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Abstract. Molecules in nature conform to a geometry that minimizes their potential energy, and
some molecules have multiple potential energy minima. One can study how a molecule transitions
from one stable geometry to another by studying dynamics on its potential energy surface. The
potential energy of a molecule is computed via an expensive optimization process, and thus modeling
reaction pathways as a function of all 3N — 6 coordinates can be cumbersome for large molecules.
Here we describe a cheaper surrogate model for the potential energy surfaces constructed using a
sparse grid interpolation algorithm initially developed by Smolyak [24]. Evaluation of the interpolant
is much less expensive than the evaluation of the actual energy function, so our technique offers
a more computationally efficient way to study dynamics than traditional methods. Furthermore,
molecular vibrations and thermal fluctuations can cause randomness in dynamics, so it is of interest
to follow many reaction paths at once, necessitating a fast and efficient implementation of Smolyak’s
interpolation algorithm. In this paper we describe a new implementation that computes analytical
gradients of Smolyak’s interpolating polynomial and is designed to evaluate a large number of points
simultaneously. We compare performance times of our implementation to MATLAB’s Sparse Grid
Interpolation Toolbox and present dynamical simulations for the molecule 2-butene.
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following

1. Introduction. In 1963 Smolyak studied tensor product problems and intro-
duced a general approach that uses optimal univariate approximations to construct
an almost optimal approximation for the multivariate case [24]. Smolyak’s algorithm
forms the basis for all sparse grid methods [12], which were introduced in 1991 by
Zenger [28]. Zenger proposed a discretization technique that constructs a multi-
dimensional multilevel basis from the tensor product expansion of a one-dimensional
multilevel basis. The grid points of the discretization form what is called a “sparse
grid,” and, compared to full grids, improve the ratio of invested storage and comput-
ing time to approximation accuracy [3]. Since their inception, sparse grids have gained
a significant amount of traction in the mathematical community, especially since the
advent of supercomputers and the need for efficient methods for high dimensional
problems. Applications include: fluid flow [9], quantum mechanics [8], stochastic dif-
ferential equations and optimization [23], economics and finance [14, 4], data mining
[7], and uncertainty quantification [27], to name a few. Bungartz and Griebel present
a comprehensive review of sparse grids in [3], and the interested reader is referred
there for a more thorough introduction.

In this paper we present a new implementation of a sparse grid polynomial inter-
polation algorithm developed by Barthelmann, Novak, and Ritter in [1] that is based
on a reformulation of Smolyak’s algorithm from the work of Judd and coworkers in [10].
The reformulation of Smolyak’s algorithm eliminates redundant calculations of basis
functions by using disjoint set generators for the Smolyak grids and basis functions,
instead of the conventional nested set generators [10]. The implementation described
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in [10] is motivated by the need to evaluate Smolyak’s interpolating polynomial at
a large number of points for solving dynamic economic models with derivative-free
methods. Our implementation is designed to facilitate the integration of dynamics
on interpolant, and extends the work of Judd and coworkers in two ways. First, our
implementation is capable of evaluating the analytical gradient Smolyak’s interpolat-
ing polynomial, and second, the implementation is designed to quickly evaluate the
interpolating polynomial and its gradient at a large number of points simultaneously.
To test the new algorithm we compare performance times of our implementation to
performance times of the robust MATLAB Sparse Grid Interpolation Toolbox [11].

While sparse grids and Smolyak’s algorithm are more commonly used in high
dimensional problems, the implementation presented here is motivated by a compara-
tively low dimensional problem where the interpolating polynomial acts as a surrogate
model for an expensive function. Specifically, the work presented in this paper is mo-
tivated by an application to quantum chemistry, where potential energy surfaces of
molecules are approximated by Smolyak’s algorithm. The potential energy surface of
a molecule describes the energy of an N-atom molecule as a function of its 3N — 6
geometric coordinates. Local minima of these surfaces correspond to stable molecular
geometries so there is great interest in studying their structure to follow reaction paths
from one stable molecular geometry to another. Current algorithms for reaction path
following are computationally burdensome for molecules of moderate size. Molecules
of interest can have hundreds of atoms and degrees of freedom so often model or
dimension reduction must be applied to efficiently compute the reaction path. We
follow an approach from [16] and construct a surrogate model via interpolation on
sparse grids and follow reaction paths using a continuous steepest descent method.
Molecular vibrations and thermal fluctuations cause variations in reaction paths so it
may be necessary to follow dynamics for several hundred or thousand reaction paths
at once. The new implementation of Smolyak’s algorithm presented in this paper is
designed for such a task and allows us to efficiently study reaction path dynamics. As
an example we present simulation results for the photoisomerization of 2-butene.

The rest of this paper is outlined as follows: in §2 we review the sparse interpola-
tion algorithm from [1], and in §3 we discuss our new implementation and compare its
performance to the MATLAB Sparse Grid Interpolation Toolbox [11]. In §4 we detail
how the algorithm is used to construct a surrogate model for reaction path following
and present results for a test molecule before concluding in §5.

2. Sparse Interpolation. In this section we outline the sparse interpolation
method proposed by Barthelmann, Novak, and Ritter [1]. Unlike Zenger’s piecewise
linear basis from [28], the method presented here uses global Lagrange interpolating
polynomials as basis functions. As we will see in §4, the global smoothness of these
basis functions is required by our application.

To understand the multi-dimensional interpolation algorithm, we first consider the
one dimensional interpolation problem where we would like to approximate the value
of a function f : [a,b] — R at some point in the domain. Given a set of m; = 271 +1
nodes {z;} € [—1,1] and the corresponding set of function values {f(z;)}, we can
construct the unique interpolating polynomial of degree m;—1 denoted by the operator

(2.1) Ulf)a) = Y S )



Dynamical Simulations with Sparse Interpolation 3

where £/ (z) are the Lagrange basis polynomials
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We will refer to ¢ as the level of the interpolation. As suggested in [1], we utilize
Chebyshev nodes that are of the form
(2.3) xé:—cosm, 1<j<my
mg

with z¢ = 0 if m; = 1. Note that our choice of m; leads to sets of nodes that are
nested as we increase in level, i.e. if x? is the set of nodes for level i we have x* C yT!.

Expanding this idea to d > 1 dimensions, we will use the standard multi-index
notation i = (i1,...,iq) and [i| = > ;4;. Forz € R? and multi-index i we define the
d-dimensional Lagrange polynomial by a tensor product of one-dimensional Lagrange
polynomials:

d
(2.4) U'[f](z) = QU™ [f](x)
r=1

mig mi,

d
(2.5) =ZZf(x;11,,x;3)H€;:(:vT)

Jji=1 Jja=1

This tensor product has a poor order of convergence, but serves as the foundation for
the more complicated algorithm of Smolyak [19].

In short, Smolyak’s interpolation algorithm constructs an interpolating polyno-
mial from a linear combination of Equation 2.5 on different “levels” of sparse grids.
Given a degree of exactness k, we define ¢ = d+k and the set of allowable multi-indices

(2.6) Q(g,d)={ieNk+1<|i| <q}.

Each multi-index i € Q(q, d) contains the levels of each dimension’s interpolation and
can be thought of as representing a different sparse grid on which we must approxi-
mate the function. Smolyak’s algorithm uses linear combinations of Equation 2.5 on
different sparse grids to approximate the multivariate function f, and is given by the
operator

(2.7) Algdy= Y (- (4T
i€Q(q,d) (q ||>

To evaluate the Smolyak interpolating polynomial, one only needs to know func-
tion values at the sparse grid nodes

(2.8) H(gd)= |J " x..oxx),
k+1<i|<q
where x* = {«{,...,x}, } is the set of points used by the interpolant U”. Since the sets

of univariate nodes are nested we also have H(q,d) C H(q+1,d). Figure 1 shows the
nodes for H(7,2) and H(8,3). The total number of unique nodes used by Smolyak’s
algorithm grows polynomially in d, whereas the number of nodes for conventional
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FiG. 1. Ezamples of sparse grids for H(7,2) (left) and H(8,3) (right) on the domain [—1,1]%.
Notice that the nodes are well-dispersed throughout the domain.

tensor product grids grows exponentially in d [20]. In this sense, Smolyak’s algorithm
helps alleviate the curse of dimensionality.

General error and cost bounds for Smolyak’s algorithm were derived by Smolyak
in [24] and more explicitly by Wasilkowski and Wozniakowski in [25]. Barthelmann
et al. also derive error bounds for Smolyak’s algorithm in [1] for a certain class of
functions and are the ones presented here. Consider the space

Fi={f:[-1,1]" - R | D*f continuous if a; < k V i}
with norm
1]l = max {|| D f|l | @ € NG, a; <k}
for d > 1. Let I, denote the embedding F§ C(—1,1]%) and

151 = sup {IS(F)ll |f € Fa IIFIlf < 1}

for S : F¥ — C(]—1,1]%). Letting n be the number of nodes required by A(q,d) and
¢4,k denote constants that depend only on d and k, then for the space F j,

(2.9) 11 — A(q, d)|| < capn*(logn)FH2E=1+1,

Furthermore, A(q,d) will exactly reproduce all polynomials of the form

> (Pmil ® ...®Pmid)

lil=q

where P, is the space of one-dimensional polynomials of degree less than or equal to
m [1].

3. Implementation in MATLAB. Previous research has to our knowledge
focused on efficient algorithms for evaluating Equation 2.7 simultaneously at one or
very few points [12, 18, 17]. Our goal is to evaluate the interpolant at several thou-
sand points at once, and an algorithm that is efficient for, say, 5 points may not be
efficient for 10° points depending on the algorithm’s scalability. As noted by Judd
and coworkers in [10], Smolyak’s algorithm as written in Equation 2.7 is inefficient be-
cause the linear combination causes several basis functions to be evaluated more than
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once. Since we are interested in evaluating Equation 2.7 at several thousand points
simultaneously we wish to avoid these redundant calculations. For this reason we
employ the implementation presented [10] where Smolyak’s algorithm is reformulated
with disjoint sets of nodes to generate the unidimensional basis functions instead of
the nested sets used in the conventional algorithm.

Further computational savings can be found in the construction of the univariate
Lagrange basis polynomials (Equation 2.2). Since the denominator does not depend
on x, we can precompute the denominator for each basis function ¢;, a task which
only needs to be completed once. On the other hand, to efficiently evaluate the
numerator of Equation 2.2 we take advantage of the fact that the sets of nodes are
nested. Consider the one-dimensional interpolation problem and let n be the current
level for which we want to evaluate the basis polynomials and let x,, be the set of m,,
nodes for the n'" level. Instead of explicitly computing each level’s basis polynomials,
we can use the basis polynomials from the (n — 1) level. By first defining

Mn

(3.1) U(x) = [J(@ —22),

i=1
the formula for the j** Lagrange basis polynomial of the n*”* level is

xr — Z;

n—1
A (@) 11— ;€ Xn-1,
()~ _ ’
(3.2) 0 (z) = - X
¢ — S
@ | I @=o| |Tlo—5| @ #xnm
Zeven;é] 17£]

where i€V*" denotes the indices of nodes that are in x,,/xn—1. Note that each (™) can
also be computed recursively as

(3.3) () (z) = (DT (@ = 20).

jeven

We use a similar recursive scheme to compute the analytic derivatives of the one-
dimensional Lagrange polynomials. Noting that the derivative of the Lagrange poly-
nomial can be written as

(3.4) L) =@y

Y
— r —x;
i#]

and d%ﬁy” (z) can be expressed in a way similar to Equation 3.2. By computing the
Lagrange basis polynomials and their derivatives in this way we are able to reduce
the overall computational cost of Smolyak’s algorithm.

3.1. Numerical Results. Klimke and Wohlmuth developed the Sparse Grid
Interpolation Toolbox for MATLAB (see [11, 12] for documentation and algorithm
details), and we use this Toolbox as a benchmark for our own algorithm. Consider
the task of evaluating Smolyak’s interpolation of the function f(z), which we denote
by A(q,d)[f](z), at the point z € R?. Our implementation and the Toolbox’s both
work in two steps. In the first step, everything that can be calculated without knowl-
edge of x is computed. This step takes as input the function f(z), the bounds of
interpolation, and the degree of polynomial exactness k, and computes the sparse
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grid points, the multi-index set Q(q, d), the coefficients for Smolyak’s algorithm, and
any bookkeeping data structures. The second step evaluates Smolyak’s interpolant at
x and involves computing the univariate Lagrange basis polynomials and the tensor
products (Equation 2.5) dictated by Smolyak’s algorithm.

As detailed in §4, our application requires that we integrate dynamics on the
interpolating polynomial continuously A(q,d)[f](z), meaning we must evaluate the
same interpolating polynomial and its derivative several thousand times during sim-
ulations. With this in mind, we compare performance times of MATLAB’s Toolbox
and our own implementation only for the second step of the implementation process.
The first step is a one-time computational cost and is negligible compared to the cost
of simulating dynamics on the interpolant. We note, however, that for larger values
of d and k the cost of computing the Smolyak coefficients for our implementation can
be quite cumbersome. We calculate the coefficients as suggested in [10], where Judd
and coworkers compute them by solving a linear system of equations. As one would
expect, the associated matrix of this system becomes larger and more ill-conditioned
as d and k increase. Computing the coefficients in this way is acceptable for our
application, though, since d and k remain relatively small (d <5 and k < 6).

In all Figures shown the method presented in this paper is referred to as “New
Method” and the MATLAB Toolbox is referred to as “Toolbox.” Table 1A shows
performance scalings in dimension d for evaluating Smolyak’s interpolant and its gra-
dient at one point with & = 4, and Table 1B shows performance scalings in degree
of exactness k for evaluating Smolyak’s interpolant and its gradient at one point in 4
dimensions.. It is clear that the New Method outperforms the MATLAB Toolbox for
all dimensions d < 8 and degrees of exactness k£ < 7. Table 1C shows performance
scalings in the simultaneous evaluation of N points, where N increases in powers of
10 from from 1 to 10°. Each computation was performed with d = 4 and k = 5 and
also evaluated gradients. Here the New Method greatly outperforms the Toolbox.
While the Toolbox is useful for the simultaneous evaluation of a few points, it was not
designed to approximate a function at a large number of points. The code does not
vectorize interpolant evaluation of points, and thus the simultaneous computation of
several thousand points is quite expensive.

TABLE 1
Performance times (in seconds) for the New Method and MATLAB Sparse Interpolation Toolboz.

A: Dimension

d=2|d=3|d=4|d=5|d=6|d=7 | d=8
New Method | 8.4E-3 | 1.6E-2 | 4.1E-2 | 1.0B-1 | 2.4E-1 | 4.86-1 | 9.2E-1
Toolbox 1.86-2 | 4.7E-2 | 9.36-2 | 1.86-1 | 3.5E-1 | 6.0E-1 | 9.6E-1
B: Degree of Exactness
k= k= k=3 | k=4]| k=5 k=6 k=
New Method | 4.28-3 | 1.0E-2 | 2.5E-2 | 5.88-2 | 7.5E-2 | 1.2E-1 1.9e-1
Toolbox 1.26-2 | 3.2E-2 | 8.5E-2 | 2.2E-1 | 5.98-1 | 1.2E40 | 2.6E+0
C: Number of Points
N=1[N=10| N=10° | N=10° | N=10* | N =10°
New Method | 2.86-1 | 1.1E-1 7.8E-2 1.26-1 8.9E-1 9.6E+1
Toolbox 4.2B-1 | 3.5E-1 9.8E-1 7.8E+0 | 7.5E+1 7.4E+2
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4. Application to Quantum Chemistry. In this section we describe our sur-
rogate model for reaction path following. The model can be broken into two steps,
the first of which is to approximate the potential energy surface (PES). The second
step is to simulate dynamics on the approximated PES.

4.1. Potential Energy Surface Approximation. An N-atom molecule is a
function of 3N — 6 geometric coordinates (bond lengths, bond angles, and dihedral
angles), and for many reactions only a handful of these coordinates change significantly
and the rest remain approximately constant [2]. As such, the first step towards
reducing the dimensionality of our problem is to isolate these few, say d, molecular
coordinates and study the reaction as a function of only these coordinates. We then
construct the d-dimensional PES’s on which the reactions take place with Smolyak’s
sparse interpolation algorithm [24, 1, 10].

For each point in the sparse grid we must compute the energy to interpolate the
true PES. The energy at quantum state n, F,,(p), is computed as a function geometric
coordinates p € R3¥ =6, The first step of our method is to partition p = (z,¢) into a
vector of design variables € R? and a vector of remainder variables ¢ € R3V—6-4,
where chemical knowledge or intuition of the system guides the appropriate choice
of design variables x. After specifying appropriate bounds and choosing a degree of
exactness k, for each point x; € H(q,d) we compute the ground state energy via the
constrained optimization problem

(4.1) Eo(z;) = mgin Eo(;,€)

where the minimization is only over the remainder variables £. FEy(p) approximates
the energy of the associated time-independent Schrédinger equation using density
functional theory (DFT), which is in itself an expensive iterative process. Excited
state energies E, (2;) (n > 1) are computed at the respective optimized ground state
geometries using the time-dependent DFT method [22]. With the sets of sparse grid
points z; and energy values E,(z;) (now with n > 0) in hand, we use Smolyak’s
interpolation algorithm [24] to approximate the PES’s. We will denote the surrogate
model for the energy by E3 () ~ E,(z) for any energy state n > 0.

4.2. Reaction Path Dynamics. The goal of our simulations is to successfully
predict the natural relaxation of a molecule from excited states and track the entire
reaction path. Each simulation begins at an equilibrium geometry on the ground
state PES, from which the molecule is excited to the first specified energy state.
The reaction path of a molecule moves in the direction of the negative gradient on
PES’s [15]. Large steps across the PES’s may pass over local minima or be physically
unnatural, so we integrate dynamics continuously via continuous steepest descent
[13, 5]. This method integrates the dynamics

(4.2) i =—VE: ()

until |[VES (z)|| is sufficiently small. The solution z to Equation 4.2 is the reaction
path and is approximated using a Runge-Kutta 4-5 method with Dormand-Prince
coefficients and a variable time step [21]. The time step is arbitrary and in no way
reflects the time scale of the physical reaction.

Once a local minimizer x; ;. of the excited state PES has been found, we simulate
the relaxation of the molecule. Upon each relaxation to a lower energy level, thermal
fluctuations and molecular vibrations are accounted for by reinitializing dynamics on
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the succeeding energy state at z ., + v where v is a random variable. The domain
v depends on the type of molecular coordinate: if the i*" design variable is a bond
length, 7v; € [—.05, .05] and if the i** design variable is a bond or dihedral angle,
vi € [—30, 30]. These intervals were chosen arbitrarily to approximate the effects of
molecular vibrations and thermal fluctuations.

4.3. 2-Butene. A good test molecule for our simulations is 2-butene because it
has a known photoisomerization transition path [26]. The two stable geometries for
2-butene are cis-2-butene and trans-2-butene, both of which are shown in Figure 2.
The simulation consists of two design variables: the main isomerization coordinate

H CHg3 HsC CHs H X1 CHs
— hv _ NAR
X2 \‘
HsC H H H  HC H
(A) (B)

F1c. 2. A: Photoisomerization of trans-2-butene (left) and cis-2-butene. B: Degrees of freedom
for simulations.

(x1) is a torsion over the central carbon double bond [26], and the second coordinate
(x2) is the torsion of one of the other carbon bonds. Both of these dihedral angles are
shown in Figure 2. The two stable geometries correspond to x1 = 0 and x2 = 180 for
cis-2-butene and trans-2-butene, respectively. For each coordinate all associated dihe-
dral angles are held constant during the constrained optimization energy calculations
(Equation 4.1). The units for reported energies, angles, and bond lengths are electron
volts, degrees, and Angstroms, respectively. All quantum chemistry calculations are
performed with the GAUSSIAN 09 software package [6].

The bounds for the two-dimensional PES’s are [—10,190] for x; and [—10, 130]
for x9, and the degree of polynomial exactness for Smolyak’s algorithm is £ = 5. Each
optimization is calculated at with the B3LYP DFT method and the CEP-31G* basis
set. The approximated PES’s for both the ground and first singlet excited state are
shown in Figure 3A. One can visually observe that the global minimum of the first
excited state lies directly above the global maximum of the ground state, so it is clear
that randomness caused by molecular vibrations and thermal fluctuations could play
an important role in the reaction.

The reaction path is initialized on the ground state at Z = (0.0, 7.1), corre-
sponding to a cis-2-butene geometry of our surrogate PES. After excitation to the
first excited singlet state, continuous steepest descent converges to a minimizer of
! = (90, 68) on the first excited state PES. Upon relaxation, the effects of thermal
fluctuations and molecular vibrations either send the molecule back to its original cis
structure or towards its trans counterpart. Twenty different reaction paths are shown
on the PES’s in Figure 3B. The simulations find three stable geometries for both cis
and trans corresponding to three different values of xo. These simulations not only
demonstrate the role that x5 plays in the photoisomerization reaction, but also reveal
a large number of 2-butene local minima. Simulations have also been performed with
three degrees of freedom and will be reported in separate paper.
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Energy

(B)

Fic. 3. A: Ground and first excited state PES’s generated with Smolyak’s interpolation algo-
rithm with k = 5. B: 20 simulation paths with effects of molecular vibrations and thermal fluctuations
upon relaxation to ground state.

5. Conclusion. In this paper we have reviewed interpolation on Chebyshev
sparse grids using Smolyak’s algorithm [24, 1] and described an efficient implemen-
tation based on the method from [10]. Numerical test comparing our method to
MATLAB’s Sparse Interpolation Toolbox [11] show that our method outperforms the
Sparse Toolbox in all cases considered. The greatest computational savings come
when simultaneously evaluating several thousand points. We have also described a
surrogate model that uses Smolyak’s algorithm to interpolate molecular PES’s and
integrate dynamics to simulate reaction paths. The surrogate model allows one to
continuously follow reaction paths, a task that is traditionally too computationally
burdensome for traditional quantum chemistry methods. Finally, we have presented
simulation results for the photoisomerization of 2-butene. The potential energy surro-
gate model presented in this paper can be used to study isomerization reactions and
other quantum phenomena.
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