stencil. The difference between [20] and [9] is that in the former the fine
grid values that are already interpolated are used along the cell’s edges. In the latter these are re-
interpolated using (14) again, but with a 1D stencil that is constructed not by lumping weights, but by
discarding those 2D weights not directly involved. This simplifies computation of the interpolation
weights as it reduces the number of couplings that enter the computation.

For computation of coarse grid operators we use GCA in the case of operator-dependent transfers
and DCA for bi-linear interpolation. In the latter case we transfer viscosity to the coarser levels by
computing the arithmetic mean over the four fine grid cells that are combined into a coarse grid cell.

3. NUMERICAL RESULTS

3.1. Constant Viscosity

We start our analysis with a constant viscosity profile setting 1 = 1 and refer to this scenario as
to- This will provide us with reference values for the variable viscosity case below. As discussed
in Sec. 2 both GCA and DCA here lead to the same coarse grid operator A;_;. Hence for constant
viscosity we only consider DCA. In order to evaluate the effect of the increased complexity of
operators in the generalised Stokes formulation we compare the discrete versions of the viscous
operators (5) and (4) to the generalised Laplacian L(u) = div (uVu). The latter for pg, of course,
reduces to the vector Laplacian (6).

Table I lists the asymptotic convergence rates, given by the spectral radius p(M) of the iteration
matrix, for the different operators and smoothing strategies. We only show results for w =1, as
in our experiments this yielded the best results for the range tested. The exception is the Jacobi
smoother where it is well known that under-relaxation performs better and results are given for
w = 0.8. Considering the entries of the stencils, see (8) - (10), it is obvious that both vertical and
horizontal line-smoothing must give identical results, as from a block-point of view the coupling
in both directions is the same. Note that we can observe excellent convergence rates for all three
operators. Actually, results for Sgy are even better than for Seps. The latter operator performs slightly
worse for all variations. This is due to a loss of coupling in the discretisation. As can be seen from
(9) the u; component has no coupling to nearest neighbours in vertical direction, while the us
component has none in horizontal direction. A standard mode analysis and investigation of the
eigenvectors of M for the JAC smoother indicate that this leads to certain error modes, being
highly oscillatory in one component and smooth in the other one, for which our smoothers are
not very efficient. Since these modes cannot be removed by the coarse grid correction either, a
poorer multigrid convergence is obtained. The full operator (10) does not suffer from such a loss in
coupling. Also note that the (RB) and (4C) point-smoothers are on a par with the, in practice more
costly, line-smoothers.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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Figure 1. Spectrum of iteration matrix for 4-colour (blue), red-black (red) and (Y) line-smoother (green) for
v =(1,1) and w = 1. Plots (a)-(c) show the spectra for the three different operators for a constant viscosity
setting. In (d)-(f) the spectrum of the full operator is shown for the chequerboard scenarios p and p3. While

for po (d), DCA and GCA have an identical spectrum, GCA (f) clearly beats DCA (e) for us3.
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Table I. Spectral radii for the three different operator forms in scenarios po and p;. With w =1 for all
smoothers, except JAC with w = 0.8. Rows correspond to v = (0, 1), (1,1) and (2, 2).

gen. Laplacian Epsilon Full
JAC RB 4C XY JAC RB 4C XY JAC RB 4C XY

0.399 0.190 0.203 0.152 0.598 0.325 0.329 0331 0484 0.212 0.215 0.203
0.191 0.077 0.047 0.041 0363 0.086 0.096 0.082 0249 0.073 0.065 0.047
0.085 0.023 0.008 0.018 0.160 0.043 0.039 0.024 0.105 0.027 0.018 0.020

In Fig. 1 (a)-(c) the spectra of the multigrid iteration matrix are plotted for different smoothers.
We observe that the eigenvalues exhibit characteristic patterns in which they are rather densely
distributed and p(M/) is not dominated by separated outliers. This indicates that using an outer
Krylov subspace method will generally yield only a moderate acceleration effect.

3.2. Variable Viscosity

We now turn to the influence of viscosity jumps on the convergence behaviour, by first investigating
the two viscosity profiles ;1 and ps given in (11) and (12). We successively increase the parameter
n from 10" up to 10? in steps of one order of magnitude.

The size of the jump in p; has no influence on the speed of convergence. Here the grid hierarchy
(2) resolves that discontinuity down to the coarsest grid level. As a consequence one can show that,
as for the constant case p, the operator-dependent transfer reduces to bi-linear interpolation. Also
the viscosity averaging for DCA does not smear out the jump and, thus, DCA and GCA coincide.
While the point smoothers ”see” the change in coupling strength along the interface, this does not
affect their performance. For increasing 7 the interface is simply seen as a Dirichlet resp. a Neumann
boundary condition from the two halves of the domain. While the restricted residuals are larger in
the n-half, the correction will have the correct scaling, since the coarse grid stencils on that part are
also weighted by 7 in their setup.

The situation changes for the chequerboard scenario p>. We observe a monotonous increase in
p(M) up to n = 103. From that point on the rates remain almost constant for all larger values. The
deterioration is mainly due to the junction point, see [20] for further details. However, the results for
n = 103 in Tab. II show that even in this scenario we can obtain satisfactory convergence rates with
standard components, thanks to the fact that the jumps are resolved on all levels. This does again
hold for all three operators. Note also that the differences between the point- and line-smoothers are
somewhat larger in this setting.

As expected results change significantly for scenario ps from (13), see Tab. III. We observe a
considerable deterioration of the convergence rates for DCA, as in this case the jumps are resolved
on the finest mesh only. In this scenario the operator-dependent transfers can play out their full
potential. They allow to obtain convergence rates close to the constant case 1. This holds not only
for the line- but also for the point-smoothers.

In our experiments for o and pYC* the bulk of the eigenvalues is located within a circle of
small radius. In case of the spectra in Fig. 1 (d)-(f) for the full operator with v = (1,1), w = 1 and

n = 103 e.g., we observe that most eigenvalues for p5 and S are located inside a disk of radius

0.1. This is about the largest spectral radius we obtained for u$* and also the distributions within

that circle exhibit similar patterns than for GCA or the constant case jo. This is an indicator that an

Table II. Spectral radii for scenario pg with n = 10% and w =1 (JAC w = 0.8). Rows correspond to
v =(0,1),(1,1) and (2, 2). DCA and GCA are identical in this case.

gen. Laplacian Epsilon Full
JAC RB 4C XY JAC RB 4C XY JAC RB 4C XY

0.688 0.502 0521 0.469 0.762 0.583 0.609 0.590 0.716 0.529 0.552 0.514
0495 0274 0276 0.211 0.604 0366 0.369 0332 0532 0302 0305 0.249
0.318 0.166 0.158 0.125 0417 0221 0.211 0.197 0348 0.180 0.172 0.146

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2015)
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Table III. Spectral radii for scenario p3 with n = 10%. Withw = 1 JAC w = 0.8).

DCA GCA

v operator JAC RB 4C X (YY) JAC RB 4C X (Y)
0,1) gen. 0.815 0.652 0.650 0.602 0486 0.213 0.200 0.216
(1,1)  Laplacian 0.678 0.455 0.449 0.375 0.271 0.071 0.056 0.042
(2,2) 0.500 0.279 0273 0.239 0.119 0.021 0.013 0.017
0,1) 0.853 0.708 0.705 0.707 0.655 0413 0400 0413
(1,1)  Epsilon 0.734 0.514 0.506 0.501 0454 0.181 0.174 0.165
(2,2) 0.561 0.318 0.315 0.308 0.252 0.107 0.101  0.079
0,1) 0.827 0.669 0.666 0.645 0.554 0.286 0.272 0.291
(1,1) Full 0.695 0472 0464 0.425 0.331 0.094 0.090 0.072
(2,2) 0.517 0.289 0.284 0.261 0.153 0.041 0.031 0.019

outer iteration may lead to a significant acceleration. As an initial test we use a V(1,1)-cycle with
w = 1 as a preconditioner for the conjugate gradient method (PCG). In Fig. 2 we show approximate
asymptotic convergence rates, computed from the residual norm reduction as

RINK
Pt ™ <||r<2°>|>

for pure MG and PCG. Here we use a zero right-hand side and a random initial guess. Note that
the rates for MG are close to the spectral radii shown in the tables above. Since the MG methods
used so far lack the symmetry usually required for preconditioners in the CG method, we also
show symmetric variants (MG symm) obtained by inverting the node resp. line order in the post-
smoothing step. For MG symm alone this leads, effectively, to less smoothing when a pre-smoothing
step follows on a post-smoothing one, and reduced convergence. This observation is in line with the
theory in [21]. The effect is significantly more pronounced for the zebra-ordering than for the 4-
colour smoother, as in the latter only one colour, or a forth of the nodes, is affected.

Overall we observe that PCG with an unsymmetric (4C) smoother is not a good choice, while
with the line-smoother we get convergence improvements for y and u°* even in this case. Note
that the spectra for (Y) line-smoother are closer to that of a symmetric matrix. Using symmetric
MG we always obtain a significant reduction in convergence rates by PCG. However, especially for
the most interesting 5 case rates are close to what we would obtain for two applications of MG.
Thus, it depends strongly on the computational cost of the outer CG compared to the inner MG
iteration whether there will be an actual run-time gain. Also we find that the PCG for the DCA case
still cannot beat the GCA convergence rates for the p3 case.

0.8 0.8

ol - MG |:| PCG(MG) | ol - MG |:| PCG(MG)
MG symm PCG(MG symm) MG symm PCG(MG symm)
. | . (|

0.6 0.6

H e pRON T ugen A w2 o pROhugor

Figure 2. Approximate asymptotic convergence rates for MG and PCG variants with 4-colour smoother (left)
and (Y) line-smoother (right) applied to different viscosity scenarios and the full operator.
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We finally remark that contrary to the previous cases, a slight improvement in asymptotic

convergence rates was obtained for 5 and u* when using over-relaxation (w = 1.5) for the non-

Jacobi smoothers.

4. CONCLUSION AND FUTURE WORK

Our study demonstrates that the two operators of the generalised Stokes problem as they appear in
sophisticated models of mantle convection do not pose a challenge for the convergence of multigrid
methods employing standard components. Results are comparable to those of the standard and
generalised Laplacian in both constant and discontinuous viscosity settings. Furthermore we have
demonstrated that, in a 2D setting, viscosity jumps that are resolved by the mesh hierarchy can
satisfactorily be treated with standard components alone, while in other cases methods based on
operator-dependent transfers are preferable. In future work we plan to extend our investigation to
3D and other finite-element ansatz functions, and we will study the behaviour of the methods when
used as building blocks for generalised Stokes solvers.
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