Enhancing the PRIMME Eigensolver for Computing Accurately Singular
Triplets of Large Matrices

Lingfei Wu!, Andreas Stathopoulos!

Abstract

The computation of a few singular triplets of large, sparse matrices is a challenging task, especially
when the smallest magnitude singular values are needed in high accuracy. Most recent efforts try to ad-
dress this problem through variations of the Lanczos bidiagonalization method, but algorithmic research
is ongoing and without production level software. We show that a more efficient, robust, and production-
ready method can be developed on top of the state-of-the-art eigensolver PRIMME. In a first stage, our
new method, primme_svds, solves the normal equations problem up to the best achievable accuracy. If
further accuracy is required, the method switches automatically to an eigenvalue problem with the aug-
mented matrix. Thus it combines the advantages of the two stages, faster convergence and accuracy,
respectively. For the augmented matrix, solving the interior eigenvalue is facilitated by a proper use
of the good initial guesses from the first stage and an efficient implementation of the refined projection
method. The method can be used with or without preconditioning, on large problems, and can be called
with its full functionality from MATLAB through our MEX interface. Numerical experiments illustrate
the efficiency and effectiveness of the presented method.

1 Introduction

The Singular Value Decomposition (SVD) is a ubiquitous computational kernel in science and engineering.
Many applications demand a few of the largest or smallest singular values of a large sparse matrix A and
the associated left and right singular vectors. It is well known that the computation of the smallest singular
triplets presents challenges both to the speed of convergence and the accuracy that iterative methods can
accomplish. In this paper we mainly focus on this problem of finding the smallest singular triplets.

Assume A € R"™*" is a large sparse matrix with full column rank and m > n. The singular value decom-
position of A can be written as: A = UXVT, where U = [uy,...,uy] € R™™ and V = [vy,...,v,] € R
are unitary matrices, and £ = diag(oy,...,0,) € R™*" contains the singular values of A in increasing order
6; <... <0, We will be looking for the smallest k < n singular triplets {G;,u;,v;},i=1,... k.

There are two approaches to compute the singular triplets {G;,u;,v;} by using a Hermitian eigensolver.
The first approach seeks a few eigenpairs of the augmented matrix B = [0 AT;A 0] € ROmtn) < (mtn) - which
has eigenvalues +061,...,+0, and eigenvectors whose upper and lower part are the right and left singular
vectors respectively [2, 3, 4]. The main advantage of this approach is that iterative methods can compute
the smallest singular values accurately, i.e., with residual norm close to O(||A||€macn). However, they must
solve a highly interior eigenvalue problem, and even the use of iterative refinement or inverse iteration
involves a maximally indefinite matrix. This results in very slow convergence [1]. When restarting is used,
convergence is even slower, irregular, and often the required eigenvalues are missed since the Rayleigh-Ritz
projection method does not effectively extract the appropriate information for interior eigenvectors.

The second approach computes eigenpairs of the normal equations matrix C = ATA € R"*" which has
eigenvalues G%, < ...,< o2 and the associated eigenvectors are the right singular vectors of A. If 6; # 0,
the corresponding left singular vectors are obtained as u; = G%ATV,-. This approach is preferred for largest
singular values because its gap ratios are much larger than the augmented approach. For smallest singular
values the gaps in C reduce but convergence is still faster because of the indefiniteness of B. However,
squaring the matrix limits the accuracy we can obtain for the smallest singular triplets. Therefore, when
eigenvalue methods are applied on C, they are typically followed by a second stage of iterative refinement
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for each needed singular triplet which resolves the numerical problems of the first stage [8, 9]. However,
this one-by-one iterative refinement does not exploit information from other singular vectors and thus is it
not as efficient as an eigensolver applied on B with the estimates of the first stage.

Over the last decade, the Lanczos bidiagonalization method [2, 10] has gained acceptance as an accurate
and more efficient method for seeking singular triplets (especially smallest), and numerous variants have
been proposed [17, 14, 16, 11, 12, 13, 15, 18]. The Lanczos bidiagonalzation method computes the same
information as Lanczos on matrix C, but since it works on A directly, it avoids the numerical problems of
squaring. Despite the remarkable algorithmic progress, however, current Lanczos bidiagonalization methods
are still in development, with only few existing MATLAB implementations that serve mainly as a testbed for
mathematical research. Moreover, as we show in this paper, a two stage approach based on a well designed
eigenvalue code (such as PRIMME) can be more robust and efficient for a few singular triplets. Most
importantly, our approach can use preconditioners to accelerate convergence, something that is not directly
possible with Lanczos bidiagonalization but becomes crucial because of the difficulty of the problem even
for medium matrix sizes.

The Jacobi-Davidson type SVD method, JDSVD [5, 6], which can also use preconditioning, obtains the
left and right singular vectors directly from a projection of B on two subspaces. To cope with the irregular
convergence of the Rayleigh-Ritz method, JDSVD must be coupled with a harmonic projection method
[19, 22, 21] or a refined projection method [23, 24]. JDSVD is only available in a MATLAB research
implementation which is not robust enough for real world problems. But most importantly, because it works
on B, JDSVD may be less efficient than a two stage method that first works on C for efficiency and then on
B for final accuracy.

In this paper we develop a hybrid, two-stage singular value method that address the algorithmic prob-
lems of the above methods but also provides a production-ready implementation based on the state-of-the-
art eigensolver PRIMME [27]. In the first stage, the proposed method primme_svds solves an extreme
eigenvalue problem on C up to the user required accuracy or up to the accuracy achievable by the normal
equations. If further accuracy is required, primme_svds switches to a second stage where it utilizes the
eigenvectors and eigenvalues from C as initial guesses to a Jacobi-Davidson method on B, which has been
enhanced by a refined projection method. The appropriate choices for tolerances, transitions, selection of
target shifts, and initial guesses are handled automatically by the method. Our extensive numerical experi-
ments show that primme_svds can be considerably more efficient than all other methods when computing a
few of the smallest singular triplets, even without a preconditioner.

In the section 2 we describe how to adjust the tolerance in the first stage and how to address irregular
convergence of the standard projection method in the second stage. Other algorithmic enhancements and
an outline of the implementation are also discussed. In Section 3, we present several experiments that
corroborate our conclusions.

2 Developing the two stage strategy

To solve the eigenvalue problem on C and then on B, we use the suite of eigenvalue methods provided
in PRIMME [25, 26, 27]. PRIMME implements a wide variety of preconditioned eigenvalue algorithms,
including the nearly optimal methods GD+k and JDQMR, and a host of practical techniques for improv-
ing efficiency and robustness, including block-methods, locking and a variety of restarting techniques and
heuristics. Also given a set of user provided shifts, PRIMME can find interior eigenvalues closest to in
absolute value or on the left or right side of each of these shifts. This functionality is central in our stage
two where very good eigenvalue approximations are available. PRIMME has proved faster and more robust
than almost any other eigensolver when seeking a small number of extreme eigenvalues of large sparse her-
mitian matrices. PRIMME also chooses the optimal method for a problem dynamically, based on runtime



measurements. Our meta-method lets PRIMME make most of these choices, but needs to address certain
issues. We discuss what accuracy can be expected from the normal equations in the first stage, and how to
use the approximate solutions as an initial guess to the second stage. In the second stage we show how to
overcome convergence problems with interior eigenvalues by using a refined projection method.

2.1 The first stage of primme_svds

A straightforward theoretical argument on gap ratios explains the experimental observations ([9]) that Krylov
methods on the normal equations are faster than on the augmented matrix for finding a few largest singular
triplets. In our experiments, the benefits were even larger due to the nearly optimal convergence of the
two eigenmethods GD+k and JDQMR in PRIMME. As we show below, the first stage of primme_svds is
sufficient to compute a few of largest singular triplets without compromising the accuracy.

When seeking the smallest eigenvalues of C, convergence of Krylov methods is slow but still faster than
seeking interior eigenvalues of B. In fact, the more clustered the singular values, the bigger the convergence
benefits of working on C. Accuracy, however, is limited by the squared matrix norm.

Let (0,u,v) be a targeted singular triplet of A and (&2,7) the approximating Ritz pair from a method
working on C. Using the approximation i = Av/& we can write the following four residuals:

|-o]x)

Typically a singular triplet is considered converged when ||r, || and ||r,|| are less than a given tolerance. Since
our eigenvalue methods work on C and B we need to relate the above quantities. First, it is easy to see that
rc = AT (AV) — &%7 = 6AT ii — 6%V = &r,. To relate to the norm of the residual of the second stage note that
I7al1? = (|ro | + |I7]1?)/(|I7]]> + ||@]|?). By choosing a Ritz vector in the normal equations with ||7|| = 1,
we also obtain ||i|| = ||AV/&|| = 1 and r, = 0. Bringing it all together:
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Therefore, given a user requirement r,, < 8 ||A||, the normal equations method and the augmented method
are stopped when rc < 8 & ||A|| and rp < & ||A||/+/2 respectively. Since the stopping criterion for PRIMME
is ||re|l < 8¢||C||, we must provide 8¢ = & 6/||A||. In floating point arithmetic this may not be achievable
since ||7¢c|| can only reach down to ||A||%€,4cx [1]. Thus, the criterion for the normal equations becomes,

3) d¢c = max (8 6/||Al|, Emach)

while any remaining accuracy will have to be obtained by running the second stage.

First, note that for the largest 6 = ||A||, full accuracy is achievable with the normal equations, as 8¢ = d.
Then, based on the Bauer-Fike bound and since ¢ =~ G, the singular values are as accurate as can be ex-
pected: |62 —&%| = |6 — 6((26) < |Irc|| < 8¢||A||> = 68]||A|, and thus |6 — &| < 8||A||/2. This does not
hold for smaller, and in particular the smallest few, eigenvalues. Thus, if the user requires & < ||A||€macn/5,
primme _svds first makes full use of the first stage and then switches to the second stage to continue comput-
ing the smallest singular triplets accurately on B.

Any preconditioner for C can be used directly in PRIMME in this stage. Most often a preconditioner
for M ~ A and MT ~ AT would instead be available (e.g., incomplete LU factorization). The M’ M oper-
ator could then be provided to PRIMME to speed up the calculation. Regarding the choice of eigenvalue
methods, we let PRIMME’s dynamic scheme decide whether a GD+k or JDQMR would be preferable. This
depends on runtime issues including the cost of the matrix vector and preconditioning operators.



2.2 The second stage of primme_svds

Typically, singular triplets obtained through normal equations are subsequently improved using an iterative
refinement procedure [8, 9]. We argue that solving an eigenvalue problem on matrix B with the approxi-
mate eigenspace as initial guess is a better approach for the following three reasons. First, with iterative
refinement, eigenvectors are improved one by one without any cross utilization of the nearby subspace
information. Instead, an eigensolver improves not only the targeted but also the nearby eigenvectors, accel-
erating global convergence. Second, solving the linear system in iterative refinement is not as efficient as
in JDQMR, which stops the linear solver dynamically to avoid exiting early (which increases the number
of outer iterations) or iterating too long (which increases the number of inner iterations). Third, iterative
refinement for clustered interior eigenvalues may not be able to converge to the desired accuracy due to the
lack of proper deflation strategies, both at the linear solver and at the outer iteration. Naturally, a well de-
signed eigensolver that employs locking and blocking techniques is more robust to address these problems.
Finally, we point out that the correction equation of the Jacobi-Davidson method applied on B :

4) (I —ww")(BT —ul)(I —ww")f =&w—B'w

where w! = [ u v ] and iT = [ st } is equivalent to the iterative refinement proposed in [8] (see Lemma
7.1 in [5]). Therefore, JDQMR enjoys the benefits of both eigensolvers and iterative refinement.

PRIMME provides remarkable flexibility for seeking interior eigenvalues. Unlike the Lanczos method,
it accepts initial guesses from the first stage for all required eigenvectors. Then it builds the initial search
space by running a few Lanczos steps on the initial vector associated with the first targeted eigenvalue.
For this, we modified slightly the original PRIMME implementation which included a small Lanczos space
from a random vector to guard against extremely bad guesses, which is not the case here. Thus the initial
search space is rich in eigenvector components for all nearby eigenvectors. Once an eigenpair converges it
is locked out of the search space, and the initial guess associated with the next targeted shift is introduced
into the search space. In a slight departure from the original PRIMME implementation, we reintroduce
initial guesses even if these were part of the initial search space. The reason is that convergence for interior
eigenvalues is plagued by spurious eigenvalues which may even displace nearly converged eigenvectors
from the search space. This resulted in significant improvement in robustness and often in convergence.

PRIMME accepts multiple shifts and provides three different ways to select an interior eigenvalue close
to each shift. The most common is to select Ritz values which are closest in absolute value to each shift
(primme_closest_abs). In certain cases, it is beneficial to look only at those on the left or on the right
of the shift. Since the accuracy of eigenvalues of C is O(||r¢||?), the shifts we provide to the second stage are
very close to the eigenvalues of B. Because of this, the primme_closest_abs option is more effective
at selecting the proper Ritz value during the outer iterations. More importantly, these shifts are ideal for the
Jacobi-Davidson correction equation, which typically returns the exact correction to the eigenvector after
the solution of only one linear system.

For interior eigenvalues, the Rayleigh-Ritz procedure does not have the same optimality as for extreme
eigenvalues. This can cause convergence to be irregular which makes it difficult to select appropriate Ritz
pairs or can produce spurious ones. We have observed that in a well implemented GD+k method with
sufficiently large search space, such selection problems are transient and do not affect the convergence and
overall speed of the method. This is why PRIMME only implemented the Rayleigh-Ritz method originally.
In the second stage of primme_svds, the availability of accurate initial guesses and shifts calls for using the
correction equation, i.e., the JDQMR method. For this method, spurious Ritz values can cause Ritz vectors
to fail to converge [24]. The effect is detrimental not only during the correction equation, but also during
restart where major eigenvector components would be discarded and need to be recovered. [19, 20, 21]. The
problem is accentuated in the maximally indefinite case of SVD problems.



We addressed this problem by extending PRIMME'’s functionality to include the refined projection that
minimizes the residual ||[BVy — GVy|| over the search space V and for a given & [23, 24]. Because the shifts
& are very accurate, a harmonic Ritz procedure is not necessary, and the refined one is expected to give the
best approximation for the targeted eigenpair. Our refined projection method is similar to the one in [6] and
[19] which produces refined Ritz vectors for all the required eigenvectors (not just the closest to 6). Since
& remains constant, there is no need to perform a QR factorization of the BV — 6V matrix at every step.
Instead, as part of a Gram-Schmidt, we add one more column to the orthonormal matrix Q and to the matrix
R. A full QR factorization is only needed at restart. Then, following [24], we compute the refined Ritz
vectors by solving the small SVD problem with R, and replace the targeted Ritz value with the Rayleigh
quotient based on the first refined Ritz vector.

Solving the small SVD problem for only one shift per iteration reduces the cost of the refined procedure
considerably, making it similar to the cost of computing the Ritz vectors. Although the quality of other
refined Ritz vectors reduces with the distance of their Rayleigh quotient from &, these approximations have
the desirable property of monotonic convergence as claimed in [6, 19] and also observed in our experiments.
This added robustness for JDQMR more than justifies the small additional cost.

2.3 Outline of the implementation

We first developed PRIMME MEX, a MATLAB interface for PRIMME. This exposes the full functional-
ity of PRIMME to a broader class of users, who can now take advantage of MATLAB’s built-in blocked
matrix-vector operators and preconditioners. Its user interface is similar to eigs() allowing it to be called
not only by non-expert users but also by experts that can adjust more than 30 parameters. The meta-method
primme_svds was then implemented as a MATLAB function on top of PRIMME MEX. This allowed flexi-
bility for algorithmically tuning the two stages. Enhancements such as the refined projection method were
implemented directly in PRIMME and will be part of its next release, which will also include a native C
implementation of primme_svds.

3 Numerical experiments

We conduct three sets of numerical experiments to compare primme_svds against three other state of the
art SVD methods: IRRHLB [15], JDSVD [5, 6], and MATLAB’s svds (based on the ARPACK software
[30]). In the first set of experiments, we compare with IRRHLB and JDSVD, and show primme_svds to be
much more efficient in determining a few of the smallest singular triplets, even without a preconditioner.
In the second set of experiments, we demonstrate that primme_svds provides a much faster convergence
with a good preconditioner, which becomes necessary for larger problems. In the last set of experiments,
primme _svds is compared with svds. Both primme_svds and svds leverage the shift-and-invert technique but
our method achieves better performance. All computations are carried out on a DELL server with sixteen
2.93GHz Intel Xeon processors and 50 GB of memory running Linux operating system and using MATLAB
2013a with machine precision € = 2.2 x 10716,

All methods start with the same initial guess, ones(min(m,n),1), except for matrix Ishp3025 for which
a random guess is necessary. We set maxBasisSize=35, minRestartSize=21 and experiment with two J
tolerances, le-8 and le-14. For 6 =1e-8, primme_svds does not need to enter the second stage. Since the
numbers of matrix-vector products with A and A” are the same, the tables report as “MV” the number of
products with A only. “Sec” is the run time in seconds, and “*” means the method cannot converge to all
desired singular values. For the first stage of primme_svds we have used the GD_Olsen_PlusK method. For
the second stage, we run experiments with both GD_PlusK and JDQMR.

We select seven test matrices from [15, 29]. Table 1 lists these matrices along with some basic properties.



Table 1: Properties of the test matrices. gapy»(k) = min}_, (gap(c;)), where gap(c;) = min;4i|c; — ;|.

Matrix welll1850 | pde2961 | dw2048 | fidap4 | jagmesh8 | 1shp3025 | wang3
order 1850 2961 2048 1601 1141 3025 26064
nnz(A) 8755 14585 10114 | 31837 7465 20833 177168
K(A) 1.1e2 9.5¢2 5.3e3 5.2e3 5.9¢4 2.2e5 1.1e4
lA]l2 1.8¢0 1.0el 1.0e0 1.6e0 6.8¢0 7.0e0 2.7e-1
gapmin(1) 3.0e-3 8.2e-3 2.6e-3 | 1.5e-3 1.7¢-3 1.8e-3 7.4e-5
8apmin(3) 3.0e-3 2.4e-3 2.9e-4 | 2.5e-4 1.6e-3 9.1e-4 1.9e-5
8apmin(5) 3.0e-3 2.4e-3 2.9e-4 | 2.5¢-4 4.8¢e-5 1.8e-4 1.9¢-5
gapmin(10) 2.6e-3 7.0e-4 1.6e-4 | 2.5e-4 | 4.8e-5 2.2e-5 6.6e-6

Among them, the matrices well1850, pde2961 and dw2048 are easy ones, the matrices fidap4, jagmesh8 and
wang3 are hard cases, and the matrix 1shp3025 is a very hard one.

3.1 Without preconditioning

We compute the k smallest singular triplets for k = 1,3,5, 10 using the default parameters in all methods. In
order to speed up convergence of the eigenvalue problems, k£ + 3 eigenvalues are computed when & desired
eigenvalues are required in ARPACK [30]. A similar strategy is applied in [15, 11]. For primme_svds, we
found this is not necessary except when k = 1, when it is better to find 2 eigenpairs in the first stage, and
pass their space as initial guesses to stage two. Stage two only calculates the k needed eigenpairs.

Tables 2 and 3 show that the primme_svds variants converge faster and more robustly than other methods.
Specifically, Table 2 shows that for moderate accuracy the normal equations solved with a PRIMME method
are unbeatable. This is expected from the near-optimal properties of our methods [25]. However, when
looking for ten or more smallest singular triplets, the Lanczos type methods begin to show their effectiveness
[26].

Table 3 shows smaller differences between the methods, reflecting the slower convergence of the aug-
mented method in stage two. For computing 10 eigenpairs, IRRHLB shows a small edge in convergence
for three cases. However, primme_svds method never misses eigenvalues, and is still much faster than
JDSVD and IRRHLB in most cases, and significantly better than IRRHLB in the hard cases. JDSVD is
significantly slower than primme_svds because it relies on the augmented matrix to produce all the required
accuracy. Taking advantage of the normal equations, primme_svds can then use more effectively the refined
Ritz vectors to improve the interior eigenvalue problem.

We point out that because of PRIMME'’s high quality implementation, not only does primme_svds enjoy
better robustness but it is also ten times faster than IRRHLB for the cases where IRRHLB takes fewer MVs!

3.2 With preconditioning

The most notable fact from Tables 2 and 3, however, may be the difficulty of solving this SVD problem,
even for small matrices. Preconditioning is a prerequisite for addressing the larger problems in practice,
which limits our choice to primme_svds and JDSVD. We compare the two methods, using as a precondi-
tioner MT M or [OM M 0], where M = LU, the factors obtained from MATLAB’s ILU function on A with
parameters ' type=1ilutp’,’droptol’=1le-3,’thresh’=1.0. We focus only on the hard cases of
the previous experiments. Except for preconditioning, all other parameters remain the same. Table 4 shows
that a good preconditioner makes the problems tractable, with both primme_svds and JDSVD solving the
problems effectively, but primme_svds method still provides much faster convergence and execution time.



Table 2: Seeking 1, 3, 5, and 10 smallest singular triplets with user tolerance 1e-8

o= le-8 Matrix: welll850 pde2961 dw20438 fidap4
k | Method MV  Sec MV  Sec MV Sec MV Sec
1 primme_svds(1st stage only) 499 0.3 2175 1.8 1743 1.2 4741 3.2
1 | JDSVD 1563 1.3 | 4269 4.8 | 3840 3.1 4379 3.8
1 IRRHLB 872 8.6 | 3755 446 | 3228 35.1 8839 979
3 primme_svds(1st stage only) 539 0.3 2643 2.2 2135 1.5 5661 3.8
3 | JDSVD 2773 2.1 7195 83 | 5776 4.8 | 14334 12.7
3 | IRRHLB 847 8.6 | 3718 44.6 | 3225 36.1 | 14303 156.2
5 | primme_svds(1st stage only) 607 04 | 3118 2.6 | 2431 1.7 6890 54
5 | JDSVD 4203 3.6 | 9076 122 | 7514 8.1 | 16270 16.3
5 | IRRHLB 872 93 | 4301 53.8 | 2978 34.6 | 13184 1525
10 | primme_svds(1st stage only) 898 05| 4894 42| 3912 2.8 | 10087 6.8
10 | JDSVD 85053 74.5 | 14906 20.8 | 11683 10.4 | 20934 19.7
10 | IRRHLB 827 9.9 | 4809 63.5 | 3445 43.8 | 12025 147.6
o= 1le-8 Matrix: jagmesh8 1shp3025 wang3
k | Method MV Sec MV Sec MV Sec
1 primme_svds(1st stage only) 5444 2.9 11403 9.5 6535 58.3
1 JDSVD 12343 8.2 37225 40.9 11353 83.8
1 IRRHLB 30105  317.7 46845  565.8 19689  632.1
3 primme_svds(1st stage only) 5915 32 12250 10.9 7589 58.3
3 | IDSVD 13861 8.7 50282 57.5 17865 127.3
3 | IRRHLB 25497 271 42201 5184 19001 619.5
5 | primme_svds(1st stage only) | 6679 3.7 14126 12.5 8673 68.7
5 | JDSVD 18173 12.8 66034 80.9 22441 1573
5 | IRRHLB 18314 197.8 93239 1186.6 17963 570
10 | primme_svds(1st stage only) 8861 4.8 19755 18.7 19445 1542
10 | JDSVD 21209 14.7 86780 115.6 | 110000*  854*
10 | IRRHLB 52043 608.1 | 110013*  1511%* 16975 537

3.3 With the shift and invert technique

When the matrix can be factorized, the shift and invert (SI) Lanczos/Arnoldi method is an effective alter-
native. This is also the default for seeking smallest singular values in MATLAB’s svds. Shift and invert is
also applicable to PRIMME and primme _svds. Because the normal equations can accurately and efficiently
compute the largest singular triplets of A~!, there is no need for two stages or to work on the augmented B.
Still, we report results with SI on both C and B.

Table 5 compares MATLAB’s svds (SI on B) against primme_svds(C) (SI on C by inverting A), and
against primme_svds(B) (SI on B by inverting B). We have instrumented the native svds code to return
the number of iterations. To facilitate comparisons, we include the LU factorization times in the running
times of all methods, but also report them separately. The tolerance is & =1e-10, and primme_svds uses the
DYNAMIC method that switches between GD-+k and JDQMR to optimize performance [27].

Overall, primme_svds(C) is much faster than svds both in convergence and execution time. This is
because working on C improves the separations of the required eigenvalues, and it involves computations
with vectors of half the size of those in svds. Although there is no reason to work on B, we report that
primme_svds(B) takes more iterations than svds because 10 triplets are computed, and it takes far less
iterations when computing 1, 3, or 5 ones; similarly to our first experiment.



Table 3: Seeking 1, 3, 5, and 10 smallest singular triplets with user tolerance le-14

0= 1e-14 Matrix: welll850 prde2961 dw2048 fidap4
k Method MV Sec MV  Sec MV  Sec MV Sec
1 primme_svds(GD+k) 730 0.5 3491 32 2906 22| 6950 5.0
1 primme_svds(JDQMR) 786 0.5 3707 34| 2899 1.9 | 6918 4.5
1 JDSVD 1838 1.4 ] 6106 7.6 | 5061 4.5 6436 5.9
1 IRRHLB 1368 142 | 6328 755 | 4561 5009 | 14078 1554
3 | primme_svds(GD+k) 882 0.6 | 4648 4.8 3679 3.7 8846 8.8
3 primme_svds(JDQMR) 974 0.5 5143 3.8 3746 3.1 8936 5.7
3 | IDSVD 71259  59.2 | 10517 11.6 | 8911 7.1 | 10781 9.0
3 | IRRHLB 1137 122 | 6241 77.0 | 4443 50.0 | 19059 2154
5 | primme_svds(GD+k) 1134 0.7 5879 57| 4776 3.7 | 11976 9.1
5 | primme_svds(JDQMR) 1252 09 | 6506 50| 4932 4.1 | 12179 9.1
5 | JDSVD 110000*  81.9* | 14554 19.1 | 12266 11.7 | 14906 14.6
5 | IRRHLB 1196 13.1 6218 79.2 | 4193 49.1 | 18098 211.2
10 | primme_svds(GD+k) 1833 1.2 | 9463 9.6 | 8069 7.9 | 19805 16.2
10 | primme_svds(JDQMR) 1961 1.3 9856 11.8 8381 7.7 | 20261 15.0
10 | IDSVD 110000*  79.9% | 24498 29.6 | 20351 20.5 | 25125 24.5
10 | IRRHLB 1069 11.7 | 6371 86.8 | 4589 58.6 | 17393 214.2
0=1le-14 Matrix: jagmesh8 1shp3025 wang3

k Method MV Sec MV Sec MV Sec

1 primme_svds(GD+k) 7177 4.2 15159 14.6 | 19473 192

1 primme_svds(JDQMR) 7228 3.7 14701 11.2 | 18887 71.9

1 JDSVD 13608 9.6 42835 53.1 | 16457 105.4

1 IRRHLB 43869 466.5 57912 693 | 27470 1003

3 | primme_svds(GD+k) 8859 5.7 18910 20.8 | 21560 334

3 primme_svds(JDQMR) 9128 4.5 19167 19 | 31365 148

3 | IDSVD 17029 11.0 48731 59.4 | 41900 387

3 | IRRHLB 31210 330.1 63806  799.5 | 29035 1094

5 primme_svds(GD+k) 11569 7.5 24743 27.5 | 27497 307.8

5 | primme_svdsJDQMR) | 11756 5.9 25745 20 | 25558 145.5

5 | IDSVD 22573 15.2 62646 759 | 57454  441.4

5 | IRRHLB 23498 3314 99395 1258.9 | 22985 730.1

10 | primme_svds(GD+k) 17344 10.8 39852 42.4 | 36695  551.5

10 | primme_svds(JDQMR) | 18022 11.2 41749 31.6 | 35134 237.5

10 | JDSVD 29613  21.0 | 110000* 150.1* | 91290  871.9

10 | IRRHLB 55673 879.4 | 110013*  1511* | 43309 1679.4




Table 4: Seeking ten smallest singular triplets with a good preconditioner

k=10 Matrix: jagmesh8 1shp3025 wang3
) Method MV  Sec | MV  Sec | MV Sec
le-8 primme_svds(1st stage only) 92 0.2 | 125 23 | 181 4.0
le-8 JDSVD 287 1.4 | 331 11.1 | 320 179
le-14 | primme_svds(GD+k) 177 0.6 | 223 3.5 | 320 7.5
le-14 | primme_svds(JDQMR) 308 2.1 | 398 59 | 525 6.8
le-14 | JIDSVD 408 1.9 | 518 17.1 | 606 31.8

Table 5: primme_svds and svds using shift and invert technique for 10 smallest singular triplets

0 =1e-10, Matrix: pde2961 dw2048 fidap4 jagmesh8 1shp3025 wang3

Method MV  Sec | MV  Sec | MV  Sec | MV Sec | MV Sec | MV Sec
LU(A) time - 0.01 - 0.01 - 0.02 - 0.01 - 0.06 - 1.1
primme_svds(C) 35 0.13 33 0.10 31 0.12 26  0.09 35 0.26 57 44
LU(B) time - 0.03 - 0.02 - 0.03 - 0.01 - 0.05 - 46
primme_svds(B) 103 0.26 | 100 0.18 | 134 0.31 69 0.11 | 199 045 | 137 18.7
svds 73 0.33 73 0.28 73 0.34 61 0.24 63  0.37 71 123

4 Conclusion

We have developed a meta-method, primme_svds, that computes a few singular triplets of large matrices by
using the state-of-the-art eigensolver PRIMME in a two-stage approach. The first stage solves the normal
equations as a fast way to get sufficiently accurate approximations. If futher accuracy is needed, a sec-
ond stage solves the interior eigenvalue problem from the augmented matrix. We have presented several
enhancements to the PRIMME eigensolver that allow for an efficient computation of the interior eigen-
problem. primme_svds improves on convergence and robustness over other state-of-the-art singular value
methods, but most importantly it is based on a highly optimized production software that allows its use, with
or without preconditioning, in large, real world problems.
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