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Abstract. The paper proposes a random linear model to investigate the memory bandwidth barrier effect1

on current shared memory computers. Based on the fact that floating-point operations can be hidden by2

implicit compiling techniques, the runtime for sparse matrix vector multiplications and other memory intensive3

applications can be modelled by memory reference time plus a random term. The random term due to cache4

conflicts, data reuse and other environmental factors is proportional to memory reference volume. The model is5

verified and validated by comparing the performance of sparse matrix vector multiplications in different formats.6

Various numerical results based on thousands representative matrices are presented, compared, analysed and7

validated to confirm the proposed model. The model shows that a realistic and fair metric for performance of8

iterative methods and other memory intensive applications should consider the memory bandwidth capability9

and memory efficiency.10
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1. Introduction. A new benchmark, High Performance Conjugate Gradient (HPCG),13

was introduced recently for the Top500 list and the Green500 list [4]. It motivates us to im-14

prove the performance of the widely used iterative methods in many real applications on all15

kinds of computing platforms. In particular, as multi-core techniques and accelerators are16

becoming more accessible and more universal, more people will pay closer attention to the17

performance of iterative methods on shared memory machines. It was noticed that the realis-18

tic performance of iterative methods on high performance computers was limited by memory19

bandwidth decades ago [6], when high performance computing was limited to a fraction of20

people. Memory bandwidth bottleneck effect for performance of iterative methods and other21

memory intensive applications still remains on modern chips and becomes increasing signifi-22

cant [1, 7, 10]. Here proposes a random linear model to describe the phenomena and unravel23

the underling “mystery”. Presented experimental design is closely related to iterative meth-24

ods: comparing the performance of symmetric sparse matrix vector multiplications(SpMVs) in25

different formats. Algorithms for symmetric SpMVs in compressed-column(CSC), compressed26

row(CSR), and compressed packed form are investigated. It turns out that the performance27

of SpMVs significantly linearly depends on the memory reference volume, its realistic per-28

formance in the classical floating-point operations(flops) metric is limited by the underlying29

memory bandwidth capability, and time for flops almost can be neglected. Various numerical30

results are processed, analysed, validated and presented in a convincing way so that everyone31

who reads the results and hasn’t yet pay enough attention to such a phenomena, will notice32

that a realistic performance of iterative methods should be paid attention to. The remainder33

of the paper is organized as follows: §2 proposes the model to evaluate the performance, and34

details the difference of the presented algorithms. Numerical verifications and validation are35

presented in §3. Finally presents some discussion.36

2. Model and Performance Analysis. The time for matrix vector multiplications37

was assumed to be the sum of time for computation and time for memory reference(or data38
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for (col = 0;col<n;++col)

{ for(prow = Ap[col];prow <Ap[col+1];++prow)

y[Ai[prow]]+=Ax[prow]*x[col] ;

} // stand sparse matrix multiplication code

Algorithm 1: A C/C++ snippet for sparse matrix vector multiplication in compressed
column(CSC) format, where Ap,Ai,Ax are the column pointers, row index, elements for
the sparse matrix.

for (row = 0;row<n;++row)

{ for(pcol = Ap[row];p <Ap[row+1];++pcol)

y[row]+=Ax[pcol]*x[Aj[pcol]] ;

} // stand sparse matrix multiplication code

Algorithm 2: A C/C++ snippet for sparse matrix vector multiplication in compressed
row(CSR) format, where Ap,Aj,Ax are the column pointers, column index, elements for
the sparse matrix.

for (col=0; col<n;++col) // note n=A->n-1

{

if(Ap[col]==Ap[col+1]) continue; // skip empty columns

tempx=x[col]; //reset yu(col)=0;

temp=x[Ai[Ap[col]]]*Ax[Ap[col]]; // yu part

if (Ai[Ap[col]]!=col) // lower part yl part

y[Ai[Ap[col]]] +=tempx*Ax[Ap[col]];

for(prow=Ap[col]+1;prow<Ap[col+1];++prow)

{

temp+=Ax[prow]*x[Ai[prow]]; // yu part

y[Ai[prow]]+=tempx*Ax[prow]; // yl part

}

y[col]+=temp; // yl+yu

}

if(Ap[n]!=Ap[n+1]) y[n]+=x[n]*Ax[Ap[n]]; // A(end,end) !=0

//update yu part to y

Algorithm 3: A C/C++ snippet for symmetric sparse matrix multiplication in packed
format. The matrix A is split into three three part A = LA +DA + UA, y` = LAx and
yu = (DA + LT

A)x.

movement). For memory intensive kernels like SpMVs with low ratio of flops per memory39

reference, the time for flops can be neglected, because modern compilers are intelligent enough40

to hid most of the flops by pipeline and pre-fetching techniques. Here we assume the total time41

is dominated by the memory reference time and neglect the time for computations. Hierarchy42

memory architecture is simplified to be only two levels, the fast memory where computations43

take place and the slow memory where the data is. A simple linear model for the relationship44

between the observed runtime T and the memory reference volume is proposed as follows,45

(1) T = tmM + ε
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where tm is the time required for unit memory reference, M is the total memory reference46

volume, ε is a random noise due to cache misses, data reuse and other possible environmental47

factors. Since both data conflicts and data reuse are proportional to M , thus the random term48

ε should be proportional to M . The key point is to assume that each unknown noise data49

satisfies50

(2) εi/Mi = Ti/Mi − tm ∼ N (0, σ2),

where N (0, σ2) is a random normal distribution. In this way the observed data Ti

Mi
is a random51

normal distribution N (tm, σ2), where tm and σ2 are unknown parameters to be quantified.52

2.1. Parameter estimation. Since the uncertainty term ε comes in, an individual result53

makes little sense and more test results produce less biased estimation. Here uses various54

numerical results to estimate the parameter tm and the uncertainty σ2. Apply the maximum55

likelihood estimation to the transformed model (2), we obtain the best linear unbiased estimator56

for tm, which will be denoted as t̄m = E( Ti

Mi
); unbiased refers to the expectation of the random57

variable t̄m satisfies E(t̄m) = tm. LetN be the number of observed results, the unbiased sample58

variance is used as the estimation of σ2, i.e. σ̂2 =
∑N

i=1(Ti/Mi − t̄m)2/(N − 1), which can59

be computed by the Matlab function var(·,0) or var(·), or the estimation of the unbiased60

standard derivation σ̂ can be computed by the Matlab function std(·) or std(·,0). The61

estimation of the standard error of the mean is ŝe = σ̂√
N
. For a 95 percent confident interval62

for the estimation of t̄m is [t̄m−2ŝe, t̄m+2ŝe] [11, p.100]. The memory reference volume M for63

the presented algorithms is listed in Table 1, where nnzA is the number of non-zero elements64

of a n× n matrix A, for the packed form, the diagonal elements of the matrix A are assumed65

to be non-zeros.

Table 1: Memory reference volume for the three algorithms

Method Alg1: CSC Alg2 :CSR Alg3: packed form
M 28nnzA + 12n 20nnzA + 20n 14nnzA + 18n

66

2.2. Performance comparison. If there is no random effect, the speed-up of the packed67

form over the CSC format is68

(3) Sideal
3,1 =

TAlg1

TAlg3
=

(28nnzA + 12n)tm
(14nnzA + 18n)tm

=
14nzA + 6

7nzA + 9
= 2− 12

7nzA + 9
,

where nzA is the average number of non-zero elements per column. With the assumption that69

all the diagonal elements of A are non-zero, then nzA ≥ 1 and 1.25 ≤ Sideal
3,1 < 2. Similarly the70

speed-up of the compressed row format over the compressed column format is71

(4) Sideal
2,1 =

TAlg1

TAlg2
=

(28nnzA + 12n)tm
(20nnzA + 20n)tm

=
7nzA + 3

5nzA + 5
=

7

5
− 4

5nzA + 5
.

Here comes the delicate part of comparing performance of two methods based on the model72

in(1), the speed-up is Sb,a = Ta

T b = tmMa+εa

tmMb+εb
. Because the two different random distributions73

are correlated with the different memory reference volume M i, i = a, b, thus an individual74

observed speed-up can be far away from the expected interval, for S3,1, the interval is [1.25, 2).75

A trick used here to reduce the the large random noise is viewed logSb,a = log(T
a

T b ) as a random76

variable, or fit the model77

(5) log(T a) = log(T b) + logSb,a + ε.
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Table 2: Ideal speed-up for typical sparse matrices

nzA 3 5 7 9 15.6 27
Sideal
3,1 1.6 1.73 1.79 1.83 1.90 1.94

Sideal
2,1 1.2 1.27 1.3 1.32 1.35 1.37

The expected speed-up is then Sb,a = exp(E(log(T a)− log(T b))).78

Two efficiency are defined, the first is defined as the traditional metric in flops count.79

(6) ηflops = Tflops/T = 2tfnnzA/T,

where tf is the theoretical time for one flop. If the observed time T is linearly correlated with80

the memory reference volume, then E(ηAlg3
flops/η

Alg1
flops) = E(TAlg1/TAlg3) = E(S). Similarly the81

memory efficiency is defined as82

(7) ηm = TM/T = ttmM/T = ttmM/( t̄mM + ε),

where ttm is the theoretical time for unit memory reference, when ttm is close to t̄m, the efficiency83

may be bigger than one, for example, when the random term ε corresponds to large proportion84

of data reuse. With additional computation, it follows that E(ηAlg3
m /ηAlg1

m ) ≈ 1.85

3. Numerical verification and validation. Sequential algorithms are implemented so86

that the results can be easily repeated.87

3.1. Hardware specification. Numerical examples are carried on an AMD Phenom88

II x4 925 CPU. For one single core, the frequency of the CPU is 2.8 Ghz, which results in89

a 2.8 × 4 = 11.2 G flops per seconds, where 4 is the number of instructions for each clock90

cycle. The theoretical time for one floating-point operation is tf = 10−9/11.2 = 8.9 × 10−11
91

seconds (or 89 picoseconds). The theoretical memory bandwidth for one core is 21.3/4 GB/s,92

thus theoretical time for unit memory reference is ttm = 4 × 10−9/21.3 = 1.88 × 10−10(18893

picoseconds). It has a 4× 512 KB L2 cache and 6MB L3 cache.94

3.2. Test matrices. The first group of test matrices consists of 996 symmetric sparse95

matrices from University of Florida(UF) sparse matrix collection [3]. Various of types of96

matrices are included so that the sample matrices are representative. The test matrices are97

obtained with the UFget function in the CXSparse package [2]. Here is a Matlab snippet to98

select the 1001 symmetric matrices.99

idex=UFget; % 2650 total test matrices100

sym1=find(idex.numerical_symmetry==1.0); % 1004 symmetric matrices101

sym2=find(idex.isReal(sym1)); % 1001 real symmetric matrices102

sym=sym1(sym2); % UF id of the 1001 chosen matrice103

5 Out of the 1001 chosen symmetric matrices are skipped due to the size is too big, the UF id104

of the skipped matrices are sym([698,699,700,880,883]). Besides, 300 Wathen matrices are105

generated by the Matlab function A=gallery(’wathen’,k*nx,k*ny), where k= 1, 2, . . . , 300,106

nx=2 and ny=3. These are sparse, random, n× n finite element matrices where n = 3k2 · nx ·107

ny+2k · nx+2k · ny+1. These matrices share the same structure and satisfy the assumption108

that all the diagonal elements are non-zeros.109

3.3. Implementation details. Algorithms are implemented in C/C++ and compiled110

with gcc 4.4. The maximum speed compiling flag -O2 is opened. A Matlab wrapper function111

is used so that all the experiments are carried out in Matlab. High resolution timer for C/C++112
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Table 3: STREAM benchmark results

Function Rate(MB/s) tm(ps) ηm(%)
Copy 4741.5031 210 89
Scale 4459.9498 224 84
Add 5052.1102 198 95

Triad 4937.1375 202 93

Table 4: Estimations in this paper

UF collections Wathen matrices
t̄m(ps) ηm(%) t̄m(ps) ηm(%)

Lob 196 96 158 119
Avg 221 85 160 117
Upb 245 78 163 115

computation kernels is used so that the overhead due to timing is minimized. The shortest113

time in the testing results is 0.525 microseconds, whereas tic;toc in Matlab has about 5114

microseconds overhead in the author’s machine. When fitting parameters, those matrices for115

which the memory reference volume in Algorithm 1 are smaller than 103 bytes or larger than116

109 bytes are excluded, because timing results for extremely small matrices are less accurate117

and timing results for large matrices tend to be longer than expected due to the physical118

memory constraint which can result in more cache waiting.119

3.4. Validate results. Numerical results are illustrated in Figure 1 to Figure 7, details120

are described in the corresponding captions. Results are validated in three ways. First, for any121

fitted parameters, a 95% confidence interval is supplied so that comparison is more reasonable122

when considering the random effect. Second, we compare the fitted speed-up of Algorithm123

3 over Algorithm 1 with the ideal speed-up computed by (3), see Figure 3 to Figure 6. The124

Wathen matrices satisfy all the assumptions for (3), and thus the fitted speed-up matches the125

ideal speed-up almost perfectly. Finally and most convincingly, Table 3 and Table 4 compare126

the memory efficiency ηm and the fitted expected unit memory reference time t̄m obtained127

in this paper with that from the STREAM benchmark, an established synthetic benchmark128

program that measures sustainable memory bandwidth for simple vector kernels [9]. Table 4129

list the 95% percentage confidence interval for the estimation of t̄m and ηm, where the lower130

bound(Lob), upper bound(Upb) and the expected value (Avg) for t̄m are listed.131

4. Discussion. Presented results show that the runtime for SpMVs is dominated by132

memory reference volume and can be modelled by memory reference time plus a random effect.133

The real hierarchical memory architecture is much more complicated than the simplification134

here, whereas the present results show the proposed model is reasonable to some extent and135

validated by various results and comparisons. A key point for the successful simplification is136

based on the reasonable assumption that the uncertainty ε in (1) is proportional to the memory137

reference volume M , without realizing this point and fitting the observed results directly does138

not result in satisfactory results.139

Figure 3 and Figure 4 show that algorithms with different flop efficiency share almost140

the same memory efficiency. In particularly, for the Wathen matrices which satisfies all the141

assumptions, the ratio of the flop efficiency equals to the reciprocal of memory reference142

volume. This can show the performance of SpMVs in the classical flops metric is limited143

by the memory bandwidth. In this paper the memory efficiency achieves as high as 78%144

to 120%, while the traditional flops efficiency can only reach to a range from 7% to 13%, a145

range similar to the range of ratio of flops per memory reference (1/14, 1/7). In contrast,146

the runtime for dense matrix matrix kernels and other computation intensive applications147

with high ratio of flops per memory reference can be modelled by the amount of floating-148

point operations [5, 8]. Because there are huge disparities between the memory intensive149

applications and the computation intensive applications, using traditional benchmark based on150

flops for memory intensive applications is unfair and not valid, therefore, the HPCG benchmark151
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appears [4]. A realistic performance for sparse iterative methods on shared memory computing152

platforms should consider the memory bandwidth capability; a fair and reasonable metric for153

performance of sparse iterative methods on shared memory machines should based on the154

memory efficiency rather than the flops efficiency. For performance of sparse iterative methods155

on distributed computing system, situation becomes more complicated because of the global156

communications and synchronizations [12]. In that case, priorities are given to avoiding or157

minimizing synchronizations. Investigation on performance of sparse iterative methods on158

distributed computers with up to thousands computing nodes can be find in recent paper [13].159

Without any difficulty, one can show that the memory reference consumes far more en-160

ergy than flops do. Because the energy W , is proportional to the time for the underlying161

operations and the underlying power of the CPU, P , precisely, W = Pt. In this paper, 1162

floating-point operation takes about 89 picoseconds, while one unit memory reference takes163

about 188 picoseconds. More important, computations and data reference can be concurrency.164

Thus memory efficiency algorithms are in fact energy efficient algorithms. Efficient memory165

management will be challenging for iterative methods and other memory intensive applications166

on current and future shared memory computing platform.167
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Fig. 1: Results for the 996 matrices from UF sparse matrix collections. In both panels, the
red circles(O) are observed timing results, the blue × are theoretical floating-point operations
time(TF), 2nnzAtf , and the black solid line(T) are fitted results. In both figures all the 996
problems are plotted. The coefficient 2.21× 10−10 (221 picoseconds) is the expected time, t̄m,
for unit memory reference. A 95% confidence interval for t̄m is (196, 245) picoseconds. The
theoretical unit memory reference time is ttm = 188 picoseconds.
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Fig. 2: Results for the 300 Wathen matrices. The legends are the same as those in Fig. 1.
The 300 Wathen matrices share the same structure and thus observed timing results are less
divergent away from the fitted line. The 95% confidence interval for the fitted value t̄m is
(158, 163) picoseconds, which results in a memory efficiency between 115% to 119%. This is
likely due to the nice block dense structure of the underlying matrices(see Fig 6b)which may
result in a higher cache hitting rate than usual.
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Fig. 3: Comparison between Algorithm 1 and Algorithm 2 for the 996 matrices from UF sparse
matrices collection. In (a) and (b) the fitted coefficient is the expected speed-up of Algorithm
3 over Algorithm 1. A 95% confidence interval for the expected speed-up is (1.73, 1.80). The
memory efficiency of Algorithm 3 is slightly worse than Algorithm 1, this is likely because
there are two if branches in Algorithm 3. The 95% percentage confidence interval of the
coefficient is (0.95, 0.99).
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Fig. 4: Comparison between Algorithm 1 and Algorithm 2 for the 300 Wathen matrices. For
these matrices with nice structure (see Fig. 6b), the speed-up of Algorithm 3 over Algorithm
1 is higher than average, with a 95% confidence interval (1.86, 1.92). For such fixed problems
share the same structure, both the memory efficiency and floating-point efficiency tend to be
at a fixed level, there are only about 30 cases divergent away from the clusters in panel (b)
and (c). The 95% confidence interval for the coefficient in (c) is (0.98, 1.01).
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certain interval. For observed speed-up, those bigger than 3.5 are assumed belong to the
group 3.0 to 3.5. The ideal speed-up is computed by (3).
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Fig. 6: Observed speed-up for the 300 Wathen matrices and the structure of
gallery(’wathen’,2,3) matrix. For observed speed-up, those bigger than 3.5 are assumed
belong to the group 3.0 to 3.5. The average non-zero elements per column of these Wathen
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fitted value 1.89 in Fig 4 and locates in the 95% percentage confidence interval (1.86, 1.92).
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Fig. 7: Comparison of the speed-up of the CSR format over CSC format and CSR format over
Matlab y=A*x. Only the first 50 Wathen matrices are used. Overheard due to tic;toc is
removed for Matlab timing, several cases in (b) are outside of the range due to larger speed-
up. The data volume here is the memory size for matrix A, vectors x and y, not the memory
reference volume. A turning point in both case is when the data volume equals 2MB, the
L2 cache size. The Matlab y=A*x have a similar performance with that of the CSC format
for small matrices (enough to fit into the L2 cache). When the data volume is larger than
the L2 cache size, the performance of SpMVs in CSC format Algorithm 1 and CSR format
Algorithm 2 tends to have the same performance, this is because the L3 cache are much slower
on mother board, the data movement from the lower level memory dominates the whole time.
For larger matrices MATLAB possibly uses auto turning and blocking techniques to improve
the performance of SpMVs.


