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What’s it about? 

A framework of efficient iterative 
methods for solving problems with many 
variables and many scales. 
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• Framework: common concept, different methods. 
• Efficient: usually O(N) or O(N log N) operations  
 The importance of efficient methods becomes greater as 

computers grow stronger!  
• Iterative: most nontrivial problems in our field cannot be 

solved directly efficiently. 
• Solving: approximately, subject to appropriate convergence 

criteria, constraints, etc. 
• Many variables: the larger the number of variables, the 

greater the gain of efficient methods.  
• Many scales: typical spatial and/or temporal sizes.  
 
 
A framework of efficient iterative methods for 

solving problems with many variables and many 
scales.    
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Basic Concepts: Local vs. Global processing. 

 

Imagine a large number of soldiers who need to be 
arranged in a straight line and at equal distances from 
each other.  

The two soldiers at the ends of the line are fixed. 
Suppose we number the soldiers 0 to N , and that the 
length of the entire line is L. 
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Initial Position 
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Final Position 
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Global processing. Let soldier number j stand on the 
line connecting soldier 0 to soldier N at a distance jL/N 
from soldier number 0. 
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This method solves the problem directly, but it 
requires a high degree of sophistication: recognition 
of the extreme soldiers and some pretty fancy 
arithmetic. 
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Local processing (iterative method). Suppose that the 
inner soldiers’ initial position is       . 
Then repeat for i=1,2,…: Let each soldier j, j=1,…N-1 at 
iteration i move to the point midway between the 
locations of soldier j-1 and soldier j+1 at iteration i-1: 
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This is an iterative process. Each iteration brings us 
closer to the solution(?). The arithmetic is trivial. 
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A step in the right direction 
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Slow convergence 
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Fast convergence 
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Slow convergence 
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Local solution: damping 
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Local solution: damping 
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Local solution: damping 
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Local solution: damping 
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The multiscale idea: Employ the local processing with 
simple arithmetic. But do this on all the different 
scales. 
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Large scale 
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Large scale 
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Intermediate scale 
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Intermediate scale 
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Small scale 
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HOW MUCH DO WE SAVE? 

Analysis of the Jacobi iterative process 

Matrix representation: 
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This matrix S has N - 1 linearly independent eigenvectors, 
vk,  and corresponding real eigenvalues, λk 

Since vk span the space        , any initial configuration of 
the soldiers can be written as a linear combination: 
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with some coefficients, ck. 
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Hence, we obtain after m iterations: 
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Conclusion: 

The iteration converges if the spectral radius, ρ, of 
the iteration matrix, S, is smaller than 1. 
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Observation: the eigenvectors  and eigenvalues of the 
matrix S are given by 

with k  = 1, …, N –1. 

Proof: Using the trigonometric identity, 

and the fact that                , we obtain by 
substitution,                   . 
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Note: since | λk | < 1, the method converges. But, for 
some eigenvectors, | λk | is close to 1, so convergence is 
slow. In particular, for kπ/N  <<  1, we have, 
 
 
 
 
For k =1 we obtain 
 
 
 
 
 
Conclusion: O(N 2) iterations are required to reduce such 
an error by an order of magnitude. 
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How much work do we save? 

Jacobi’s method requires about N 2 iterations and N 2 * 
N = N 3 operations to improve the accuracy by an order 
of magnitude. 

The multiscale approach solves the problem in about  
Log2(N) iterations (whistle blows) and only about N 
operations. 

Example: for N = 1000 we require about: 

10 iterations and 1000 operations  

instead of about  

1,000,000 iterations and 1,000,000,000 operations 
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How important is computational efficiency? 

Suppose that we have three different algorithms for a 
given problem, with different computational 
complexities for input size N : 

Algorithm 1: 106 N operations 

Algorithm 2: 103 N 2 operations 

Algorithm 3: N 3 operations 

Suppose that the problem size, N, is such that 
Algorithm 1 requires one second.  

How long do the others require?  
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Algorithm 3 

O(N3) 

 
Algorithm 2 

O(N2) 

 
Algorithm 1  

O(N) 

 
N 

Computer 
Speed 

(ops/sec) 

0.000001 sec 0.001 sec 1 sec 1 1M (~106) 
(1980’s) 

1 sec 1 sec 1 sec 1K 1G (~109) 
(1990’s) 

12 days 17 min 1 sec 1M 1T (~1012) 
(2000’s) 

31,710 years 12 days 1 sec 1G 1P (~1015) 
(2010’s) 

Stronger Computers      

Greater Advantage of Efficient Algorithms! 
⇒
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The catch: in less trivial problems, we cannot 
construct appropriate equations on the large 
scales without first propagating information 
from the small scales.  

Skill in developing efficient multilevel 
algorithms is required for: 

1. Choosing a good local iteration. 

2. Choosing appropriate coarse-scale 
 variables.  

3. Choosing inter-scale transfer operators.   

4. Constructing coarse-scale approximations 
to the fine-scale problem. 
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Damping 

Recall: the eigenvectors  and eigenvalues of the 
iteration matrix S are given by 

 
 
with k  = 1, …, N –1. 
 
Note that convergence is also slow for 
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This slow convergence can be overcome by damping: 

 

 

where ω  is a parameter.  

Then,                       where 

 

Note: vk are eigenvectors of  Sω  . The corresponding 
eigenvalues are now 

 

For                            we have convergence,   

( ) ( ) ( ) ( )( ),
2
1)1( 1

1
1
1

1 −
+

−
−

− ++−= i
j

i
j

i
j

i
j xxxx ωω

( ) ( )1 ,i i
ω

−=x S x

( ) .1 SIS ωωω +−=

( ) ( ).111 kkk λωωλωλ ω −−=+−=

0 1,ω< ≤ ( ) 1.k
ωλ <



44 

Definition:  

Eigenvectors vk with                     are called 
smooth (low-frequency).  

Those with                           are called rough or 
oscillatory (high-frequency). 

 

Recall that                            so for rough 
eigenvectors,             
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Exercise: Find                  which yields optimal 
convergence for the set of rough modes for 
arbitrary N: 

 

 

i.e.,  

 

 

What is then the bound on the convergence 
factor,            , maximized over the rough modes? 
(Clues in my introductory paper.) 
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1D Model Problem 

Find u which satisfies: 

 

 

 

 

 

In the particular case where f  = 0, the solution is a 
straight line that connects u0 with u1. 
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Discrete approximation: Since closed-form solutions 
exist only for a small number of differential equations, 
we solve such equations approximately by a discrete 
approximation. 

 

 

Define a grid: divide the domain (0,1) into N  intervals. 
Assume for simplicity a uniform grid of mesh-size 
h=1/N. 
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Finite-difference discretization; examples: 

Forward differences: 

 

Backward differences: 

 

Central differences: 

 

Second derivative: 

 

Derivation: by the Taylor theorem 
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We can thus approximate the differential 
equation by a set of algebraic difference 
equations: 
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In matrix form: 

This is a tridiagonal system of equations which 
can be solved directly or iteratively. 
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2D Model Problem 

Find u which satisfies: 

 

 

 

This is the 2D Poisson equation, with Dirichlet boundary 
conditions. It is an elliptic partial differential equation 
which appears in many models. 
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hΩ
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Discrete approximation 

Define a grid:                (assumed to be uniform for 
simplicity, with mesh interval h). 

 

Let uh, gh and f h denote discrete approximations to u, g 
and f defined at the nodes of the grid. 

 

Plug (2) for uxx, and the analogous approximation for uyy 
into (4), obtaining: 

Ω⊂Ωh
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This yields a nonsingular linear system of equations for
 (the discrete operator satisfies a maximum 
principle.) 

 

We consider solving this system by the classical 
approach of Gauss-Seidel relaxation. 

h
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Gauss-Seidel (GS) Relaxation: 

1. Choose initial guess, 

2. Repeat until some convergence criterion is satisfied 
{ 

 Scan all variables in some prescribed  order, and 
change each variable       in turn so as to satisfy 
the (i,j)th equation. 

 } 

.~hu

h
jiu ,

~
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Observation: GS is a local process, because only near 
neighbors appear in each equation. Hence, it may be 
efficient for eliminating errors which can be detected 
locally. But large-scale (“smooth”) errors are 
eliminated very slowly. 

 

(The difference between GS and Jacobi is that old 
neighboring values are used in Jacobi, while the most 
updated values are used in GS.) 
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Key Observation re-worded: Relaxation cannot be 
generally efficient for reducing the error (i.e., the 
difference vector                 ). But relaxation may be 
extremely efficient for smoothing the error relative 
to the grid. 

Practical conclusion: 

1. A smooth error can be approximated well on a 
coarser grid. 

2. A coarser grid implies less variables, hence less 
computation. 

3. On the coarser grid the error is no longer as 
smooth relative to the grid, so relaxation may once 
again be efficient. 

hh uu −~
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Grid-refinement algorithm 

Define a sequence of progressively finer grids all 
covering the full domain. Then, 

1. Define and solve the problem on the coarsest grid, 
say by relaxation. 

2. Interpolate the solution to the next-finer grid. 
Apply several iterations of relaxation. 

3. Interpolate the solution to the next-finer grid and 
continue in the same manner… 

Does this method converge fast? 
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1D Model Problem Revisited 

Fine-grid (h) difference equation: 

 

 

 

 

 

The eigenvectors of Lh (like those of the Jacobi 
relaxation operation) are Sine-function “waves”: 
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Aliasing 
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Smooth waves—with k << N—have wavelengths large 
compared to h. Hence they can be approximated well 
on the coarse grids. But non-smooth eigenvectors alias 
with smooth components on the coarse grids. 

Since the right-hand side, f h, will generally have some 
non-smooth components, these will be “interpreted” as 
smooth components by the coarse grids, resulting in a 
smooth error. 

Hence, when we interpolate a coarse-grid solution to 
the fine grid, we still have smooth errors in this 
solution. These cannot be corrected efficiently by 
relaxation. 
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Errors: 

There is an important distinction here between the 
discretization error: 

 

and the algebraic error: 

 

 

Where       is our current approximation to     . hu~

,huu −

,~hh uu −

hu
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Note: Neither the solution, uh, nor the discretization 
error are smoothed by relaxation, only the algebraic 
error. Hence, we formulate our problem in terms of 
this error. 

Denote 

 

Recall 

 

Subtract      from both sides, and use the linearity 
of Lh to obtain: 

.~hhh uuv −=

.hhh fuL =

hhuL ~

hhhhhh ruLfvL ≡−= ~ (8) 



85 

As we have seen, we need to smooth the error vh on the 
fine grid first, and only then solve the coarse-grid 
problem. Hence, we need two types of integrid 
transfer operations: 

1. A Restriction (fine-to-coarse) operator: 

2. A Prolongation (coarse-to-fine) operator: 

For restriction we can often use simple injection, but 
full-weighted transfers are preferable. 

For prolongation linear interpolation (bi-linear in 2D) is 
simple and usually effective. 

.H
hI

.h
HI
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Two-grid Algorithm 

• Relax several times on grid h, obtaining       with a 
smooth corresponding error. 

• Calculate the residual: 

• Solve approximate error-equation on the coarse 
grid: 

 

• Interpolate and add correction: 

 

• Relax again on grid h. 

Multi-grid is obtained by recursion. 
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Multi-grid Cycle  

Let      approximate     ,         approximate the error on 
grid 2h, etc. 
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Multigrid vs. Relaxation 
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Remarks: 

1. Simple recursion yields a V cycle. More generally, 
we can choose a cycle index γ, and define a γ–cycle 
recursively as follows: Relax; transfer to next 
coarser grid; perform γ γ–cycles; interpolate and 
correct; Relax. (On the coarsest grid define the γ–
cycle as an exact solution). 

2. The best number of pre-relaxation + post-
relaxation sweeps is normally 2 or 3. 

3. The boundary conditions for all coarse-grid 
problems is zero (because the coarse-grid variable 
is the error). The initial guess for the coarse-grid 
solution must be zero. 
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Algebrization of Multigrid 

There are many problems for which multigrid is suitable 
in principle but cannot be applied in a straightforward 
way. For example, 

1. Unstructured grids and complex geometries 

2. Non-PDE applications 

Such situations require algebraic multigrid methods.  

The multigrid components can be expressed as matrices. 
Consider, for example, the 1D model problem using 
linear interpolation and full-weighted residual transfers. 
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Given the fine-grid matrix, Lh, and the 
prolongation and restriction matrices,     , and    , 
how should we define the coarse-grid matrix, LH ? 

 

The coarse grid should be able to correct smooth 
errors. We use the following (algebraic) 
definition of smoothness: An error          is 
smooth if it is in the range of interpolation. That 
is, if there exists some coarse-grid function,     , 
such that  

h
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The error after the coarse-grid correction is 
given by 

 

 

where 

 

 

Plugging in our smooth error we obtain: 
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In order to annihilate the error we must choose the 
Petrov-Galerkin coarse-grid operator: 
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For symmetric problems especially, the preferred choice 
for the restriction is the transpose of the prolongation. 
Along with the Galerkin coarse-grid operator this yields 
so-called variational coarsening, which arises naturally in 
finite-element formulations. 

 

It remains only to define the prolongation (and, 
implicitly, the set of variables which defines the coarse 
grid). The prolongation operator should produce good 
approximate fine-grid values from given coarse-grid 
values. Therefore,       needs to be determined using Lh        
When used with appropriate coarse grids, such methods 
yield fast and robust algebraic solvers. 

h
HI
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For tridiagonal matrices in 1D the different algebraic 
methods become the same: an exact multigrid solver 
that is equivalent to cyclic reduction 

 

If the fine-grid equations are 

 

 

I = 1,…, n – 1, with        , we choose the 
prolongation matrix to be 

,11 iiiiiii fucubua =++ +−

011 ≡= −nca
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Furthermore, we let                 and employ Galerkin 
coarsening. For smoothing we use half-Red-Black 
relaxation. That is, before restricting residuals we 
relax only on odd-indexed gridpoints, and after the 
coarse-grid correction only on even-indexed points. 

 

Theorem: the two-level cycle is an exact solver. 
Furthermore, the coarse-grid equations are 
tridiagonal. Hence, the multigrid cycle is an exact 
solver. 

( )Th
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H
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Algebraic Multigrid (AMG) 

 

Introduced by Brandt et al. (1983) and developed by Ruge 
and Stueben. 

AMG takes the algebrization of multigrid to the limit. 
Here, a relaxation method is chosen (usually, point Gauss-
Seidel), and then the coarse-grid variables are chosen by 
a heuristic graph algorithm such that each fine-grid 
variable depends strongly on one or more coarse-grid 
variable (i.e., with relatively large coefficient). 

AMG enables us to handle unstructured and non-PDE 
problems. 
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An Abstract View of Algeraic Multigrid Methods 

Consider the linear system 

 

Suppose we partition the variables, ui , into F variables 
and C variables, and permute the equations and variables 
to produce the following partitioning of the system: 

.Au f=

.FF FC F F

CF CC C C

A A u f
Au

A A u f
    

= =    
    
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An Abstract View of AMG 

Given an approximate solution,      , define the error as 

 

Then, the partitioned equation for the error is 

 

 

where 

.v u u= − 

,FF FC F F

CF CC C C

A A v r
Av

A A v r
    

= =    
    

u

,

.

F F FF F FC C

C C CF F CC C

r f A u A u
r f A u A u

= − −

= − −

 

 
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The upper block yields 

 

 

 

Plugging this into the lower block yields 

 

 

( )1

,

.
FF F F FC C

F FF F FC C

A v r A v

v A r A v−

= −

⇒ = −

( )
( )

1

1 1

,

.
CF FF F FC C CC C C

CC CF FF FC C C CF FF F

A A r A v A v r

A A A A v r A A r

−

− −

− + =

⇒ − = −

An Abstract View of AMG 
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Conclusion: the “ideal” prolongation and restriction are 

 

 

 

with the coarse-grid operator given by 

 

 

( )
1

1, ,FF FC
CF FF

A A
P R A A I

I

−
− −

= = − 
 

1 .C CC CF FF FCA RAP A A A A−= = −

An Abstract View of AMG 
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In particular, it is straightforward to verify that the two-
level solution is exact in this case, provided that either a 
pre-relaxation or a post-relaxation eliminates rF .  

(If this is done by post-relaxation, only uF should be 
relaxed.) 

The problem: AFF
-1 is not sparse, and therefore, neither are 

P and R. Therefore, we generally look for good sparse 
approximations. 

One exception is tri-diagonal systems, where AFF is diagonal. 
In this case the multigrid V-cycle with the appropriate 
prolongation and restriction, and with relaxation only on  uF  
is an exact solver, equivalent to total reduction.  

An Abstract View of AMG 
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