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Abstract

We propose the use of an indefinite (constraint) preconditioner for the iterative solution of the linear system
arising from the finite element discretization of coupled Stokes-Darcy flow. We provide spectral bounds for
the preconditioned system which are independent of the underlying mesh size. Numerical experiments show
the effectiveness of our approach.

1 Introduction

The coupled Stokes-Darcy model is an important mathematical description of two different flows in a specified
domain. In one subregion of the domain, a freely flowing fluid is described by the Stokes equations and in
the other region, the flow is governed by Darcy’s law. The equations are coupled together by conditions on
the interface. Physically, the model can represent how fluids percolate through a porous medium but can also
represent certain filtration processes, such as the filtration of blood through arterial vessel walls.

We solve this system of partial differential equations numerically using the finite element method. The
Stokes domain is discretized using continuous finite element spaces that satisfy an inf-sup condition. In the
Darcy domain, we consider both continuous functions (standard finite elements) and discontinuous polynomials
(discontinuous Galerkin methods). In both cases, the discretization leads to a system of equations that is sparse,
non-symmetric (and non-symmetrizable in the DG case) and of saddle point form.

The solution of this resulting linear system is our focus, in particular the choice of preconditioner. We propose
solving the system of equations using preconditioned GMRES with an indefinite or constraint preconditioner.
This preconditioner mimics the structure of the original system matrix. We prove that the convergence of
GMRES using this preconditioner is bounded independently of the mesh discretization. Our numerical results
show that the indefinite preconditioner outperforms other standard block diagonal and block lower triangular
preconditioners both with respect to iteration count and CPU times.

The paper is structured as follows, in section 2 we introduce the governing equations of the coupled Stokes-
Darcy model along with the corresponding weak form to derive the linear system of interest to be solved.
Section 3 introduces the preconditioners to be considered in addition to proving that the use of an indefinite
preconditioner leads to residual convergence rates that are independent of the discretization parameter. Section
4 contains the numerical experiments demonstrating the effectiveness of our approach. Section 5 contains the
concluding remarks.
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2 The coupled Stokes-Darcy Model

We consider fluid flowing in a domain Ω = Ω1 ∪ Ω2; see Figure 1. For simplicity, in this paper we consider
the case where Ω is a rectangle, but most of what we say equally applies to other geometries.The flow in Ω1 is
modeled by the Stokes equations

−∇ · (2νD(u1)− p1I) = f1, in Ω1, (2.1a)

∇ · u1 = 0, in Ω1, (2.1b)

u1 = 0, on Γ1 := ∂Ω1 \ Γ12. (2.1c)

The velocity and pressure in Ω1 are denoted by u1, p1, respectively. The coefficient ν > 0 is the kinematic
viscosity, the function f1 is an external force acting on the fluid, I is the identity matrix and D(u1) = 1

2 (∇u1 +
∇uT

1 ) is the deformation matrix. Lastly, Γ1 is the boundary of the domain Ω1 excluding the interface Γ12.

Γ2D

Γ2N Γ2N

Γ1

Ω2

Ω1

Γ12

Figure 1: The domain Ω = Ω1∪Ω2. The Stokes flow region is Ω1. The Darcy region is Ω2. The stokes boundary
(excluding the interface), Γ1, is colored blue. The interface Γ12 is colored red. The Darcy boundary is composed
of Dirichlet (Γ2D) and Neumann (Γ2N ) parts.

The flow in Ω2 is modeled by Darcy’s Law

−∇ ·K∇p2 = f2, in Ω2, (2.2a)

−K∇p2 = u2, in Ω2, (2.2b)

p2 = gD, on Γ2D, (2.2c)

K∇p2 · n2 = gN , on Γ2N . (2.2d)

The velocity and pressure in Ω2 are denoted u2, p2, respectively and the function f2 is an external force acting on
the fluid. The functions gD and gN are prescribed on the portions of the boundary corresponding to the Dirichlet
(Γ2D) and Neumann (Γ2N ) conditions respectively, so that Γ2 := ∂Ω2\Γ12 = Γ2D∪Γ2N . The symmetric positive
definite matrix K represents the hydraulic conductivity of the fluid and the vector n2 denotes the outward unit
normal vector to Γ2N . For isotropic flow we will have that the hydraulic conductivity matrix is a scaled identity
matrix with scaling factor κ, i.e., K = κI.
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Let n12, τ12, denote the unit normal vector directed from Ω1 to Ω2 and unit tangential vector to the interface,
respectively. The model is completed by specifying the following coupling (interface) conditions between the
two domains

u1 · n12 = −K∇p2 · n12, (2.3a)

(−2νD(u1)n12 + p1n12) · n12 = p2, (2.3b)

u1 · τ12 = −2νG(D(u1)n12) · τ12, (2.3c)

where (2.3a) ensures mass conservation across the interface, (2.3b) ensures the balance of of normal forces across
the interface, and (2.3c) is the Beavers-Joseph-Saffman (BJS) law, with the BJS constant G that is determined
experimentally [1, 9].

To introduce the weak form of these equations, let

X1 = {v1 ∈ (H1(Ω1))2 : v1 = 0 on Γ1}, Q1 = L2(Ω1)

be the Stokes velocity and pressure spaces respectively and let

Q2 = {q2 ∈ H1(Ω2) : q2 = 0 on Γ2D}.

The weak formulation of the coupled Stokes/Darcy problem (2.1), (2.2), (2.3), is to find u1 ∈ X1, p1 ∈ Q1,
p2 ∈ Q2 such that

a(u1, p2; v1, q2) + b∗(p1,v1) = f(v1, q2) ∀v1 ∈ X1, ∀q2 ∈ Q2, (2.4a)

b(u1, q1) = 0 ∀q1 ∈ Q1, (2.4b)

where

a(u1, p2; v1, q2) = aΩ1
(u1,v1) + aΩ2

(p2, q2) + aΓ12
(u1, p2; v1, q2),

b(u1, q1) = −
∫

Ω1

(∇ · u1)q1 dx,

and

aΩ1
(u1,v1) = 2ν

∫
Ω1

D(u1) : D(v1) +
1

G

∫
Γ12

(u1 · τ12)(v1 · τ12),

aΩ2(p2, q2) =

∫
Ω2

K∇p2 · ∇q2,

aΓ12(u1, p2; v1, q2) =

∫
Γ12

(p2v1 − q2u1) · n12.

Lastly,

f(v1, q2) =

∫
Ω1

f1 · v1 +

∫
Ω2

f2q2 +

∫
Γ2N

gNq2. (2.6)

The next step is to select appropriate finite element spaces, that is, choose Xh
1 ⊂ X1, Qh

1 ⊂ Q1 satisfying
a discrete inf-sup condition for the Stokes velocity and pressure in addition to selecting Qh

2 ⊂ Q2 for the finite
Darcy pressure space.
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The discrete version of (2.4) is the following system of equations:

Ax =

 AΩ2
AT

Γ12
0

−AΓ12 AΩ1 BT

0 B 0

pΩ2

uΩ1

pΩ1

 =

fhfh
gh

 = b. (2.7)

Setting

A =

[
AΩ2 AT

Γ12

−AΓ12 AΩ1

]
, C =

[
0 B

]
it is easy to see that the system of equations (2.7) is of saddle point form (see e.g. [2])

A =

[
A CT

C 0

]
.

We remark that if the continuous Galerkin method is used to solve for the flow in both the Stokes and Darcy
regions, then the matrices AΩ1

, AΩ2
will both be symmetric and positive definite. However, due to the interface

block AΓ12 , the (1, 1) block, A, of the saddle point matrix A is non-symmetric. However one can scale the
second row of the block matrix A in (2.7) to obtain a symmetric but now indefinite matrix A. Additionally, if
one models the flow in the Darcy region with the discontinuous Galerkin method, as proposed in [4], the matrix
AΩ2

is no longer symmetric.

3 Preconditioning

To determine the discrete Stokes velocity, Stokes pressure and Darcy pressure we solve the large, sparse and non-
symmetric saddle point matrix A with preconditioned GMRES [8]. We consider the following preconditioners

P+ =

AΩ2
0 0

0 AΩ1
0

0 0 I

 , PT1
(ρ) =

AΩ2
0 0

0 AΩ1
0

0 B −ρI

 ,
PT2(ρ) =

 AΩ2
0 0

−AΓ12
AΩ1

0
0 B −ρI

 , PC(ρ) =

 AΩ2
AT

Γ12
0

−AΓ12
AΩ1

0
0 B −ρI

 .
These preconditioners were examined in [3] and are standard block diagonal and block triangular precondi-

tioners. Moreover, utilizing the theory established in [6], Cai, Mu and Xu [3] showed that the preconditioned
operator P−1A, with P of the above form has a bounded spectrum that is independent of the mesh width in
the finite element discretization.

However, indefinite (constraint) preconditioners, see e.g. [5, 10, 7], were not considered by the authors of
[3]. We consider the following two indefinite preconditioners

PconD
=

AΩ2 0 0
0 AΩ1

BT

0 B 0

 , PconT
=

 AΩ2 0 0
−AΓ12

AΩ1
BT

0 B 0


The theory presented in [6] does not include indefinite preconditioners and therefore we extend this theory
by proving that the spectrum of the preconditioned operator P−1A, where P is of the form (3), is bounded
independently of the finite element discretization parameter.
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Recall the following saddle point system

A =

[
A CT

C 0

]
(3.1)

where A ∈ Rn1×n1 , C ∈ Rn2×n1 . It is assumed that the matrix A satisfies the following stability conditions

max
w∈Rn\{0}

max
v∈Rn\{0}

wTAv
‖w‖H‖v‖H

≤ c1, (3.2a)

min
w∈Rn\{0}

max
v∈Rn\{0}

wTAv
‖w‖H‖v‖H

≥ c2. (3.2b)

With the aid of the following lemmas (proven in [6]) we show that the constraint preconditioner

Pcon =

[
P1 CT

C 0

]
(3.3)

is H-norm equivalent to the operator A where

H =

[
H1 0
0 H2

]
(3.4)

and H1, H2 are symmetric positive definite matrices.

Definition 3.1. Two nonsingular matrices M,N ∈ Rn×n are H-norm equivalent if there exists α, β independent
of n such that

α ≤ ‖Mx‖H
‖Nx‖H

≤ β (3.5)

and we write M ∼H N .

As a consequence, if M ∼H N then

‖MN−1‖H ≤ β (3.6a)

‖NM−1‖H ≤ α−1 (3.6b)

It can be shown that H-norm equivalence is an equivalence relation.

Definition 3.2. Let M ∈ Rm×n and H1 ∈ Rn×n, H2 ∈ Rm×m two symmetric positive definite matrices, then

‖M‖H1,H2 = max
v∈Rn\{0}

‖Mv‖H2

‖v‖H1

.

Moreover, we have the following useful set of equalities

‖H−1/2
2 MH

−1/2
1 ‖2 = ‖M‖

H1,H
−1
2

= ‖MH−1
1 ‖

H−1
1 ,H−1

2
= ‖H−1

2 M‖H1,H2 . (3.7)

Here ‖ · ‖2 denotes the matrix norm induced by the 2 inner product. We state the following lemmas proven by
Loghin and Wathen [6].
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Lemma 3.1. Let (3.2) hold, then H ∼H−1 A and H−1 ∼H A−1 and in particular

‖H−1A‖H = ‖AH−1‖H−1 ≤ c1, (3.8a)

‖A−1H‖H = ‖HA−1‖H−1 ≤ c−1
2 . (3.8b)

Lemma 3.2. Let (3.2) hold and assume P ∼H−1 H, then

P ∼H−1 A and P−1 ∼H A−1.

Lemma 3.3. Let (3.2) hold then ‖A‖H1,H
−1
1
≤ c1, ‖C‖H1,H

−1
2
≤ c1.

Lemma 3.4. Let (3.2) hold. If there exists c3 independent of n such that

min
w∈Rn\{0}

max
v∈Rn\{0}

wTAv

‖w‖H1
‖v‖H1

≥ c3,

then S = BA−1BT , the negative Schur complement, satisfies S ∼H−1
2

H2 and H−1
2 ∼H2

S−1. Hence there exists

c4 such that ‖S−1‖H−1
2 ,H2

≤ c4

Lemma 3.5.
‖M‖H1,H

−1
2

= ‖MT ‖H2,H
−1
1

We now state the theorem on the spectral equivalence of constraint preconditioners.

Theorem 3.1. Let Pcon be defined as in (3.3). Furthermore let (3.2) and Lemma 3.4 hold. If P1 ∼H−1
1

H1,

then Pcon ∼H−1 A and P−1
con ∼H A−1.

Proof. We prove that Pcon ∼H−1 A since P−1
con ∼H A−1 follows similarly. By Lemma 3.2 we need only show

that Pcon ∼H−1 H because then by transitivity the result is proven. To prove the above equivalence we bound
both ‖H−1/2PconH

−1/2‖2 and ‖H1/2P−1
conH

1/2‖2. By the assumption that P1 ∼H−1
1

H1 we know there exists

β1 such that ‖P1H
−1
1 ‖H−1

1
≤ β1. Now consider

H−1/2PconH
−1/2 =

[
H
−1/2
1 P1H

−1/2
1 H

−1/2
1 CTH

−1/2
2

H
−1/2
2 CH

−1/2
1 0

]
, (3.9)

We can bound the two norm of the above matrix as follows

‖H−1/2PconH
−1/2‖2 ≤ ‖H−1/2

1 P1H
−1/2
1 ‖2 + ‖H−1/2

2 CH
−1/2
1 ‖2 + ‖H−1/2

1 CTH
−1/2
2 ‖2,

= ‖H−1
1 P1‖H1 + ‖C‖H1,H

−1
2

+ ‖CT ‖H2,H
−1
1
,

≤ β1 + c1 + c1.

The first inequality is a result of expressing the block matrix as a sum of outer products and using that the norm
of the entire sum is bounded above by the norm of each summand. The equality in the second line is obtained
by using (3.7). Lastly, the final bound comes from (3.2) and the fact that ‖H−1

1 P1‖H1
= ‖P1H

−1
1 ‖H−1

1
≤ β1.
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The inverse of Pcon is

P−1
con =

[
P−1

1 + P−1
1 CTS−1CP−1

1 −P−1
1 CTS−1

−S−1CP−1
1 S−1

]
,

and therefore

H1/2P−1
conH

1/2 =

[
H

1/2
1 (P−1

1 + P−1
1 CTS−1CP−1

1 )H
1/2
1 −H1/2

1 (P−1
1 CTS−1)H

1/2
2

−H1/2
2 (S−1CP−1

1 )H
1/2
1 H

1/2
2 S−1H

1/2
2

]
.

Hence ‖H1/2P−1
conH

1/2‖2 can be bounded by bounding the following five terms

(I) = ‖H1/2
1 P−1

1 H
1/2
1 ‖2

(II) = ‖H1/2
1 P−1

1 CTS−1CP−1
1 H

1/2
1 ‖2

(III) = ‖H1/2
1 P−1

1 CTS−1H
1/2
2 ‖2

(IV ) = ‖H1/2
2 S−1CP−1

1 H
1/2
1 ‖2

(V ) = ‖H1/2
2 S−1H

1/2
2 ‖2

Note that
(I) = ‖P−1

1 H1‖H1
≤ α−1

1

and
(V ) = ‖S−1‖H−1

2 ,H2
≤ c4.

Further note that

(II) = ‖H1/2
1 P−1

1 H
1/2
1 H

−1/2
1 CTH

−1/2
2 H

1/2
2 S−1H

1/2
2 H

−1/2
2 CH

−1/2
1 H

1/2
1 P−1

1 H
1/2
1 ‖2

≤ ‖H1/2
1 P−1

1 H
1/2
1 ‖2‖H−1/2

1 CTH
−1/2
2 ‖2‖H1/2

2 S−1H
1/2
2 ‖2‖H−1/2

2 CH
−1/2
1 ‖2‖H1/2

1 P−1
1 H

1/2
1 ‖2

≤ α−1
1 c1c4c1α

−1
1

The terms (III) and (IV ) are then bounded in a similar manner.

4 Numerical Results

To illustrate the mesh independent convergence of the constraint preconditioner we consider a numerical exper-
iment where boundary conditions are chosen so that the exact solution is

u1(x, y) =
[
− cos

(π
2
y
)

sin
(π

2
x
)

+ 1.0, sin
(π

2
y
)

cos
(π

2
x
)
− 1.0 + x

]T
,

p1(x, y) = 1− x,

p2(x, y) =
2

π
cos
(π

2
x
)

cos
(π

2
y
)
− y(x− 1).

(4.1)

Note that K = I and ν = 1. We refer to problems where the Darcy flow is approximated by continuous basis
functions as CGCG and when the Darcy flow is approximated using discontinuous galerkin methods as CGDG.
We also take ρ = 0.6 as is done in [3] and the stopping criterion for GMRES is when ‖rk‖/‖r0‖ < 10−10.
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Figure 2 contains plots of the residual convergence curves for increasing degrees of freedom (dof). Note
that as the degrees of freedom increase, corresponding to a decrease in the underlying mesh size, the number
of iterations does not increase for the constraint preconditioner. Table 1 contains iteration counts and CPU
times for both the CGCG and CGDG cases. In both cases the constraint preconditioner outperforms the other
preconditioners both with respect to iteration counts and CPU times.

Table 1: Number of iterations for convergence and CPU times

(a) CGCG

DOF P+ PT1(0.6) PT2(0.6) PC(0.6) PconD
PconT

8225 73 (0.8601) 74 (0.9022) 49 (0.5586) 32 (0.3477) 7 (0.1271) 4 (0.1433)
32833 64 (3.7133) 66 (4.0472) 42 (2.5609) 26 (1.5992) 7 (0.7375) 4 (1.0033)

131201 56 (19.067) 58 (21.262) 36 (12.853) 20 (7.5179) 7 (4.3489) 4 (6.3644)
524545 41 (70.663) 44 (79.163) 27 (48.709) 14 (26.406) 7 (22.886) 4 (40.956)

(b) CGDG

DOF P+ PT1
(0.6) PT2

(0.6) PC(0.6) PconD
PconT

4865 70 (0.7609) 61 (0.6183) 46 (0.4539) 34 (0.3314) 7 (0.0778) 4 (0.0494)
19457 72 (4.0904) 75 (4.2966) 50 (2.8791) 31 (1.8031) 7 (0.4663) 4 (0.2960)
77825 64 (19.579) 66 (20.410) 42 (12.255) 24 (7.1763) 7 (2.6145) 4 (1.5788)

311297 53 (87.258) 58 (96.030) 36 (57.584) 20 (33.157) 7 (13.999) 4 (7.9819)

5 Conclusions

We have examined the performance of several different preconditioners, standard block diagonal and block
triangular as well as constraint preconditioners for the solution of the coupled Stokes-Darcy system. We have
proved bounds on the spectrum of the preconditioned operator for the constraint preconditioner showing that
it is independent of the mesh discretization parameter. The experiments presented further illustrate this mesh
independent convergence. Moreover our experiments also show that in terms of CPU time, the constraint
preconditioner is the better choice.
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Figure 2: Residual convergence curves of preconditioned GMRES for increasing degrees of freedom for Problem
4.1

(a) CGCG, dof = 32833
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(b) CGDG, dof = 19457
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(c) CGCG, dof = 131201
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(d) CGDG, dof = 77825
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(e) CGCG, dof = 524545
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(f) CGDG, dof = 311297
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