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Abstract. This paper outlines an energy-minimization finite-element approach to the computational mod-

eling of equilibrium configurations for nematic liquid crystals with applied electric fields. The method

targets minimization of system free energy based on the electrically augmented Frank-Oseen free energy
model. The Hessian, resulting from the linearization of the first-order optimality conditions, is shown to be

invertible when discretized by a mixed finite-element method under certain assumptions. This implies that
the intermediate discrete linearizations are well-posed. Two numerical experiments are performed. The first

compares the algorithm’s solution of a classical Freedericksz transition problem to the known analytical solu-

tion and demonstrates the convergence of the algorithm to the true solution. The second experiment targets
a problem with more complicated boundary conditions, simulating a nano-patterned surface. The algorithm

accurately handles heterogeneous constant coefficients and efficiently resolves configurations resulting from

classical and complicated boundary conditions relevant in ongoing research.

1. Introduction

Liquid crystals are substances that possess mesophases with properties intermediate between liquids and
crystals, existing at different temperatures or solvent concentrations. The discovery of liquid crystals is
attributed to Reinitzer in 1888 [25]. The focus of this paper is on nematic liquid crystal phases, which are
formed by rod-like molecules that self-assemble into an ordered structure, such that the molecules tend to
align along a preferred orientation. The preferred average direction at any point in a domain Ω is known as
the director, denoted n(x, y, z) = (n1, n2, n3)T . The director is taken to be of unit length at every point and
headless, that is n and −n are indistinguishable, reflecting the observed symmetry of the phase.

In addition to their self-structuring properties, nematic liquid crystals are dielectrically active. Thus,
their configurations are affected by electric fields. Moreover, since these materials are birefringent, with
refractive indices that depend on the polarization of light, they can be used to control the propagation of
light through a nematic structure. These traits have led, and continue to lead, to important discoveries in
display technologies and beyond [18]. Thorough overviews of liquid crystal physics are found in [7, 11,27].

Many mathematical and computational models of liquid crystal continuum theory lead to complicated
systems involving unit length constrained vector fields. Currently, the complexity of such systems has re-
stricted the existence of known analytical solutions to simplified geometries in one (1-D) or two dimensions
(2-D), often under strong simplifying assumptions. When coupled with electric fields and other effects,
far fewer analytical solutions exist, even in 1-D [27]. In addition, associated systems of partial differen-
tial equations, such as the equilibrium equations [12, 27], suffer from non-unique solutions, which must be
distinguished via energy arguments. Due to such difficulties, efficient, theoretically supported, numerical
approaches to the modeling of nematic liquid crystals under free elastic and augmented electric effects are of
great importance. A number of computational techniques for liquid crystal equilibrium and dynamics prob-
lems exist [20,21,27,29], including least-squares finite-element methods [2] and discrete Lagrange multiplier
approaches with simplifying assumptions [17,24].

In this paper, we propose a method that directly targets energy minimization in the continuum, via
Lagrange multiplier theory on Banach spaces, to resolve liquid crystal equilibrium configurations in the
presence of applied electric fields. The approach is derived absent the often used one-constant approximation
[8, 24, 27, 29]; that is, the method described here, and the accompanying theory, are applicable for a wide
range of physical parameters. This allows for significantly improved modeling of physical phenomena not
captured in many models. Furthermore, most models and analytical approaches rely on assumptions to
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reduce the dimensionality of the problem. Here, the method and theory are suitable for use on 2-D and
three dimensional (3-D) domains and are easily combined with additional energy effects.

2. Energy Model

To begin defining the full energy model under consideration, we first discuss the free elastic energy model.
At equilibrium, absent any external forces, fields, or boundary conditions, the free elastic energy present
in a liquid crystal sample is given by an integral functional, which depends on the state variables of the
system. A liquid crystal sample tends to the state of lowest free energy. While a number of free energy
models exist [10], this paper considers the Frank-Oseen free elastic model [27,28]. These equations represent
the free elastic energy density, wF , in a sample as

wF =
1

2
K1(∇ · n)2 +

1

2
K2(n · ∇ × n)2 +

1

2
K3|n×∇× n|2 +

1

2
(K2 +K4)∇ · [(n · ∇)n− (∇ · n)n]. (2.1)

Throughout this paper the standard Euclidean inner product and norm are denoted (·, ·) and |·|, respectively.
The Ki, i = 1, 2, 3, 4, are known as the Frank elastic constants [15], which vary depending on temperature
and liquid crystal type. Let

Z = κn⊗ n + (I− n⊗ n) = I− (1− κ)n⊗ n,

where κ = K2/K3 with K2,K3 ≥ 0 by Ericksen’s inequalities [13]. In general, we consider the case that
K2,K3 6= 0. Denote the classical L2(Ω) inner product and norm as 〈·, ·〉0 and ‖ · ‖0, respectively. Using
algebraic identities, the fact that n has unit length, and integrating the above density function, the total
free elastic energy for a domain Ω is∫

Ω

wF dV =
1

2
(K1 −K2 −K4)‖∇ · n‖20 +

1

2
K3〈Z∇× n,∇× n〉0

+
1

2
(K2 +K4)

(
〈∇n1,

∂n

∂x
〉0 + 〈∇n2,

∂n

∂y
〉0 + 〈∇n3,

∂n

∂z
〉0
)
.

A number of methods involving computation of liquid crystal equilibria or dynamics utilize the so called
one-constant approximation that K1 = K2 = K3 and K4 = 0 [8, 24, 27, 29], in order to significantly simplify
the free elastic energy density to

ŵF =
1

2
K1|∇n|2, where |∇n|2 =

3∑
i,j

(
∂ni
∂xj

)2

.

This expression for the free elastic energy density is more amenable to theoretical development but ignores
significant physical characteristics [3, 19]. The following method is derived without such an assumption.

In the presence of an electric field, the free energy in a liquid crystal sample is directly affected. This
interaction is strongly coupled as nematic polarization and electric displacement, in turn, affect the original
electric field. The coupling is captured by an auxiliary term added to the Frank-Oseen equations such that
the total system free energy has the form ∫

Ω

wF −
1

2
D ·E dV, (2.2)

where D is the electric displacement vector induced by polarization and E is the local electric field [11]. The
electric displacement vector is written D = ε0ε⊥E + ε0εa(n · E)n. Here, ε0 > 0 is the permittivity of free
space constant. The dielectric anisotropy constant is εa = ε‖ − ε⊥, where the constant variables ε‖ > 0 and
ε⊥ > 0 represent the parallel and perpendicular dielectric permittivity, respectively, specific to the liquid
crystal. If εa > 0, the director is attracted to parallel alignment with the electric field, and if εa < 0, the
director tends to align perpendicular to E. Thus,

D ·E = ε0ε⊥E ·E + ε0εa(n ·E)2.

Therefore, Equation (2.2) is expanded as∫
Ω

(
wF −

1

2
D ·E

)
dV =

∫
Ω

wF dV −
1

2
ε0ε⊥〈E,E〉0 −

1

2
ε0εa〈n ·E,n ·E〉0. (2.3)
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The addition of the electric field not only increases the complexity of the functional, it introduces an inherent
saddle-point structure into the equilibria for the liquid crystal samples. Energy minima are those that
minimize the contribution of the free elastic energy, while maximizing the negative contribution of the
electric field terms. Moreover, the relevant Maxwell’s equations for a static electric field, ∇ · D = 0 and
∇×E = 0, known as Gauss’ and Faraday’s laws, respectively, must be satisfied.

3. Free Energy Minimization

In this section, a general approach for computing the equilibrium state for n is derived. This equilibrium
state corresponds to the configuration which minimizes the system free energy subject to the local constraint
that n is of unit length throughout the sample volume, Ω. That is, the minimizer must satisfy n · n = 1
pointwise throughout the volume. In light of the necessary Maxwell equations, we reformulate the system
energy in (2.3) using an electric potential function, φ, such that E = −∇φ, and define the functional to be
minimized as

F1(n, φ) =(K1 −K2 −K4)‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0 + (K2 +K4)
(
〈∇n1,

∂n

∂x
〉0

+ 〈∇n2,
∂n

∂y
〉0 + 〈∇n3,

∂n

∂z
〉0
)
− ε0ε⊥〈∇φ,∇φ〉0 − ε0εa〈n · ∇φ,n · ∇φ〉0. (3.1)

Using a potential function guarantees that Faraday’s law is trivially satisfied. Furthermore, it is not difficult
to show that Gauss’ law is satisfied at the minimum of the above functional.

For the special case of full Dirichlet boundary conditions, we consider a fixed director n at each point on
the boundary of Ω. Considering the integration carried out for the (K2 +K4) term in (2.1), note that since
n is continuously differentiable in Ω,

1

2
(K2 +K4)

∫
Ω

∇ · [(n · ∇)n− (∇ · n)n] dV =
1

2
(K2 +K4)

∫
∂Ω

[(n · ∇)n− (∇ · n)n] · ν dS,

by the divergence theorem, where ν is the outward unit normal for ∂Ω. Further, since n is fixed along ∂Ω,
the energy contributed by n on the boundary is constant regardless of the configuration of n on the interior
of Ω. Thus, in the minimization, the energy contribution from this term is ignored and is often referred to
as a null Lagrangian [28]. This observation significantly simplifies the functional to be minimized as

F2(n, φ) =K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0 − ε0ε⊥〈∇φ,∇φ〉0 − ε0εa〈n · ∇φ,n · ∇φ〉0. (3.2)

Note that this simplification is also applicable to a rectangular domain with mixed Dirichlet and periodic
boundary conditions. Such a domain is considered in the numerical experiments presented here.

We proceed with the functional in (3.1) in building a framework for minimization under general boundary
conditions. However, in the treatment of existence and uniqueness theory, we assume the presence of full
Dirichlet boundary conditions and, therefore, apply the simplification in (3.2).

Next, we consider the spaces

H(div,Ω) = {v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)}, H(curl,Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}.

Define

HDC(Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = ḡ},

with norm ‖v‖2DC = ‖v‖20 + ‖∇ · v‖20 + ‖∇ × v‖20 and appropriate boundary conditions B(v) = ḡ. Further,
let HDC0 (Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = 0}. Let

H1,g(Ω) = {f ∈ H1(Ω) : B1(f) = g},

where H1(Ω) represents the classical Sobolev space and B1(f) is an appropriate boundary condition expres-
sion. Finally, denote the unit sphere as S2. Using Functional (3.1), the desired minimization becomes

(n0, φ0) = argmin
(n,φ)∈(S2∩HDC(Ω))×H1,g(Ω)

F1(n, φ).
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3.1. First-Order Continuum Optimality Conditions. Since n must be of unit length, it is natural to
employ a Lagrange multiplier approach. This length requirement represents a pointwise equality constraint
such that (n,n)−1 = 0. Thus, following general constrained optimization theory [22], define the Lagrangian

L(n, φ, λ) = F1(n, φ) +

∫
Ω

λ(x)((n,n)− 1) dV,

where λ ∈ L2(Ω). In order to minimize (3.1), we compute the Gâteaux derivatives of L with respect to n, φ,
and λ in the directions v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω), and γ ∈ L2(Ω), respectively. Hence, necessary continuum
first-order optimality conditions are derived as

Ln[v] =
∂

∂n
L(n, φ, λ)[v] = 0, ∀v ∈ HDC0 (Ω),

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0, ∀ψ ∈ H1,0(Ω),

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0, ∀γ ∈ L2(Ω).

Computing these derivatives yields the variational system

Ln[v] =2(K1 −K2 −K4)〈∇ · n,∇ · v〉0 + 2K3〈Z∇× n,∇× v〉0

+ 2(K2 −K3)〈n · ∇ × n,v · ∇ × n〉0 + 2(K2 +K4)
(
〈∇n1,

∂v

∂x
〉0 + 〈∇n2,

∂v

∂y
〉0

+ 〈∇n3,
∂v

∂z
〉0
)
− 2ε0εa〈n · ∇φ,v · ∇φ〉0 + 2

∫
Ω

λ(n,v) dV = 0, ∀v ∈ HDC0 (Ω),

Lφ[ψ] =− 2ε0ε⊥〈∇φ,∇ψ〉0 − 2ε0εa〈n · ∇φ,n · ∇ψ〉0 = 0, ∀ψ ∈ H1,0(Ω),

Lλ[γ] =

∫
Ω

γ((n,n)− 1) dV = 0, ∀γ ∈ L2(Ω).

3.2. Nonlinearities and Newton Linearization. The system above is nonlinear; therefore, Newton iter-
ations are employed by computing a generalized first-order Taylor series expansion, requiring computation
of the Hessian. Let nk, φk, and λk be the current approximations for n, φ, and λ, respectively. Additionally,
let δn = nk+1 −nk, δφ = φk+1 − φk, and δλ = λk+1 − λk be updates to the current approximations that we
seek to compute. Then, the Newton iterations are denoted Lnn Lnφ Lnλ

Lφn Lφφ Lφλ
Lλn Lλφ Lλλ

 δn
δφ
δλ

 = −

 Ln

Lφ
Lλ

 , (3.3)

where each of the system components are evaluated at nk, φk, and λk. The matrix-vector multiplication
indicates the direction that the derivatives in the Hessian are taken. For instance,

Lλn[γ] · δn =
∂

∂n
(Lλ(nk, λk)[γ]) [δn],

where the partials indicate Gâteaux derivatives in the respective variables. Note that Lλλ = Lλφ = Lφλ = 0.
Hence, the Hessian in (3.3) simplifies to the saddle-point structure, Lnn Lnφ Lnλ

Lφn Lφφ 0
Lλn 0 0

 . (3.4)

The discrete form of this Hessian leads to a saddle-point matrix, which poses unique difficulties for the
efficient computation of the solution to the resulting linear system. Such structures commonly appear in
constrained optimization and other settings; for a comprehensive overview of discrete saddle-point problems
see [6]. Here, we focus only on the linearization step rather than the underlying linear solvers. Considering
the other six components of the Hessian, the derivatives involving λ are

Lλn[γ] · δn = 2

∫
Ω

γ(nk, δn) dV, Lnλ[v] · δλ = 2

∫
Ω

δλ(nk,v) dV.
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The second order terms involving φ are

Lφφ[ψ] · δφ = −2ε0ε⊥〈∇δφ,∇ψ〉0 − 2ε0εa〈nk · ∇δφ,nk · ∇ψ〉0,
Lφn[ψ] · δn = −2ε0εa〈nk · ∇φk, δn · ∇ψ〉0 − 2ε0εa〈δn · ∇φk,nk · ∇ψ〉0,
Lnφ[v] · δφ = −2ε0εa〈nk · ∇φk,v · ∇δφ〉0 − 2ε0εa〈nk · ∇δφ,v · ∇φk〉0.

Finally, the second order n derivative is

Lnn[v] · δn =2(K1 −K2 −K4)〈∇ · δn,∇ · v〉0 + 2K3〈Z(nk)∇× δn,∇× v〉0

+ 2(K2 −K3)
(
〈δn · ∇ × v,nk · ∇ × nk〉0 + 〈nk · ∇ × v, δn · ∇ × nk〉0

+ 〈nk · ∇ × nk,v · ∇ × δn〉0 + 〈nk · ∇ × δn,v · ∇ × nk〉0

+ 〈δn · ∇ × nk,v · ∇ × nk〉0
)

+ 2(K2 +K4)
(
〈∇δn1,

∂v

∂x
〉0 + 〈∇δn2,

∂v

∂y
〉0

+ 〈∇δn3,
∂v

∂z
〉0
)
− 2ε0εa〈δn · ∇φk,v · ∇φk〉0 + 2

∫
Ω

λk(δn,v) dV.

Completing (3.3) with the above Hessian computations yields a linearized variational system. For these
iterations, we compute δn, δφ, and δλ satisfying (3.3) for all v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω), and γ ∈ L2(Ω)
with the current approximations nk, φk, and λk. While they typically improve robustness and efficiency, we
do not consider the use of line searches or trust regions in the work presented here, leaving this for future
work. If we are considering a system with Dirichlet boundary conditions, as described above, we eliminate
the (K2 +K4) terms from (3.3). This produces a simplified, but still complicated, linearization.

4. Well-Posedness of the Discrete Systems

Performing the outlined Newton iterations necessitates solving the above linearized systems for the update
functions δn, δφ, and δλ. Finite elements are used to numerically approximate these updates as δnh, δφh,
and δλh. Throughout this section, we assume that full Dirichlet boundary conditions are enforced for n
and φ. However, the following theory is also applicable for a rectangular domain with mixed Dirichlet and
periodic boundary conditions. Such a domain is considered for the numerical experiments presented herein.

We write the bilinear form defined by −Lφφ[ψ] ·δφ as c(δφ, ψ) = ε0ε⊥〈∇δφ,∇ψ〉0 +ε0εa〈nk ·∇δφ,nk ·∇ψ〉0
and the form associated with Lλn[γ] · δn as b(δn, γ). Further, we will decompose the bilinear form defined
by Lnn[v] · δn into a free elastic term, ã(δn,v), and an electric component as

a(δn,v) = ã(δn,v)− ε0εa〈δn · ∇φk,v · ∇φk〉0.

Lemma 4.1. Let Ω be a connected, open, bounded domain. If εa ≥ 0, then c(δφ, ψ) is a positive-definite
bilinear form. For εa < 0, if |nk|2 ≤ β < ε⊥/|εa|, for β ≥ 1, then c(δφ, ψ) is a positive-definite bilinear form.

Proof. The proof is split into two cases.

Case 1. εa ≥ 0.
Note that δφ, ψ ∈ H1,0(Ω), with homogeneous Dirichlet boundary conditions. By the classical Poincaré-
Friedrichs’ inequality, there exists a C1 > 0 such that for all ξ ∈ H1

0 (Ω), ‖ξ‖20 ≤ C1‖∇ξ‖20. This implies that,
for ξ 6= 0,

c(ξ, ξ) = ε0ε⊥〈∇ξ,∇ξ〉0 + ε0εa〈nk · ∇ξ,nk · ∇ξ〉0

≥ ε0ε⊥
C1
‖ξ‖20 > 0.

Case 2. εa < 0.
Observe that pointwise,

(nk · ∇ξ)2 ≤ |nk|2|∇ξ|2 ≤ β|∇ξ|2.
This implies that 〈nk · ∇ξ,nk · ∇ξ〉0 ≤ β〈∇ξ,∇ξ〉0. Therefore,

c(ξ, ξ) ≥ ε0(ε⊥ − β|εa|)〈∇ξ,∇ξ〉0.
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Recall that ε‖ > 0. Therefore, ε⊥/|εa| > 1, and β < ε⊥/|εa| implies that ε⊥−β|εa| > 0. Thus, again applying
the Poincaré-Friedrichs’ inequality above for ξ 6= 0,

c(ξ, ξ) ≥ ε0(ε⊥ + βεa)

C1
‖ξ‖20 > 0.

In either case, c(·, ·) is a positive-definite bilinear form. �

There are a number of discretization space triples commonly used to discretize systems such as the one
defined in (3.3), including equal order or mixed finite elements. Discretizing the Hessian in (3.4) with finite
elements leads to the 3× 3 block matrix  A B1 B2

BT1 −C̃ 0
BT2 0 0

 . (4.1)

Lemma 4.2. Under the assumptions in Lemma 4.1, if the bilinear forms a(·, ·) and b(·, ·), defined above, are
coercive and weakly coercive, respectively, on the relevant discrete spaces, the matrix in (4.1) is invertible.

Proof. Denoting B =
[
B1 B2

]
(where B2 is associated with b(·, ·)), and C =

[
C̃ 0
0 0

]
, the matrix in

(4.1) is written as [
A B
BT −C

]
.

By assumption, a(·, ·) is coercive, and it is clearly symmetric. Therefore, the associated discretization block,

A, is symmetric positive definite. By Lemma (4.1), C̃ is symmetric positive definite, and, therefore, −C is
symmetric negative semi-definite. Therefore, by [6, Theorem 3.1], if kerC ∩ kerB = {0}, then the matrix in
(4.1) is invertible. Observe that [

C̃ 0
0 0

] [
y
z

]
=

[
C̃y
0

]
= 0

if and only if y = 0. Then, if
[
y z

]T ∈ kerC ∩ kerB, y = 0. However, note that[
B1 B2

] [ 0
z

]
= B2z.

Since b(·, ·) is weakly coercive, B2z = 0 if and only if z = 0. So kerC ∩ kerB = {0}. �

We have shown in [1] that the assumptions of Lemma 4.2 are satisfied under reasonable conditions. In
particular, it is sufficient that Ω be a polygonal domain subject to a quasi-uniform quadrilateral subdivision
and that |nk|2 be appropriately bounded above and below. Additionally, it is required that we are close
enough to the solution that λk is pointwise non-negative and that κ = 1 or satisfies the small data assumption
in [1, Lemma 3.8]. If the discrete space for δλ is piecewise constants, P0, and the discrete space for δn is the
space of piecewise C0 polynomials of degree p ≥ 1, Qp, enriched with proper bubble functions, then ã(·, ·)
is coercive and b(·, ·) is weakly coercive [1]. Thus, a(·, ·) is coercive as long as εa < 0 or the magnitude of
∇φk is not too large. Therefore, Lemma 4.2 implies that no additional inf-sup condition for φ is necessary
to guarantee uniqueness of the solution to the system in (3.3), and the discretization space for φ may be
freely chosen without concern for stability.

5. Numerical Methodology

The algorithm to perform the minimization discussed in previous sections has three stages; see Algorithm
1. The outermost phase is nested iteration (NI) [23, 26], which begins on a specified coarsest grid level.
Newton iterations are performed on each grid, updating the current approximation after each step. The
stopping criterion for the Newton iterations at each level is based on a specified tolerance for the current
approximation’s conformance to the first-order optimality conditions in the standard Euclidean l2 norm. The
resulting approximation is then interpolated to a finer grid. The current implementation performs uniform
grid refinement after each set of Newton iterations.
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The linear system for each Newton step has the anticipated saddle-point block structure, detailed in (4.1).
The matrix is inverted using LU decomposition in order to solve for the discrete updates δnh, δφh, and δλh.
Finally, an incomplete Newton correction is performed. That is, the new iterates are given by nk+1

φk+1

λk+1

 =

 nk
φk
λk

+ ω

 δnh
δφh
δλh

 , (5.1)

where ω ≤ 1. This is to ensure relatively strict adherence to the constraint manifold, which is necessary for
the invertibility discussed above. For this algorithm, ω is chosen to begin at 0.2 on the coarsest grid and
increases by 0.2, to a maximum of 1, after each grid refinement, so that as the approximation converges,
larger Newton steps are taken. The grid management and discretizations are implemented using the deal.II
finite-element library, which is an aggressively optimized and parallelized open-source library widely used
in scientific computing [4, 5]. In practice, Q2–Q2–P0 discretizations were observed to experimentally admit
unique solutions and were used to approximate δnh, δφh, and δλh, respectively, on each grid for the following
numerical tests.

Algorithm 1: Newton’s method minimization algorithm with NI

0. Initialize (n0, φ0, λ0) on coarse grid.
while Refinement limit not reached do

while First-order optimality conformance threshold not satisfied do
1. Set up discrete linear system (3.3) on current grid, H.
2. Solve for δnH , δφH , and δλH .
3. Compute nk+1, φk+1, and λk+1 as in (5.1).

end
4. Uniformly refine the grid.
5. Interpolate nH → nh, φH → φh, and λH → λh.

end

5.1. Freedericksz Transition Results. The general test problem in this section considers a classical do-
main with two parallel substrates placed at distance d = 1 apart. The substrates run parallel to the
xz-plane and perpendicular to the y-axis. It is assumed that this domain represents a uniform slab in the
xy-plane. That is, n may have a non-zero z component but ∂n

∂z = 0. Hence, we consider the 2-D domain
Ω = {(x, y) | 0 ≤ x, y ≤ 1}. The problem assumes periodic boundary conditions at the edges x = 0 and
x = 1. Dirichlet boundary conditions are enforced on the y-boundaries. As discussed above, the simplification
outlined in (3.2) is relevant for this domain and boundary conditions.

The first numerical experiment considers simple director boundary conditions, such that n, along both
of the substrates, lies uniformly parallel to the x-axis. The boundary conditions for the electric potential,
φ, are such that φ = 0 on the lower substrate at y = 0 and φ = 1 at y = 1. The relevant constants for
the problem are detailed in Table 1. Since the electric anisotropy constant, εa, is positive, the expected
behavior for the liquid crystal configuration is a Freedericksz transition [16,30] so long as the applied field is
strong enough to overcome the inherent elastic effects of the system. That is, for an applied voltage above
a critical threshold, known as a Freedericksz threshold [27], the liquid crystal configuration will depart from
uniform alignment parallel to the x-axis and instead tilt in the direction of the applied field. The problem
considered has an analytical solution [27, pg. 92-93] demonstrating this behavior. The critical voltage is

given by Vc = π
√

K1

ε0εa
. For the constants detailed in Table 1, this implies a Freedericksz threshold of 0.7752.

Thus, the anticipated solution should demonstrate a true Freedericksz transition away from uniform free
elastic alignment. Indeed, the final computed solution in Figure 1, displayed alongside the initial guess for
the algorithm, displays the expected transition.

The problem is solved on a 4 × 4 coarse grid with seven successive uniform refinements resulting in a
512× 512 fine grid. The minimized functional energy is F2 = −5.330, compared to the initial guess energy
of 7.416. Figure 2 details the number of Newton iterations necessary to reduce the residual below the given
tolerance, 10−3, on each grid. Note that a sizable majority of the Newton iteration computations are isolated
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Elastic Constants K1 = 1 K2 = 0.62903 K3 = 1.32258 κ = 0.475608

Electric Constants ε0 = 1.42809 ε‖ = 18.5 ε⊥ = 7 εa = 11.5

Table 1. Relevant liquid crystal constants for Freedericksz transition problem.

Figure 1. Initial guess (left) on 4× 4 mesh with initial free energy of 7.416 and resolved
solution (right) on 512× 512 mesh (restricted for visualization) with final free energy of -5.330 for
Freedericksz transition.

to the coarsest grids, with the finest grids requiring only one Newton iteration to reach the tolerance limit.
Assuming the presence of solvers that scale linearly with the number of non-zeros in the matrix, the work
required in these iterations is roughly 1.43 times that of assembling and solving a single linearization step
on the finest grid. Without the use of nested iteration, the algorithm requires 78 Newton steps on the finest
grid, alone, to reach a similar error measure.
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Figure 2. L2 error (left) and Newton iterations (right) per grid for the Freedericksz transition.

Also detailed in Figure 2 is the reduction in overall L2-error comparing the analytical solution to the
resolved solution on each grid. Note that the error is approximately reduced by a full order of magnitude on
each successive grid, corresponding to approximately order h3 reductions in overall error. Moreover, for the
finer grids, a single Newton step was sufficient to achieve such a reduction.

5.2. Electric Field with Patterned Boundary Conditions Results. In the second run, more com-
plicated boundary conditions are considered. Letting r = 0.25 and s = 0.95, the boundary conditions
considered were

n =
(
0, cos

(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
, sin

(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

))
,

where Xm = −s sin(2π(x+r))
−s cos(2π(x+r))−1 and Xp = −s sin(2π(x+r))

−s cos(2π(x+r))+1 . Such boundary conditions are meant to simulate

nano-patterned surfaces important in current research [2,3]; see the substrate boundaries in Figure 3. Even in
the absence of electric fields, such patterned surfaces result in complicated director configurations throughout
the interior of Ω.
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The same constants outlined in Table 1 are used for this problem. However, a stronger voltage such
that φ = 2 on the substrate at y = 1 is applied. Along the other substrate, φ remains equal to 0. The
final solution, as well as the initial guess, are displayed in Figure 3. For this problem, the grid progression
begins on a 4 × 4 grid with five successive uniform refinements ascending to a 128 × 128 fine grid. The
minimized functional energy is F2 = −41.960, compared to the initial guess energy of −40.731. In Table
2, the number of Newton iterations per grid is detailed as well as the conformance of the solution to the
first-order optimality conditions after the first and final Newton steps, respectively, on each grid. As with
the previous example, much of the computational work is relegated to the coarsest grids. Here, the total
work required is approximately 3.35 times that of assembling and solving a single linearization step on the
finest grid. In contrast, without nested iteration, the algorithm requires 49 Newton steps on the 128 × 128
fine grid, alone, to satisfy the tolerance limit. The average length of the director for the resolved solution
exactly conforms to the unit length constraint.

Figure 3. Initial guess (left) on 4× 4 mesh with initial free energy of −40.731 and resolved
solution (right) on 128× 128 mesh (restricted for visualization) with final free energy of -41.960
for nano-patterned boundary.

Grid Dimensions Newton iterations Initial Residual Final Residual Avg. |n|2
4× 4 44 1.44e+01 9.86e-04 1

8× 8 18 5.46e-00 9.44e-04 1

16× 16 10 2.01e-00 5.41e-04 1

32× 32 6 9.91e-01 3.17e-04 1

64× 64 3 5.52e-01 3.14e-07 1

128× 128 2 2.36e-01 1.36e-04 1

Table 2. Grid and solution progression for electric problem with nano-patterned boundary.

Due to the sizable applied electric field, and the elastic influence of the central boundary condition pattern
aligned with the electric field, the expected configuration is a quick transition from the boundary conditions
to uniform alignment with the field. That is, the strength of the Freedericksz transition on the interior of
Ω is augmented by the presence of this type of patterned boundary condition. This behavior is accurately
resolved in the computed solution.

6. Summary and Future Work

We have discussed a constrained minimization approach to solving for liquid crystal equilibrium con-
figurations in the presence of applied electric fields. Such minimization is founded upon the electrically
augmented Frank-Oseen model. Due to the nonlinearity of the continuum first-order optimality conditions,
Newton linearizations were needed. The discrete Hessian arising in the finite-element discretization of these
linearized systems was shown to be invertible under certain assumptions on the bilinear forms. Using the
finite-element spaces discussed in [1], these assumptions are satisfied. Future work will include developing
tailored solvers for these systems.

Numerical results demonstrated the accuracy and efficiency of the algorithm in resolving both classical
and complicated features induced by applied fields. The minimization approach overcomes some difficulties
inherent to the liquid crystal equilibrium problem, such as the nonlinear unit length director constraint
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and effectively deals with heterogeneous Frank constants. The algorithm also productively utilizes nested
iterations to reduce computational costs by isolating much of the computational work to the coarsest grids.
The above method is currently being extended to include flexoelectric effects in order to more accurately
capture physical phenomenon important to many applications, such as the study of bistable devices [9].
Future work will also include the study of effective adaptive refinement and linearization tolerance schemes.
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