PRECONDITIONING FOR VECTOR-VALUED CAHN-HILLIARD EQUATIONS

JESSICA BOSCH

Numerical Linear Algebra for Dynamical Systems, Max Planck Institute for Dynamics of Complex
Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany

AsstracT. The solution of vector-valued Cahn-Hilliard systems is of interest in many applications.
We discuss strategies for the handling of smooth and nonsmooth potentials as well as for different
types of constant mobilities. For the latter, the necessary bound constraints are incorporated via
the Moreau-Yosida regularization technique. We develop effective preconditioners for the efficient
solution of the linear systems in saddle point form. Numerical results illustrate the efficiency of
our approach. In particular, we numerically show mesh and phase independence of the developed
preconditioner in the smooth case. The results in the nonsmooth case are also satisfying and the
preconditioned version always outperforms the unpreconditioned one.

1. INTRODUCTION

The Cahn-Hilliard equation is a partial differential equation of fourth order, which is used
in materials science [18], image processing [13] or chemistry [33]. It was originally introduced
to model phase separation in binary alloys [23, 10] that occurs when the temperature of a
homogeneous mixture is rapidly quenched below a critical temperature. In practice, often
more than two phases occur, see e.g. [28, 17, 15, 14, 5, 26, 20], and the phase field model
has been extended to deal with multi-component systems. A vector-valued order parameter
u=(uy,...,un)": Qx(0,T) = RN is introduced, where Q c R? (d = 1,2, 3) is a bounded domain,
T > 0 is an arbitrary but fixed time and N is the number of phases. Each u; describes the fraction
of one phase, i.e. if u; = 0 then the phase i is absent in that region and if #; = 1 only phase i is

present in that region. Hence,
N

Y oui=1 (1)

i=1
and u; > 0 is required, so that admissible states belong to the Gibbs simplex

N
gN ::{VEIRN Zvizl, viZOfori:L...,N}.

i=1

We study a diffuse phase transition, i.e. the region between the phases has a certain width b, the
so-called interface (phase field model). There is also the limit case b | 0 which gives the sharp
interface model [19, 18]. The motion of the interfaces separating N bulk regions is modeled with
the Ginzburg-Landau energy

N
&w = | ;f;wu#wm)dx,

where ¢ > 0 is the gradient energy coefficient. The potential function ¢: RN — R§U{eo} givesrise
to phase separation. It can be modeled by a smooth free energy, e.g. using multi-well potentials
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[31] such as
N
Y= Y 1w, @)
i=1

or by a nonsmooth multi obstacle potential [3]

_ | Yo(u) = -tu-Au uegV,
P(u) = { ’ ? oo otherwise, (3)

where the symmetric matrix A € RN contains constant interaction parameters A;;. From
physical considerations A must have at least one positive eigenvalue. A typical choice is A =
I-117 with 1 = a,..., 1)T, which means that the interaction between all different components
is equal and no self-interaction occurs. Other possible potentials are logarithmic ones, see
e.g. [2]. This work deals with the two types of potential (2) and (3). The smooth potential
(2) is used for shallow temperature quenches. It has the disadvantage that physically non-
admissible values u; < 0 or u; > 1 can be attained during the evolution, see section 5. The
consideration of the deep quench limit, i.e. a very rapid cooling of the mixture, leads to the
multi obstacle potential (3). It omits the disadvantage of (2) but leads to a system of variational
inequalities. Motivated by the work of Hintermiiller, Hinze and Tber [24] as well as our previous
studies [8, 7], all of them considering scalar, nonsmooth Cahn-Hilliard systems, we incorporate
the bound constraints via the Moreau-Yosida regularization technique and solve the resulting
subproblems by a semismooth Newton (SSN) method.

As we show in the course of this paper the solution of a linear system Kx = b with a real
nonsymmetric matrix K is at the heart of this method. The sparse linear systems are usually of
very large dimension and in combination with three-dimensional experiments the application
of direct solvers such as UMFPACK [12] becomes infeasible. As a result iterative methods have
to be employed (see e.g. [21] for an introduction to this field). We propose the use of a Krylov
subspace solver. The convergence behavior of the iterative scheme typically depends on the
conditioning of the problem and the clustering of the eigenvalues. These properties can be
enhanced using preconditioning techniques P~ !Kx = P~1b, where P is an invertible matrix that
is easy to invert and resembles K. In this paper, we provide efficient preconditioners # for
the solution of Cahn-Hilliard variational (in-)equalities using an effective Schur complement
approximation and (algebraic) multigrid developed for elliptic systems [30].

The paper is organized as follows. In section 2 we derive the vector-valued Cahn-Hilliard
equations. These are discretized in time and space in section 3. In section 4, we analyze the
linear systems and propose preconditioning strategies for the saddle point problems. Section 5
illustrates the efficiency of our approach and section 6 summarizes our findings.

2. DERIVATION

The evolution of u is governed by the H™!-gradient of the Ginzburg-Landau energy under
the constraint (1), which has to hold everywhere at any time. Using the smooth potential (2), the
vector-valued Cahn-Hilliard equations reads

8ui

5 - (LAw);, (4)
w; = f(ui) + B(u) — €A, (5)
Vu;i-n=(LVw);-n=0 ondQ, (6)

T
fori =1,...,N, where L = (L) j=1,..N € RN*N s the mobility, g—ﬁ = (%,...,%) = f(u) =
(f(u1), ..., fun)T, in which f(u;) = ”1'3 - %ulz + %ui, and f(u) = —% Zg\il f(u;). In the process, the
chemical potentials w = (wy, ..., wy)T result from the variational derivative of the energy &. In

doing so, admissible directions d = (dy, ..., dn)T have to fulfill Zﬁ1 d; = 0 in order to ensure (1).
2
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This explains the presence of the term f(u). Equation (6) contains the natural zero Neumann
boundary condition Vu; - n = 0 on JQ as well as the mass conserving boundary condition
(LVw); =0on dQ,i=1,...,N. Since using the latter in (4) yields together with Gauss’s theorem
% fQ u;dx = 0, i.e. the total mass of each phase is conserved.

The coefficients L;; may depend on u (see [14]) but this work deals with constant L;;. It is

assumed that L is symmetric and either L1 = 0 or L = [ as summing (4) overi=1,...,N leads to
) v 8u @
S =) ¢ Zv (LVw); = V - ZL”Vw] V. ZVw]ZLZJ = 0. 7)
i=1 i= i,j=1

Hence, if the initial data u(x, 0) fulfills (1) for all x € Q, then (1) holds Vt > 0. Itis further assumed
that L is positive semidefinite as differentiating the energy & gives

N
d
& == | Y Vuy- (LYw);dx <0,
dt8(u) Lﬂ Vw; - (LVw); dx <0

where we used (4)-(6) and Green’s first identity. Therefore, the total energy is non-increasing.
If we now use the nonsmooth multi obstacle potential (3), the gradient of & employs subdif-
ferentials which results in the following vector-valued Cahn-Hilliard variational inequalities

<‘Zl > + (LVw);, Vo) =0 Vo e H(Q), )
N
e2(Vuy, V(vi — 1)) — | w; + (Au); — 1 (Au);,vi—u; [ >0 YvegGNnH(QN, 9)
N ]
j=1

ue GV NnHYQN ae.in Q, (10)

fori =1,...,N. Here (;,-) and (;,-) stand for the Lz(Q)-inner product and the duality pairing
of H(Q) and H!(Q)", respectively. We now want to discretize the problems (4)—(6) (in weak
formulation) and (8)—(9) in time and space. Moreover, we shortly present a strategy which
handles the variational inequalities.

3. DISCRETIZATION

Concerning the time, fully implicit discretizations are the most accurate, see e.g. [4, 9, 8]. Let
T > 0 denote the time step size and n € IN the time step. We use the backward Euler discretization
for the time derivative du;, i = 1,...,N, and treat all the other terms implicitly. Then, for every
time step we have to solve the time-discrete system

(i = ul™,0) + T (LVW);, Vo) =0 Vo € HY(Q), (11)
N

e2(Vu;, V(v; — u;)) — (wi + (Au); — % Z (Au)j,0;—u;[|>0 YveGNnH'(QN, (12)
j=1

ue GV NnHYQN ae.in Q, (13)

where we write u = u and w® = w. Analogously, we obtain the time-discrete system for the
smooth Cahn-Hilliard equations (4)—(6).

As motivated in [24, 8, 7], we handle the pointwise constraints in (13) with a Moreau—Yosida
regularization technique. Instead of the energy functional & we consider

, N N
e 1 )
S(wy) = fQ > E Vi i* + Po(uy) + o E | min(0, u,,;)|* dx,
i=1 i=1
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such that we obtain
(1t = 70, 0) + T (LYW,);, Vo) =0 Yo € H(Q), (14)

1

1 .
(wy,i, ) — €2(Viu,,;, Vo) + ((Au,);, 0) — ;(mm(ol Uy,i), V)

N
+ %2 [%(min(O, uy,),0) = (Aw)j, v)] =0 VoeHYQ), (15)
j=1

fori=1,...,N, where 0 < v < 1 denotes the penalty parameter. Now, in order to get the linear
systems of equation, we apply the function space-based algorithm motivated in [24, 8, 7]. For
a specified sequence v — 0 we solve the optimality system (14)—(15), which can be written as
F,(u,, w,) = 0, for every v by an SSN algorithm, see also [25]. The smooth nonlinear time-discrete
Cahn-Hilliard equations for (4)-(6) are solved by the standard Newton method.

Next, the time-discrete systems are discretized in space by finite elements. Let {R}};.q be a
triangulation of Q into disjoint open rectangular elements with maximal element size / and Jj
be the set of nodes of Rj,. The use of rectangles is motivated by performing the implementation
with deal.II [1]. We approximate the infinite-dimensional space H L) by the finite-dimensional
space

S ={p € C%Y): Pplr € Q1(R) VR € Ry} ¢ H(Q)
of continuous, piecewise multilinear functions. We denote the standard nodal basis functions
of S, by x;j for all j € J;. Then, a function u, € S is given by u;, = Zje],,, up,ixj and the
vector of coefficients is now denoted by u. Moreover, we use the lumped mass scalar product
(f,9n = fQIh( fg) instead of (f,g). The interpolation operator I;: C/(Q) — S; is defined by
(Inf)(pj) = f(p;) for all nodes j € J, where p; denotes the coordinates corresponding to the node
j. In matrix form, the fully discrete linear systems read

IeM -8B wk) _ b, 16
ek 1eM || u® || b, | (16)
where k denotes the Newton step and the superscript ') marks the solution from the previous

R™ " js the lumped mass matrix and I € RNV is the identity. M is a symmetric positive definite
diagonal matrix and K is symmetric and positive semidefinite. For N = 3, the block B is given as

Bi1 By Bj
B=| Bi Bn Bs |,
By By Bz
where fori=1,...,N
2 1 By = 2K + (1 - ~)(Lemc, - m
Bii:5K+(1_N)FiMFi/ i =€ +( _N)(; i i~ )'
1 B 1/1 ‘ ‘
(@) B; = —FiMF;, ®) Bi—_ﬁ(;GZMGZ_M)'
(k)
o 02 _ a0 1) _di 1w (pj) <0,
d d1ag(3(ul. )y st 2)7 G 1ag( 0 otherwise,

in the smooth system (a) and in the nonsmooth system (b). This work uses A = (I — 117)
(mentioned in the introduction) aswellas L = land L = I — %HT (a special case of the mobility
matrix used e.g. in [14]). The system matrix in (16) is denoted by K for the remainder of the

paper.
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4. PRECONDITIONING

In both cases, smooth and nonsmooth, a linear nonsymmetric system in saddle point form is
at the heart of the computation. We propose the block-triangular preconditioner

IeM 0
P_[TL@)K —S]’ 17)

motivated by [16, 29], where & is an approximation of the Schur complement S = I® M + 7(L ®
K)(I®M)~18B. The preconditioned matrix £~ 1K has N -m eigenvalues at 1 and the remaining ones
are characterized as the eigenvalues of the matrix 8§18, which for 8 being a good approximation
only has a small number of different eigenvalues. Inverting the (1, 1)-block of ¥ is cheap since
M is a nonsingular diagonal matrix'. The remaining task is now to create a Schur complement
approximation S that is easy to invert and resembles S. In doing so, the nondiagonal, nonsym-
metric block matrix B poses the most difficult part. Concerning the nondiagonal block L ® K
with L = I — £117 we can apply an effective Fast Fourier Transform (FFT) based preconditioner
as L is a circulant matrix, see section 4.1. In the following we discuss the choice of S first for the
smooth and second for the nonsmooth case.

4.1. Schur complement preconditioner in the smooth case. As we know, the order parameter
u; approximately fulfills 0 < u; < 1fori=1,...,N. Therefore, we can estimate -2.5 < F; < 3.5
fori=1,...,N. Together with the estimated order of entries O(M) = h? for the mass matrix we
propose the following approximation of 8
. oy 1
B=1o(ks(1- L)u),
and thus the Schur complement preconditioner
S=81eM'S, = (%(1 M)+ 1(L® K)) IeM)"'B
e2N
N-1
Let us first discuss the case L = I. Then, both 31 and S, are block-diagonal and for the
computation of S we approximate the inverse diagonal blocks of S; and S, with an algebraic
multigrid (AMG) preconditioner. These diagonal blocks are symmetric positive definite and
independent of the individual phases. Therefore, we do not need N different preconditioners
concerning the block 8 but one, and additionally we do not have to recompute them at every
step of the Newton method.
If L =1 — £117, then L is a circulant matrix and we apply an FFT based preconditioner which
is introduced by Stoll in [32]. This circulant approach is based on the fact that the matrix L can
be diagonalized using the Fourier matrix F, i.e.

L = Fdiag(Ay, ..., An) F,

see [11]. If we apply the FFT to the system Sjy = g we get an equivalent system with a
block-diagonal matrix

=M+ 1(LRK)(IQM) !B+

(I®K).

N
N-1
The eigenvaluesof Lare Ay = 0and A; = ... = Ay = 1. Astheapplication of the Fourier transform
will in general result in complex valued systems, we formulate the blocks in (18) to 2 X 2 real
valued block systems. In detail, we have to solve two types of systems

(FloDSI(FRI) = (I® M) + tdiag(Ay, ..., AN) ® K. (18)

IFor consistent mass matrices the Chebyshev semi-iteration provides a powerful preconditioner.

5
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M0 wl_|& LM + K 0 gl | & |
0 LM || ¥ 3| 0 M+ 1K || Fe 3

The first of the above systems arises for the diagonal block with A1 = 0 and the second one for
all the remaining eigenvalues A;. As in [32], we solve these real valued systems with a fixed
number of steps of an inexact Uzawa-type method

D = 0 1 P10,

where 7)) denotes the residual and  is the relaxation parameter. P is a block-diagonal precon-
ditioner whose inverse is done by inverting the blocks x2;M or by using AMG approximations
of the blocks =M + 7K. Again, this preconditioner is independent of the individual phases.
Section 5 shows the efficiency of the proposed preconditioning strategy for both cases of L. In

particular, we numerically illustrate the independence of S with respect to the parameters h and
N.

4.2. Schur complement preconditioner in the nonsmooth case. Here, an approximation of the
matrix 8 in block-diagonal form (as done in the smooth case) seems not to be of good quality.
The blocks B; contain the parameter 11/, where v — 0, and thus have a large order and should not
be neglected. The proposed strategy concerning the block 8 is the use of a block Jacobi method.
Looking at the definition of the diagonal blocks B;; of 8 we see that they are indefinite, which
typically causes problems. Therefore, we modify the preconditioner S from the previous section
to

S=81eMS,
- (L(I@)M) + \/%(L®1<))(1®M)—1 (%(I@M) + «/EB)

N-1

VTN
N-1
The approximation 8 is already discussed in the previous section. The block S, contains the
modified matrix B for which we want to apply the block Jacobi method. It is easy to see that
the block diagonal matrix of S, is now positive definite whenever 7 < 1 which is for our time
discretization scheme of course the case. Therefore, we propose to solve S,y = ¢ with a fixed
number of steps of a block Jacobi method

y(l+1

where P, contains the diagonal blocks of S,. Of course, preconditioning the nonsmooth sys-
tem is much more complicated than for the smooth one. Nevertheless, section 5 presents the
performance of our preconditioner and shows quite good results.

=M+ t(LOK)(IQM) B+ B+ \/?I\%(L@)K).

5. NuMmericaL ResuLts

In this section we show results for the vector-valued Cahn-Hilliard problem. In each time
step, we choose the sequence v = 107! > v = 1072 > ... > Viax = 1077 of penalty parameters
and solve each corresponding subproblem F,, (u,gk),wlgk)) by the SSN method. In doing so, each
Newton method is initialized by the approximate solution of the previous one. After the first
time step we fix V = Vmay, i.e. from then on it suffices to solve only one SSN method per time step.
This is because the initial solution at the beginning might not be a good starting point for the
SSN methods. For the (smooth and nonsmooth) Newton method we use the stopping criterion
in [24], given by

k k 0 0
IF,(ul, Wl < et IF, (@, W)l + €abs, k=1, Kmax,

6
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where we set kmax = 20, €1 = 10712 and e,ps = 1070 in all examples. In each Newton step,
we solve the linear system (17) by a Krylov subspace solver. The left preconditioners we have
presented can be embedded into various of such iterative solvers. For our nonsymmetric system
matrix K we propose the use of a nonsymmetric short-term recurrence method, namely BiCG.
We set the BiCG tolerance to be 1077 for the preconditioned relative residual in all examples. The
FFT based preconditioner uses three steps of the inexact Uzawa method and the block Jacobi
preconditioner uses five steps. For the multilevel approximations we choose Trilinos AMG
approximations [22]. For one application of the preconditioner we take in general 10 steps of a
Chebyshev smoother and two V-cycles. The discretization is performed with deal.Il [1], which
allows the use of the Trilinos library. All numerical experiments listed here are generated with
finite elements on rectangles. Experiments show that it is essential to ensure that at least eight
vertices lie on the interfaces to avoid mesh effects. Therefore, in all examples we set ¢ ~ 2.

Concerning the time step, existence and uniqueness of corresponding discrete solutions of the
2
is the largest positive eigenvalue of A and ||L|| denotes the spectral norm of L. For the numerical
examples presented here we choose 7 = ﬁ if not mentioned otherwise. For the smooth
system, we use the maximum time steps guaranteeing the stability of the time discretization
scheme taken from [27]. These are in our computations 7 ~ 4¢2. The domain is set to be [0, 1]°.
For the initial condition, 100 circles with radius 0.0457-0.0525 are randomly distributed over

and randomly assigned to the different components.

nonsmooth system has been shown in [6, Theorem 2.4] under the condition 7 < where A4

Ficure 1. Smooth (above) and nonsmooth (below) computation for five phases.

In Figure 1, we compare the performance of the smooth and nonsmooth model. It shows the
evolution of 5 phases over n = 100 time steps for a mesh with size & = 278. For this example,
we choose 7 = 3 - 107 in the nonsmooth model. Table 1 illustrates the minimum and maximum
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value of the order parameter 17. We see that the concentrations are closer to 0 and 1 in the
nonsmooth model.

time step
20 40 60 80 100
min smooth -0.02771 —0.02151 —0.02439 —0.02143 —0.02627
nonsmooth | -1.186-107 -1.174-107 -1.172-107 -1.204-107 -1.178-1077
max smooth 0.9764 0.9803 1.001 0.9845 0.9972
nonsmooth 1 1 1 1 1

TaBLE 1. Minimum and maximum values of the order parameter 11 in the smooth
and nonsmooth model.

Next, we consider various uniform mesh sizes and compare the average number of BiCG
iterations needed per Newton step over 50 time steps. Moreover, we test the robustness with
respect to the number of phases. Figure 2 shows the results for the smooth model. In the
legend of Figure 2(a) the number of degrees of freedom m and the average time needed for one
Newton step is listed. The computations are done for N = 7 phases. The legend of Figure 2(b)
shows the number of phases N and again the average time needed for one Newton step. Here,
the computations are done for the mesh size h = 278, In all calculations, the number of BiCG
iterations does not exceed 16. The iteration numbers for the cases L = I and L = I — I%,llT are

almost the same. Therefore, Figure 2 numerically shows the robustness of the preconditioner for
both, the mesh size and the number of phases.

| [——=m=1089 (4s)
m=4225 (12s)

L [=—m=16641 (44s)
——m=66049 (2295s)

[~—N=3(%s) |]
N=5 (1615)
~—N=7 (2299

=

)]
=
(o))

[y
N

[EnY
N

Average number of BiCG
steps per Newton step
o 5

Average number of BiCG
steps per Newton step

0 10 20 30 40 50 %10 20 30 4 %0
Time step Time step
(AN =7. (5) h = 25,

Ficure 2. Results for 50 time steps of the smooth model.

The same computations are done with the nonsmooth model, where we use in Figure 3a five
phases and in Figure 3b the mesh size h = 277. Additionally, we compare the average BiCG
iteration numbers with and without preconditioning for the first time step in Figure 4. Here, the
number of phases is three. As mentioned in the beginning of this section, we solve within this first
time step 7 Newton methods for the penalty parameters vq = 1071,..., vy = 1077, respectively.
As can be seen from this, although the preconditioned iteration numbers are considerably worse
compared to the one in the smooth model, the preconditioned version always outperforms the
unpreconditioned method. A factor of 1500 (3500) for i = 27> (h = 27%) can be observed and we

would expect this to be even more significant if a larger number of phases or degrees of freedom
is used.
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T T T T 7 T T T
3 %10 | 8¢ 0 —~—N=3 (1559)
DT [Preacrcsertusossivtonontonca,Ppeosentssssas D 1 65 N=5 (305s) {
55 1 ©8& ——N=7 (4785)
23 Ay B8 /
EZ EZ W
2% —~—m=1089 (10s) 255 A
(O =X _ [ =}
aQ m=4225 (53s) o
g g 10°F ——m=16641 (3059) |’ 3 g0
z . _|—m=66049 (19369 |] < 45 , .
0 10 20 30 40 50 0 10 20 30 40 50
Time step Time step
(A)N =5. (®)h =27

Ficure 3. Results for 50 time steps of the nonsmooth model.

105_ T T T T T -
Qo
OCo
mn®
5 5 10} :
£ 3
z
2 o1 =e—With prec., h=2° |
g % With prec., h=2°
c ——\\/i -»
5 O Without prec., h=2| |
3: T —*—Without prec., h=2| 3
-~ & PN & Y Y -i.
1 2 3 4 5 6 7
\Y)

Ficure 4. Preconditioning vs. no preconditioning in the nonsmooth model.

6. CONCLUSIONS

In this paper we have analyzed the linear systems arising in smooth and nonsmooth vector-
valued Cahn-Hilliard systems. For the latter, we have applied an SSN method combined with a
Moreau-Yosida regularization technique for handling the pointwise constraints. In order to make
the SSN method more efficient we have used a Krylov subspace solver. We have introduced and
studied block-triangular preconditioners using an efficient Schur complement approximation.

This approximation can be done using multilevel techniques, such as AMG (as in our case), and
the numerical results justify this choice.
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