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Abstract. Algebraic multigrid (AMG) is an effective iterative solver for systems of linear
equations. The Galerkin product, an essential component to the setup phase of AMG, causes fill-
in on the coarse grids. In parallel implementations of AMG, this added density to coarse levels
yields an increase in communications costs, reducing the scalability of the method. As problem size
grows, the number of levels in the hierarchy will increase, yielding increasingly large, dense levels.
The communication costs can be reduced through the use of non-Galerkin coarse grids, in which
unnecessary entries are removed reintroducing sparsity to the coarser levels. A study of the parallel
performance of GMRES preconditioned by non-Galerkin shows a consistent decrease in solve times
for a three dimensional Laplace problem. The setup times show that any added cost to this phase
is masked by the reduction in communication, and the overall time spent in the setup phase is often
also reduced. Further tests show increasing the tolerance for collapsing entries on coarser grids has
added benefits of removing the larger percentage of unnecessary entries occurring further in the
hierarchy. Retaining symmetry of coarse grids allows use of more competitive methods such as CG
or its three-term analogue for indefinite matrices, minimal residual method.

1. Introduction. Sparse matrix problems are abundant in parallel. Iterative
methods solve sparse problems with a complexity bound dependent on that of a
sparse matrix-vector multiply. Multigrid methods iterate through hierarchies contain-
ing varying levels of sparsity and patterns, each impacting the overall performance.
The Galerkin coarse product, A. = PT AP creates fill-in on coarse grids, decreasing
the efficiency of matrix-vector products throughout the hierarchy.

Multigrid is composed of two phases: setup and solve. The setup phase creates a
hierarchy of levels, of which each level 1 contains a coarse matrix A;, an interpolation
operator Pj, and a restriction operator R, = P!. This process is highly dependent
on the Galerkin product A;4 1 = PITAIPZ. The solve phase uses this hierarchy to
iteratively approach a solution through smoothing and coarse grid correction [1, 2, 4,
7).

There are currently multiple approaches that improve the efficiency of this method
in parallel. The combination of aggressive coarsening strategies, such as HMIS and
PMIS, and distance-two interpolation significantly reduces the complexity of coarse
grids. Investigating the Galerkin product RAP leads to a further reduction in coarse
grid cost. The method of non-Galerkin coarse grids requires forming the coarse grid
RAP before manually removing unnecessary entries [3, 11, 8, 4].

The focus of this paper is on the parallel aspects of the non-Galerkin coarse grid
approach. The contributions include a performance study of the parallel implementa-
tion, a study of setup costs, and an analysis of the effects of varying drop tolerances
as well as symmetric collapsing. Non-Galerkin coarse grids are highly dependent on
the selection of drop tolerance. If too many entries from a coarse grid are dropped,
non-Galerkin AMG will diverge. However, if too few entries are collapsed, there
is little to no reduction in sparsity yielding a minimal benefit. Initial tests in the
performance study require all coarse levels to drop values with one given tolerance.
However, studies have shown that the finer levels in a hierarchy require an accurate
approximation to the Galerkin matrix, indicating only a small number of nonzeros
can safely be removed. Furthermore, the density increases with coarseness, indicating
the drop tolerance should increase with the coarseness.

This paper is organized as follows. The remainder of this section describes the
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method of non-Galerkin multigrid as well as predicted benefits. Section 2 displays
the performance benefits of parallel non-Galerkin multigrid with various options such
as varying drop tolerances and symmetric dropping. This section also investigates
the reason behind any reduction in solve times. Section 3 describes future work to
improve the efficiency as well as the applicability of this method.

1.1. Parallel Setup and Coarse Level Fill-in. Parallel implementations of
AMG on distributed-memory systems require the distribution of the matrix A across
processors. Each processor stores a section of contiguous rows of both the matrix
A and all vectors z, r, and e. The local entries in A are split into a diagonal block,
which contains the columns corresponding to local vector entries, and two off-diagonal
blocks, each holding values corresponding to the vector entries stored on other proces-
sors. Figure 1 displays the partitioning of the rows stored on some processor k. Every
nonzero entry stored in an off-diagonal block must obtain the corresponding vector
entry from another processor, implying the number of elements in off-diagonal blocks
is directly correlated to the amount of communication required. Throughout AMG,
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Fig. 1: Partitioning of matrices in distributed-memory systems

the smoothing and coarse grid correction are performed on problems of varying levels
of coarseness. The matrix on some coarse level [+ 1, is obtained through the Galerkin
product, an operation that preserves both the symmetry and positive-definiteness of a
problem, but also creates fill-in on the coarser matrix. Figure 2 displays the decrease
of sparsity on coarse grids for a three-dimensional Laplace problem with one-million
degrees-of-freedom. While the problem size on coarser levels reduces rapidly, the fill-in
resulting from the Galerkin product obstructs the reduction in communication costs.
Figure 3 shows the amount of time spent on each level during a single v-cycle when us-
ing Galerkin coarse grids on both classical and best practices parallel AMG. Classical
AMG uses Falgout coarsening and classical interpolation while best practices AMG
aggressively coarsens with HMIS combined with extended classical interpolation. In
classical AMG, more time is spent on some coarse grids than on the finest grid due
to an increase in communication resulting from the coarse grid fill-in. Best practices
yields a less severe, but still noticeable, increase in communication time [4].

1.2. Non-Galerkin Method. A method of further reducing coarse grid fill-
in requires initially building the Galerkin coarse grids and then manually removing
unnecessary nonzeros to reintroduce sparsity. This process of creating a non-Galerkin
coarse grid is broken into two parts: creating a sparsity pattern to determine essential
nonzeros and removing all entries not in this sparsity pattern. The minimal sparsity
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Fig. 2: The sparsity of coarse levels in a 3 dimensional Laplace hierarchy
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Fig. 3: Time spent on each level of hierarchy during a single v-cycle

pattern is equal to Pf AP + PT AP;, where P; is the injection operator. The initial
sparsity pattern of each row i, N,;, is equal to the sparsity pattern of row i of A.
Given some tolerance, entries are removed from N.; while

(1.1) 23 Jaf| <4 o
J

J&Nei

holds. After entries are removed, the remaining entries in the minimal sparsity pattern
and reintegrated in N; [3].

Once the sparsity pattern has been created, all entries appearing in A but not
N, are removed. The values of dropped entries are lumped to strong neighbors based
on the strength of connection matrix S. If some dropped value a;; has no strong
connections, the entire value is added to a;;. Otherwise, a percent of a;; is added to
each strong connection. So, if ¢ is defined to be the absolute sum of all values in row
j of S, for each column k in Sj, the percent @ of a;; is added to a; [3].

This method was initially tested on multiple sequential problems, including two-
dimensional rotated anisotropic diffusion, three-dimensional Laplace, and jumping
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coefficient problems. All tested problems showed a reduction in stencil size with
little, if any, decrease in convergence rate for some drop tolerance -, indicating this
method should work well for a variety of problems in parallel.

2. Parallel Performance. Non-Galerkin parallel AMG was tested using hypre
[5] on the intel cluster Sierra at Lawrence Livermore National Lab using drop toler-
ances of 0.01 and 0.03. A weak scaling performance study was performed on various
problem sizes with both classical and best practices parallel AMG. Classical AMG
uses Falgout coarsening and classical interpolation while best practices AMG aggres-
sively coarsens via HMIS combined with extended classical interpolation. Figures 5a
and 5b display the solve times for both Galerkin and non-Galerkin coarse grids for
GMRES preconditioned with classical parallel AMG on problems of size 10,000 and
25,000 degrees-of-freedom per core, respectively. Figures 5¢ and 5d show solve times
for equivalent problems solved by GMRES preconditioned with best practices AMG.

For every test case the non-Galerkin coarse grids showed a reduction in the time
spent in the solve phase. This is explained by the work per digit of accuracy (WPD)
and stencil sizes resulting from dropping insignificant entries. WPD is defined as the
operator complexity divided by the negative log of the convergence rate, and shows
the amount of work required throughout all levels to gain one digit of accuracy. The
stencil size is the number of nonzeros on any given row, implying a correlation between
large stencil size and the amount of communication. For both drop tolerances, the
WPD and stencil sizes are lower for the non-Galerkin coarse grids than the original.
This reduction in both the communication and computation costs can explain the
speedup of the non-Galerkin coarse grids.

While there is an added cost in the setup phase associated with collapsing entries,
enough sparsity is added to coarse grids to mask this cost. Figure 4 displays the setup
phase times for each test case. The currently unoptimized non-Galerkin code reduces
the overall setup times for classical parallel AMG and adds little time to best practices
AMG.

Coarse Level 1 2 3 All Remaining
Series 1 0.0 | 0.01 | 0.03 0.1
Series 2 0.01 | 0.03 | 0.1 0.1

Table 1: Series of Drop Tolerances

2.1. Varying Drop Tolerances. The percent of fill-in on any grid increases
with the level of coarseness, as displayed in Figure 2. While very few entries should
be dropped from the fine grids, a larger percent can be removed as the levels become
coarser. The previous non-Galerkin results can be improved upon by increasing the
drop tolerance on coarser levels. Two series of drop tolerances, described in Table
1, consistently outperformed the original drop tolerances for the given problem, as
shown in Figure 5. This further reduction in solve time is again explained by a
greater reduction in both WPD and stencil sizes for both series of drop tolerances.

2.2. Symmetric Collapsing. While non-Galerkin coarse grids yield a reduction
in solve time for GMRES preconditioned with AMG, CG preconditioned with Galerkin
AMG still outperforms all instances. The current non-Galerkin coarse grids do not
meet the symmetric positive-definite criteria required to precondition CG. To retain
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Fig. 4: Times required by setup phase

the symmetry of Galerkin coarse grids, the nonzero entries falling below tolerance
must be collapsed symmetrically.

For guaranteed symmetry of non-Galerkin coarse grids, the sparsity pattern N,
must be symmetric. For any dropped entry a;;, if some percent of the value is added
to a strong connection a;y, this must also be added to ax;. However, to retain constant
row sums, this portion of the value must also be subtracted from the diagonal, ayg.
While this will always result in a symmetric sparsity pattern, subtracting values from
agr has the potential to flip an eigenvalue, yielding a symmetric indefinite matrix.

For the given problem, this method retains both symmetry and positive-definiteness
of the coarse grids, yielding solve times for CG preconditioned with AMG as shown
in Figures 6. The non-Galerkin method yields an improvement in the solve time for
CG when the entries are collapsed symmetrically. However, because the symmetric
dropping process does not guarantee that positive-definiteness will be retained, CG
may not always be a viable option. The minimum residual method, a three-term
analogue for symmetric indefinite matrices, can be used as an alternative [6].

2.3. Per-Level Improvement. The non-Galerkin coarse grid method improves
the solve phase time by reducing the fill-in on coarse grids. This diminishes the extra
communication cost originally required by coarse levels. Figure 7 displays the time
spent on each level of the hierarchy during a single v-cycle. The time spent on
each non-Galerkin level near the middle of the hierarchy is significantly less than the
equivalent Galerkin levels. There is still a small increase in communication on coarse
grids, as all of the fill-in is not removed. However, the non-Galerkin coarse grids show
a large improvement in the amount of increased communication.
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Fig. 5: Solve Times for GMRES Preconditioned with AMG

2.4. Communication Reduction. The reduction in communication costs comes
from two different sources: the number of messages sent and the size of each message.
The amount of communication is tracked on each level through the maximum amount
of communication performed among all of the processors. The maximum number of
sends and receives on any processor approximates the cost of communication due to
the number of messages. The maximum size of the data sent by any processor es-
timates the other component of communication cost: the size of the messages being
sent. Figures 8, 9, 10, and 11 display the reduction in communication costs from non-
Galerkin coarse grids. These figures show that for both classical and best practices
parallel AMG, the reduction in communication cost is due to a significant reduction
in the number of messages sent on the coarse grids.

3. Future Work. Non-Galerkin coarse grids reduce the costs of both the setup
and solve phases when optimal drop tolerances are chosen for the three dimensional
Laplace problem. However, there remains room for improvement in both the reduction
in cost as well as the applicability of the strategy. As shown in Figure 7, there remains
an increase in communication costs on coarse grids for all drop tolerances. This
could be further reduced by adjusting the drop rate of entries based on the physical
properties of the cluster. Dropping entries in the diagonal block has no impact on
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Fig. 6: Solve Time for CG preconditioned with AMG

communication, so the off-diagonal blocks will be targeted more heavily. Similarly,
entries within the off-diagonal blocks will be weighted based on their physical distances
from a given processor. Assigning a higher drop rate to entries lying on distant
processors than those on neighboring nodes has potential to reduce the cost of the
messages being sent.

This method will also be tested with more complex problems. Serially, promising
results were shown for a variety of test problems. However, both the optimal series
of drop tolerances as well as the overall benefit of non-Galerkin levels varied for the
different test cases. Testing these in parallel will display the benefits of this method
for a wider variety of problems.

The optimal series of drop tolerances varies with problem type, yielding the need
for a method of determining these values. For non-Galerkin to be widely applicable,
the drop tolerances should be chosen automatically by the program. This can be
done based on the increase on stencil size from one level to the next. If the stencil
size increases by a large amount, the drop tolerance can be increased. Removing the
requirement of selecting a set of drop tolerances would improve the usability of this
method.

Lastly, theoretical convergence bounds for M-matrices need to be determined.
The convergence of the non-Galerkin method should have a bound based on the
convergence of the Galerkin AMG. This theory would guarantee convergence of the
method, and could possibly be extended to general matrices as well.

While there is room for improvement, the use of non-Galerkin coarse grids is
currently an effective method for improving the scalability of parallel AMG. The drop
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tolerances for this method can be adjusted to obtain similar convergence to Galerkin
coarse grids while also significantly inducing sparsity.
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