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Abstract

Alternating least squares (ALS) is often considered the workhorse algorithm for computing the
rank-R canonical tensor approximation, but for certain problems its convergence can be very slow. The
nonlinear conjugate gradient (NCG) method was recently proposed as an alternative to ALS, but the
results indicated that NCG was usually not faster than ALS. To improve the convergence speed of NCG,
we consider a nonlinearly preconditioned nonlinear conjugate gradient (PNCG) algorithm for computing
the rank- R canonical tensor decomposition. Our approach uses ALS as a nonlinear preconditioner in the
NCG algorithm. We demonstrate numerically that the convergence acceleration mechanism in PNCG
often leads to important pay-offs for difficult tensor decomposition problems, with convergence that
is significantly faster and more robust than for the stand-alone NCG or ALS algorithms. We consider
several approaches for incorporating the nonlinear preconditioner into the NCG algorithm that have been
described in the literature previously and have met with success in certain application areas. However,
it appears that the nonlinearly preconditioned NCG approach has received relatively little attention in
the broader community and remains underexplored both theoretically and experimentally. Thus, we
provide a concise overview of several PNCG variants and their properties that have only been described
in a few places scattered throughout the literature. We also systematically compare the performance of
these PNCG variants for the tensor decomposition problem, and draw further attention to the usefulness
of nonlinearly preconditioned NCG as a general tool. In addition, we obtain a new convergence result
for one of the PNCG variants under suitable conditions, building on known convergence results for
non-preconditioned NCG.

1 Introduction

In this paper, we consider a nonlinearly preconditioned nonlinear conjugate gradient (PNCG) algorithm
for computing a canonical rank-R tensor approximation using the Frobenius norm as a distance metric.
The current workhorse algorithm for computing the canonical tensor decomposition is the alternating least
squares (ALS) algorithm [1, 2, 3]. The ALS method is simple to understand and implement, but for certain
problems its convergence can be very slow [4, 3]. In [5], the nonlinear conjugate gradient (NCG) method is
considered as an alternative to ALS for solving canonical tensor decomposition problems. However, [5] found
that NCG is usually not faster than ALS. In this paper, we show how incorporating ALS as a nonlinear
preconditioner into the NCG algorithm (or, equivalently, accelerating ALS by the NCG algorithm) may
lead to significant convergence acceleration for difficult canonical tensor decomposition problems.

Our approach is among extensive, recent, research activity on nonlinear preconditioning for nonlinear
iterative solvers [6, 7, 8, 9, 10], including nonlinear GMRES and NCG. This work builds on original contri-
butions dating back as far as the 1960s [11, 12, 13, 14], but much of this early work is not well-known in the
broader community and large parts of the landscape remain unexplored experimentally and theoretically
[10]; the recent paper [10] gives a comprehensive overview of the state of the art in nonlinear preconditioning
and provides interesting new directions.

In this paper we, consider nonlinear preconditioning of NCG for the canonical tensor decomposition
problem. We consider several approaches for incorporating the nonlinear preconditioner into the NCG
algorithm that are described in the literature (see [15, 12, 16, 7, 10]). Early references to nonlinearly
preconditioned NCG include [15] and [12]. Both propose the NCG algorithm as a solution method for solving
nonlinear elliptic partial differential equations (PDEs) and while both present NCG algorithms that include
a possible nonlinear preconditioner, [12] actually uses a block nonlinear SSOR method as the nonlinear
preconditioner in their numerical experiments. Hager and Zhang’s survey paper [17] describes a linearly
preconditioned NCG algorithm, but does not discuss general nonlinear preconditioning for NCG. More
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recent work on nonlinearly preconditioned NCG includes [7] and the recent overview paper [10] on nonlinear
preconditioning also briefly mentions nonlinearly preconditioned NCG, but discusses a different variant than
[15], [12], [16] and [7]. In Section 3, the differences between the PNCG variants of [15, 12, 16, 7, 10] will be
explained.

As mentioned above, we apply the PNCG algorithm to the tensor decomposition problem which can be
described as follows. Let X € RIt*[2X--XIN he 5 N-way or Nth-order tensor of size I} X Iy X ... X Iy.
We are interested in finding a canonical rank-R tensor, Ap € RI1X/2X--XIN a5 an approximation to X by
minimizing the following function:

R
1
F(AR) = 5|X — Agl[}, where Ap = alVo...0al™ =[AM . AN (1)

r=1

and || - || 7 denotes the Frobenius norm of the N-dimensional array. The canonical tensor Ag is the sum of R
rank-one tensors, with the rth rank-one tensor composed of the outer product of N column vectors afnn) €
R, n =1,...,N. The decomposition of X into Ag is known as the canonical tensor decomposition and
is commonly referred to as the CP decomposition [1, 2]. The canonical tensor decomposition is commonly
used as a data analysis technique in a wide variety of fields including chemometrics, signal processing,
neuroscience and web analysis.

The ALS algorithm for CP decomposition was first proposed in papers by Carroll and Chang [1] and
Harshman [2]. An overview of the ALS algorithm can be found in [3]. The ALS method is simple to
understand and implement, but can take many iterations to converge. It is not guaranteed to converge to
a global minimum or even a stationary point of (1) [3]. We can only guarantee that the objective function
in (1) is nonincreasing at every step of the ALS algorithm. As well, if the ALS algorithm does converge
to a stationary point, the stationary point can be heavily dependent on the starting guess. A number of
algorithms have been proposed as alternatives to the ALS algorithm. See [5, 3, 4, 18] and the references
therein for examples. Inspired by the nonlinearly preconditioned nonlinear GMRES method of [9], we
propose in this paper to accelerate the NCG approach of [5] by considering the use of ALS as a nonlinear
preconditioner for NCG.

The remainder of the paper is structured as follows. In Section 2, we introduce the standard NCG
algorithm for unconstrained continuous optimization. Section 3 gives a concise description of several variants
of the PNCG algorithm that we collect from the literature and describe systematically, and it discusses their
relation to the PCG algorithm in the linear case, followed by a brief convergence discussion highlighting
our new convergence result. In Section 4 we follow the experimental procedure of Tomasi and Bro [4] to
generate test tensors that we use to systematically compare the PNCG variants we have described with the
standard ALS and NCG algorithms. Section 5 concludes.

2 Nonlinear Conjugate Gradient Algorithm

The NCG algorithm for continuous optimization is an extension of the CG algorithm for linear systems.
The CG algorithm minimizes the convex quadratic function

1

o(x) = §XTAX —bTx, (2)
where A € R™ ™ is a SPD matrix. Equivalently, the CG algorithm can be viewed as an iterative method
for solving the linear system of equations Ax = b. The NCG algorithm is adapted from the CG algorithm

and can be applied to any unconstrained optimization problem of the form
i 3
min f(x) (3)
where f : R” — R is a continuously differentiable function bounded from below. The NCG algorithm is
a line search algorithm that generates a sequence of iterates x;, ¢ > 1 from the initial guess xq using the

recurrence relation

Xk+1 = Xk + 0 Pk- (4)

The parameter aj > 0 is the step length and py is the search direction generated by the following rule:

Pi+1 = —8k+1 + Brt1Pk, Po = —80, (5)

where Oiy1 is the update parameter and g = V f(xy) is the gradient of f evaluated at xi. In the CG
algorithm, oy and Sy41 are defined as
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where r, = Vé(xi) = Axp — b is the residual. In the nonlinear case «y, is determined by a line search
algorithm and (41 can assume various different forms. We consider three different forms in this paper,
given by

BFR gg+1gk+1 PR gg—&-l(gk-i-l ) 5 ggﬂ(gkﬂ —8k) (8, 9,10)
LT Ty G gl ek ’ ST (g — &) TP n

Fletcher and Reeves [19] first showed how to extend the conjugate gradient algorithm to the nonlinear case.
By replacing the residual, rg, with the gradient of the nonlinear objective f, they obtained a formula for Sy
of the form S{ ;. The variant 8'F was developed by Polak and Ribiére [20] and the Hestenes-Stiefel [21]
formula is given by Equation (10). For all three versions, it can easily be shown that, if a convex quadratic
function is optimized using the NCG algorithm and the line search is exact then ﬂ,ffl = ﬂ,ffl = Bfﬁ = ﬁkH

where ¢ is given by Equation (7), see [22].

3 Preconditioned Nonlinear Conjugate Gradient Algorithm

In this section we give a concise description of several variants of PNCG that have been proposed in a
few places in the literature but have not been discussed and compared systematically in one place, briefly
discuss some of their relevant properties, and prove a new convergence property for one of the variants.
Before we introduce PNCG we briefly describe the PCG algorithm for linear systems. We do this because
it will be useful for interpreting some of the variants for fj11 in the PNCG algorithm.

The PCG algorithm is derived from the CG algorithm by introducing a linear change of variables.
Consider a change of variables from x to X via a nonsingular matrix C such that X = Cx. The new
objective function is

P(R) = %QT(C*TAC”)?( —(CTp)7T%, (11)

and by applying the CG algorithm to (11) we arrive at the PCG algorithm. Preconditioning the CG
algorithm is commonly used in numerical linear algebra to speed up convergence [23]. In the CG algorithm,
the properties of the matrix A, particularly the eigenvalue distribution of A, determine the convergence
speed of the algorithm. In the PCG algorithm, it is the properties of C™7 AC~! that determine the
convergence speed of the algorithm and if C is chosen to improve the properties of C™7 AC~! over A then
we can significantly speed up the convergence of PCG over CG.

We can also apply a linear change of variables, X = Cx, to the NCG algorithm as is explained in review
paper [17]. The linearly preconditioned NCG algorithm expressed in terms of the original variable x can be
described by the following equations:

Xi+1 = X + @ Pks (12)

Prt1 = —Pgri1 + Bri1Pr, Po = —Pgo, (13)

where P = C~1C~T. The formulas for 3,1 remain the same as before (Equations (8)-(10)), except that
g, and py are replaced by C~Tg;, and Cpy, respectively. Thus, we obtain linearly preconditioned versions
of the fi41 parameters of Equations (8)-(10):

PR __ gg+1P(gk+1 - gk) SHS _ g{+1P(gk+1 gk)

. gg.y_nglH»l B _
gl Pgy ' h (8k+1 — &1) TPk

BER =22 =22 Biet1 =
k+1 — g,{ng k+1

(14, 15,16)

If we use the linearly preconditioned NCG algorithm with these Bk—H formulas to minimize the convex
quadratic function, ¢(x), defined in Equation (2), using an exact line search, where gi = ry, then the
algorithm is the same as the PCG algorithm.

Suppose instead, we wish to introduce a nonlinear transformation of x. In particular, suppose we
consider a nonlinear iterative optimization method such as Gauss-Seidel. Let X be the preliminary iterate
generated by one step of a nonlinear iterative method, i.e., we write

X = P(Xk>7 (17)

which we will use as a nonlinear preconditioner. Now define the direction generated by the nonlinear
preconditioner as
8 = Xk — X = Xp — P(Xk). (18)

In nonlinearly preconditioned NCG, one considers the nonlinearly preconditioned direction, g, instead of
the gradient, gy, in formulating the NCG method [15, 12, 16, 7, 10]. This idea can be motivated by the
linear preconditioning of CG, where g = rj is replaced by the preconditioned gradient Pgy = Pry in



certain parts of the algorithm. This corresponds to replacing the Krylov space for CG, which is formed
by the gradients gr = rg, with the left-preconditioned Krylov space for PCG, which is formed by the
preconditioned gradients Pgy = Pry [23]. In a similar way, we replace the nonlinear gradients g with the
nonlinearly preconditioned directions g,.

Thus, our nonlinearly preconditioned NCG algorithm is given by the following equations:

Xkt+1 = Xi + Pk, (19)

Pi+1 = —8k+1 +Bk¢+1pka Po = —8o- (20)

The formulas for 3, in Equation (20) are modified versions of the Sj41 from Equations (8)-(10) that
incorporate g,. However, there are several different ways to modify the 841 to incorporate gy, leading to
several different variants of 3, . Table 1 summarizes the variants of 3, we consider in this paper for
PNCG.

Fletcher-Reeves Polak-Ribiere Hestenes-Stiefel

GFR _ 818 _ 81 (8ry1 —81) BHS _ 81 (8ry1 —81)
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Table 1: Variants of (3, 41 for the Nonlinearly Preconditioned Nonlinear Conjugate Gradient Algorithm
(PNCG).

The first set of 3, ,, variants we consider are the §k+1 shown in row 1 of Table 1. The Bk.“ formulas are
derived by replacing all occurrences of g with g, in the formulas for Sxy1, Equations (8)-(10). This is a
straightforward generalization of the f41 expressions in Equations (8)-(10), and the systematic numerical
comparisons to be presented in Section 4 indicate that these choices lead to efficient PNCG methods. The
PR variant of this formula is used in [10] in the context of PDE solvers.

However, suppose we want the 3, 11 formulas to reduce to the PCG update formulas in the linear case.
Indeed, suppose we apply the PNCG algorithm to the convex quadratic problem, (2), with an exact line
search, using a symmetric stationary linear iterative method such as symmetric Gauss-Seidel or Jacobi as
a preconditioner. We begin by writing the stationary iterative method in general form as

X = P(xx) = xp — Pry, (21)

where the SPD preconditioning matrix P is often written as M~! and ry = gj. The search direction g,
from Equation (18) simply becomes

g, = Xy — X = Pry = Pg;. (22)

This immediately suggests a generalization of the linearly preconditioned NCG parameters, Bk-s—l, to the
case of nonlinear preconditioning: replacing all occurrences of Pgj, with g, we obtain the expressions, Bk+17
in row 2 of Table 1. Expressions of this type have been used in [15, 12, 16, 7]. It is clear that the PNCG
algorithm with this second set of expressions, reduces to the PCG algorlthm in the linear case, since the
5k+1 reduce to the 5}g+1 in the case of a linear preconditioner, and the 5k+1 in turn reduce to the 41 from
the PCG algorithm when solving an SPD linear system. Thus, for the PNCG method, we have two sets of
B4 formulas and we will use both the 5k+1 and 5k+1 formulas in our numerical tests.

Next we investigate aspects of convergence of the PNCG algorithm. For the NCG algorithm without
preconditioning, global convergence can be proved for the Fletcher-Reeves method applied to a broad class
of objective functions, in the sense that

lim inf ||gx|| = 0, (23)
k— o0

when the line search satisfies the strong Wolfe conditions (see [22] for a general discussion on NCG conver-
gence). Global convergence cannot be proved in general for the Polak-Ribiere or Hestenes-Stiefel variants.
Nevertheless, these methods are also widely used and may perform better than Fletcher-Reeves in prac-
tice. Global convergence can be proved for variants of these methods in which every search direction py is
guaranteed to be a descent direction (g{pk < 0), and in which the iteration is restarted periodically with
a steepest-descent step.



General convergence results for the PNCG algorithm are also difficult to obtain. However, with the use
of the following theorem we will be able to establish global convergence for a restarted version of the 87
variant of the PNCG algorithm under suitable conditions. The proof of the theorem relies on showing that
the PNCG search directions py obtained using 3£'% are descent directions when the nonlinear preconditioner
produces descent directions. To show this we follow the proof technique of Lemma 5.6 in [22].

Theorem 1. Consider the PNCG algorithm with Bkﬂ = B}fﬁ and where «y, satisfies the strong Wolfe
conditions. Let P(x) be a nonlinear preconditioner such that —g(xy) = P(Xr) — Xx is a descent direction
for all k, i.e., —glg, < 0. Suppose the objective function f is bounded below in R™ and f is continuously
differentiable in an open set N containing the level set L := {x : f(x) < f(x0)}, where xq is the starting
point of the iteration. Assume also that the gradient gy, is Lipshitz continuous on N'. Then,

—8i. Pk
z:cos2 Ok llgr|* < oo, cos ) = —EZF (24, 25)
Z T llps]

Proof. We show that py is a descent direction, i.e., g{pk < 0V k. Then condition (24) follows directly
from Theorem 3.2 of Nocedal and Wright [22] which states that condition (24) holds for any iteration of
the form xj41 = X} + aipr provided that the above conditions hold for ay, f and g, and where py is a
descent direction.

Instead of proving that ggpk < 0 directly, we will prove the following:

b g 201
l—c; ~glg, ~ 1-c

k>0, (26)

where 0 < ¢ < % is the constant from the curvature condition of the strong Wolfe conditions:

g 1Pkl < c2lgf Pl (27)
Note, that the following two conditions hold

2c9 — 1 1
27" o, ~2< 5

—-1<
1—02 — C2

< -1 (28, 29)

Condition (28) holds because the function ¢(§) = (2§ — 1)/(1 — £) is monotonically increasing on the
interval [0, 3], t(0) = —1 and ¢(3) = 0 and ¢, € (0, §). Similarily, condition (29) holds because the function
t(€) = —1/(1—¢) is monotonically decreasing on the interval [0, 3], ¢(0) = =1 and ¢(3) = —2 and c; € (0, 3).
Also note that since —g, is a descent direction, gl'g, > 0. So, if (26) holds then gl'p; < 0 and py is a
descent direction.

We use an inductive proof to show that (26) is true. For k = 0, we use the definition of py to get,

8lPo _ —818
88 88

S (30)

Then, from the (28) and (29) we get

1 B8Py _ 2c2—1

— . 31
1—0co gggo 1—co ( )

Now suppose that (26) holds for [ = 1,...,k. We need to show that (26) is true for k + 1. Using the
definition of py41 we have,

T = 2FR
gfﬂpkﬂ B 8k+1 ( ki1 T ﬁk+1pk> . @le gfﬂpk (32)
g£+1gk+1 ng+1gk+1 ggﬂgkﬂ

From the Wolfe condition, Equation (27), and the inductive hypothesis, which implies that gl py < 0, we
can write

281 Pk < 8Ly1Pk < —C28] P (33)
Combining this with Equation (32), we have

T T T
) g Pk gk+1Pk+1 > g Pk
It e < 2 <l oBf (34)
8k+18k+1  Bk+18k+1 8r1+18k+1



So,

T T & T T
9 8k Pk Sht18k+1 8 Pk g Pk Co 1
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T T = T T
> g1, Pk 8r+18k+1 g1, Pk g, Pk c2 2c — 1
LB AP g, (Biefin ) BBy (BB oy o0 Jac]
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We can now easily establish that convergence holds for a restarted version of the PNCG algorithm
with BF -51 if a nonlinear preconditioner is used that produces descent directions: If we use the steepest
decent direction as the search direction on every mth iteration of the algorithm and then restart the PNCG
algorithm with pp,41 = —8,,.1 = —Xm + P(Xy,), then Equation (24) of Theorem 1 is satisfied for the
combined process and (23) holds since cos 6}, = 1 for the steepest descent steps [22]. Thus we are guaranteed
overall global convergence for this method. Note that the proof for global convergence of NCG using 3} f”l

without restarting (Theorem 5.7 in [22]) does not carry over to the case of unrestarted PNCG with B,f .

The convergence result requires that the nonlinearly preconditioned directions —g;, = P(xy) — xi be
descent directions. If one assumes a continuous preconditioning function P(x) such that —g(x) = P(x) — x
is a descent direction for all x in a neighbourhood of an isolated local minimizer x* of a continuously
differentiable objective function f(x), then this implies that the nonlinear preconditioner satisfies the fixed-
point condition x* = P(x*), which is a natural condition for a nonlinear preconditioner. It is often the case
in nonlinear optimization that convergence results only hold under restrictive conditions and are mainly
of theoretical value. In practice, numerical results may show satisfactory convergence behaviour for much
broader classes of problems. Our numerical results will show that this is also the case for PNCG applied to
canonical tensor decomposition: While the ALS preconditioner satisfies the fixed-point property, it is not
guaranteed to produce descent directions. Nevertheless, convergence was generally observed numerically for
all the PNCG variants we considered, with the Spgr variant producing the fastest results in most cases.

4 Numerical Results

To test our PNCG algorithm we randomly generate artificial tensors of different sizes, ranks, collinearity, and
heteroskedastic and homoskedastic noise, which constitute standard test problems for CP decomposition
[4]. We then compare the speed and accuracy of the CP factorization using the PNCG algorithm with
results from using the ALS and NCG algorithms.

4.1 Problem Description

The artificial tensors are generated using the methodology of [4]. All the tensors we consider are 3-way
tensors. Each dimension has the same size but we consider tensors of three different sizes, I = 20, 50 and
100. The factor matrices A, A and A®) are generated randomly so that the collinearity of the factors
in each mode is set to a particular level C' where,

(n)T _(n)
C = (35)
llar™ |I[[as™ ||

forr #s, r,s =1,...,R and n = 1,2,3. As in [5], the values of C we consider are 0.5 and 0.9, where
higher values of C' make the problem more difficult. We consider two different values for the rank, R = 3
and R = 5. For each combination of R and C we generate 20 different sets of factor matrices. Once we have
converted these factors into tensors and added noise our goal is to recover these underlying factors using
the different optimization algorithms. From a given set of factor matrices we are able to generate nine test
tensors by adding different levels of homoskedastic and heteroskedastic noise. Homoskedastic noise refers to
noise with constant variance whereas heteroskedastic noise refers to noise with differing variance. The noise
ratios we consider for homoskedastic and heteroskedastic noise are [y = 1,5,10 and Iy = 0, 1, 5, respectively,
see [4, 5]. For each size, I = 20, 50 and 100 we generate 720 test tensors since we consider 2 different ranks,
2 different collinearity values, 20 sets of factor matrices for each combination of C' and R and 9 different
levels of noise.



4.2 Results

All numerical experiments where performed on a Linux Workstation with a Quad-Core Intel Xeon 3.16GHz
processor and 8GB RAM. We use the NCG algorithm from the Poblano toolbox for MATLAB [24] which uses
the More-Thuente line search algorithm. We use the same line search algorithm for the PNCG algorithm.
The line search parameters are as follows: 10~* for the sufficient decrease condition tolerance, 10~2 for
the curvature condition tolerance, an initial step length of 1 and a maximum of 20 iterations. The ALS
algorithm we use is from the tensor toolbox for MATLAB [25]; however, we use a different normalization
of the factors and we use the gradient norm as a stopping condition instead of the relative function change.
It is often useful to assume that the columns of the factor matrices, A are normalized to length one
with the weights absorbed into a vector A € R* where X ~ Zl::1 )\ragl) 0...0 agN). In our ALS algorithm
the factors are normalized such that X is distributed evenly over all the factors. Also note that, while the
gradient norm is used as a stopping condition for the ALS algorithm, the calculation of the gradient is not
included in the timing results for the ALS algorithm. For all three algorithms, ALS, NCG and PNCG, there
are three stopping conditions; all are set to the same value for each algorithm. They are as follows: 1079
for the gradient norm divided by the number of variables, ||G(Ag)||2/N where N is the number of variables
in X, 10* for the maximum number of iterations and 10° for the maximum number of function evaluations.
Also note, that for a given test tensor, each algorithm starts from the same initial guess with components
chosen randomly from a uniform distribution between 0 and 1.

For the PNCG and NCG algorithms we only consider the 37'F, variants since the results for 3/ and
ﬁ,fﬁ are similar. We also only show results for C' = 0.9. When the collinearity is 0.5, it is known that
the problem is relatively easy [4, 5, 9], so we don’t necessarily expect the preconditioned algorithm to
outperform the standard algorithm, and the additional time needed to perform the preconditioning may
actually slow the algorithm down relative to the original algorithm. In fact, for all combinations of I and R,
when C' = 0.5 the ALS algorithm is the fastest algorithm and for a given formula for 5 (PR, FR, or HS) the
NCG algorithm is faster than both PNCG variants. Thus, the case where C' = 0.9 is more interesting for
investigating the performance of a preconditioned algorithm. The timing results presented are written in
the form a +b where a is the mean time and b is the standard deviation. The numbers in brackets represent
the number of CP decompositions that converge out of a possible 180 since for a given value of I, R and
C there are twenty test tensors each with nine different combinations of homoskedastic and heteroskedastic
noise added to them. All timing calculations are performed for the converged runs only.

The timing results may be dominated by a small number of difficult problems. Including the standard
deviation helps to describe the effects of this bias; however, the timing results don’t account for the problems
where the algorithm fails to converge within the prescribed resource limit. One way to overcome this is
to use the performance profiles suggested by Dolan and Moré in [26]. Suppose that we want to compare
the performance of a set of algorithms or solvers § on a test set P. Suppose there are ng algorithms and
n, problems. For each problem p € P and algorithm s € & let ¢, s be the computing time required to
solve problem p using algorithm s. In order to compare algorithms we use the best performance by any
algorithm as a baseline and define the performance ratio as r, s = t, s/min{t, s : s € 8}. Although we may
be interested in the performance of algorithm s on a given problem p, a more insightful analysis can be
performed if we can obtain an overall assessment of the algorithm’s performance. We can do this by defining
the following: ps(7) = n—lpsize{p € P:r,s <7} For algorithm s € 8, ps(7) is the fraction of problems p
for which the performance ratio r, s is within a factor 7 € R of the best ratio (which equals one). Thus,
ps(7) is the cumulative distribution function for the performance ratio and we refer to it as the performance
profile. By visually examining the performance profiles of each algorithm we can compare the algorithms
in 8. In particular, algorithms with large fractions ps(7) are preferred since algorithms with high values of
ps relative to the other algorithms indicate robust solvers. Also note that the value of ps at 7 = 1 is the
fraction of wins for each solver.

For all three values of I, Table 2 summarizes the timing results and Figure 1 plots the performance
profiles for I = 20 and 100 for the algorithms in § = {ALS, NCG with P, PNCG with 37, PNCG with
B\PR}. From Table 2 we can see that for I = 20 and 50, and both values of R, the PNCG algorithm with
the EP R variant is the fastest. The ALS algorithm is the slowest and both PNCG algorithms are faster than
the NCG algorithm, thus, nonlinear preconditioning significantly speeds up the NCG algorithm for these
values of I. This is also true for I = 100 and R = 3. However, in the case when I = 100, R = 5, Table 2
shows that the ALS algorithm is the fastest on average.

Next, we examine the performance profiles in Figure 1. Since p4(1) indicates what fraction of the 180
trials each algorithm is the fastest, we see from Figure 1(a) that when I = 20 and R = 3, PNCG with ng
is the fastest algorithm in the largest percentage of runs. When 7 = 6 approximately 50% of the 180 NCG
runs are within six times the fastest time and approximately 80% of the ALS runs are within six times
the fastest time. However, as 7 increases to 10 we notice that approximately all of the ALS and PNCG
runs are within ten times the fastest time but only 90% of the NCG runs are within ten times the fastest



time. This suggests that the NCG algorithm without nonlinear preconditioning is not nearly as robust as
the other algorithms. In Figure 1(b), R increases to 5. In this case, we also find that the NCG algorithm
is not as robust as the other algorithms. The same is true when I = 100 and R = 3. This can be seen
from Figure 1(c). In the case where I = 100, R = 5, the timing results indicated that the ALS algorithm
was the fastest algorithm on average. However, Figure 1(d) shows that PNCG with the EP Ryariant is the
fastest in the most runs. Both variants of the PNCG algorithm are more robust than the NCG algorithm,
while ALS is the most robust in this case. In general, we can say that, while PNCG appears significantly
faster than ALS for all difficult (C' = 0.9) problems when the number of factors R and the tensor size I
are relatively small, ALS becomes competitive again with PNCG when R and [ are large. Note, however,
that the line search parameters in the NCG and PNCG algorithms were the same for every problem, and it
may be possible to improve both the NCG and PNCG results by fine-tuning these parameters. The main
conclusion from our numerical tests is that nonlinear preconditioning can dramatically improve the speed
and robustness of NCG: PNCG is significantly faster and more robust than NCG for all difficult (C' = 0.9)
CP problems we tested.

Optimization Mean Time (Seconds)
Method =20 | =50 | I =100

ALS 5.3182 + 1.1356 (180) | 5.1981 + 0.3444 (180) 47.35 + 4.30 (180)
g | [NCG-B7R | 35328 = 27377 (167) | 44516 + 1.9664 (179) | 94.98 + 89.65 (180)

PNCG - GPF | 0.9676 + 0.2020 (180) | 1.6320 + 1.1064 (180) | 28.23+ 30.94 (180)

PNCG - BPR | 0.9979 + 0.3077 (180) | 1.6676 = 0.7855 (180) | 34.87 + 46.97 (180)

ALS 13.8499 + 5.8256 (106) 10.4698 + 3.0988 (159) 57.11 + 5.53 (180)
o | NCG-B7R | 7.0000 & 43507 (88) | 146827 + 10.1787 (142) | 124.54 + 05.94 (178)

PNCG - BPE | 27751 + 1.9319 (109) | 7.4386 + 12.2583 (155) | 103.77 + 257.10 (178)
PNCG - BPR | 4.1549 + 5.0031 (108) | 10.4150 + 25.0737 (156) | 151.79 + 356.29 (180)

Table 2: Speed Comparison

1 = 1

06 06

0.4 g ! 04f <
/ - BPRNCG - BPRNCG

0.2 _11 +&PR PNCG 0.2 +EPR PNCG

1 BPE PNCG BPE PNCG

ALS ALS
G1 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
T T

(a) I =20, R = 3, Collinearity= 0.9 (b) I =20, R =5, Collinearity= 0.9

0.8

0.6

0.4

- BPRNCG - PRNCG

0.2 +§PR PNCG 02r +EPR PNCG
. BPR PNCG /PR PNCG
o ) ) ) ) ALS ) ) ) ) ) ALS
%2 s 4 5 6 7 8 9 10 %2 s 4 5 6 7 8 8 10
T T
(¢) I =100, R = 3, Collinearity= 0.9 (d) I =100, R =5, Collinearity= 0.9

Figure 1: Performance profiles for the algorithms in § with I = 20 and I = 100.



5 Conclusion

We have proposed an algorithm for computing the canonical rank-R tensor decomposition that applies ALS
as a nonlinear preconditioner to the NCG algorithm. We consider the ALS algorithm as a preconditioner
because it is the standard algorithm used to compute the canonical rank-R tensor decomposition but it
is known to converge very slowly for certain problems, for which acceleration by NCG is expected to be
beneficial. We have considered several approaches for incorporating the nonlinear preconditioner into the
NCG algorithm that have been described in the literature [15, 12, 16, 7, 10], corresponding to two different
sets of preconditioned formulas for the standard FR, PR and HS update parameter, 8, namely the B and 3
formulas. If we use the 8 formulas and apply the PNCG algorithm using a SPD preconditioner to a convex
quadratic function using an exact line search, then the PNCG algorithm simplifies to the PCG algorithm.
Also, we proved a new convergence result for one of the PNCG variants under suitable conditions, building
on known convergence results for non-preconditioned NCG when line searches are used that satisfy the
strong Wolfe conditions.

Following the methodology of [4] we create numerous test tensors and perform extensive numerical tests
comparing the PNCG algorithm to the ALS and NCG algorithms. We consider a wide range of tensor sizes,
ranks, factor collinearity and noise levels. Results in [5] showed that ALS is normally faster than NCG.
In this paper, we show that NCG preconditioned with ALS (or, equivalently, ALS accelerated by NCG) is
often significantly faster than ALS by itself, for difficult problems. When the collinearity is 0.9, the PNCG
algorithm is often the fastest algorithm. The performance profiles of each algorithm also show that for the
more difficult problems, PNCG is consistently both more robust and faster than the NCG algorithm. For
our optimization problems, we generally obtain convergent results for all of the six variants of the PNCG
algorithm we considered. It is interesting that for the PDE problems of [10], out of the 3 variants, only
5’3 R was found viable. It appears that the B variants were not investigated in [10]. We did find for our test
tensors that the BP B formula, which does not reduce to PCG in the linear case, converges the fastest for
most cases.

The PNCG algorithm discussed in this paper is formulated under a general framework. While this
approach has met with success previously in certain application areas [15, 12, 16, 7, 10] and may offer
promising avenues for further applications, it appears that the nonlinearly preconditioned NCG approach has
received relatively little attention in the broader community and remains underexplored both theoretically
and experimentally. It will be interesting to investigate the effectiveness of PNCG for other nonlinear
optimization problems. Other nonlinear least-squares optimization problems for which ALS solvers are
available are good initial candidates for further study. However, as with PCG for SPD linear systems [23],
it is fully expected that devising effective preconditioners for more general nonlinear optimization problems
will be highly problem-dependent while at the same time being crucial for gaining substantial performance
benefits.
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