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Abstract. Reliable estimates for the condition number of a large (sparse) matrix A are important
in many applications. To get an upper bound for the condition number κ(A), a lower bound for
the smallest singular value is needed. Krylov subspaces are usually unsuitable for finding a good
approximation to the smallest singular value. Therefore, we study extended Krylov subspaces which
turn out to be ideal for the simultaneous approximation of both the smallest and largest singular
value of a matrix. First, we develop a new extended Lanczos bidiagonalization method. With this
method we obtain a guaranteed lower bound for the condition number. Moreover, the method also
yields a probabilistic upper bound for κ(A). This probabilistic upper bound holds with a user-chosen
probability.
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1. Introduction. Let A ∈ Rn×n be a large, nonsingular matrix. Let A = XΣY T

be the singular value decomposition of A, where X and Y are n × n matrices with
orthonormal columns containing the left and right singular vectors of A, respectively.
Furthermore, Σ is an n × n diagonal matrix with positive real entries containing the
singular values of A that are numbered in decreasing order,

σ1 ≥ · · · ≥ σn > 0.

We are interested in the important problem of approximating the condition number
of A

κ(A) = ‖A‖ ‖A−1‖ =
σ1
σn
,

where ‖ · ‖ stands for the 2-norm. The (Golub–Kahan–)Lanczos bidiagonalization
method [2] gives an approximation, a lower bound, for the maximum singular value
σ1 of A. In addition, an upper bound for the minimum singular value is obtained, but
this is usually a rather poor bound (see, for example, the experiments in Section 5).
To approximate the condition number, good approximations to σn are needed.

This paper has three contributions. First, we develop a new extended Lanczos
bidiagonalization method. The method generates a basis for the extended Krylov
subspace:

Kk+1,k+1(ATA,v) = span{(ATA)−kv, . . . , (ATA)−1v,v, ATAv, . . . , (ATA)kv}.

Extended Krylov subspace methods have been studied recently by various authors
[1, 6, 7, 8, 12]. The second contribution of this paper is that we obtain a guaran-
teed lower bound for σ1 and a guaranteed upper bound for σn (that is much smaller
than the one obtained with the standard Lanczos bidiagonalization), which leads to
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a guaranteed lower bound of good quality for the condition number of A. Third, we
obtain a probabilistic upper bound for the condition number. Recently, probabilistic
techniques have become popular, see for instance [3, 4, 13]. An important feature of
the Lanczos bidiagonalization procedure is that the starting vector can be (and often
is) chosen randomly. The probability that this vector has a very small component in
the direction of the singular vector we are interested in is small. Another characteristic
of the procedure is that during the bidiagonalization process polynomials implicitly
arise. These two properties are exploited in [4] to obtain a probabilistic upper bound
for σ1. The bound holds with a user-chosen probability. In the extended Lanczos bidi-
agonalization we will expand the techniques from [4] to obtain both a probabilistic
lower bound for σn and a probabilistic upper bound for σ1, leading to a probabilistic
upper bound for κ(A).

2. Extended Lanczos bidiagonalization. The algorithm we develop starts
with a random vector v0 with norm one. We express v0 as linear combination of the
right singular vectors yi

(2.1) v0 =
n∑
i=1

γi yi.

Notice that both the yi and γi are not known. The extended Lanczos bidiagonalization
method repeatedly applies the matrices A, AT , A−T , and A−1. In every step a gen-
erated vector is orthogonalized with respect to the previous constructed vectors, and
then normalized. This procedure can be visualized as a string of operations working
on vectors:

v0
A−−−→ u0

AT−−−−→ v1
A−T
−−−−−→ u−1

A−1

−−−−→ v−1
A−−−→ u1

AT−−−−→ . . .

Note that in this visualization the orthogonalization and orthonormalization of the
vectors are not shown. In this scheme, applying the operation A−T after AT (and A
after A−1) may seem contradictory, but since the vectors are orthogonalized in be-
tween this truly yields new vectors. Another way to represent this procedure is the
table below:

Step Action Generated Action Generated Action Generated Action Generated

0 Av0 u0 ATu0 v1 A−Tv1 u−1 A−1u−1 v−1

1 Av−1 u1 ATu1 v2 A−Tv2 u−2 A−1u−2 v−2

...
k − 1 Av−k+1 uk−1 ATuk−1 vk A−Tvk u−k A−1u−k v−k

During the procedure, the generated vectors vj are normalized after being orthogo-
nalized with respect to all previous generated vi, i.e., for k ≥ 1

vk ⊥ {v0,v1,v−1, . . . ,vk−1,v−k+1}, v−k ⊥ {v0,v1,v−1, . . . ,v−k+1,vk}.

Similarly, all generated vectors uj have unit norm and

uk−1 ⊥ {u0,u−1,u1, . . . ,uk−2,u−k+1}, u−k ⊥ {u0,u−1,u1, . . . ,u−k+1,uk−1}.
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Define the matrices

V2k = [v0,v1,v−1, . . . ,vk],

V2k+1 = [V2k,v−k],

U2k−1 = [u0,u−1,u1, . . . ,uk−1],

U2k = [U2k−1,u−k].

The columns of these matrices are orthonormal and they span the corresponding
subspaces V2k, V2k+1, U2k−1, and U2k, respectively. After k steps the algorithm gives
rise to the following expressions:

(2.2)

AV2k+1 = U2k+1T2k+1,2k+1,

ATU2k−1 = V2k(T2k−1,2k)
T = V2k−1(T2k−1,2k−1)

T + βk−1 vk e
T
2k−1,

A−TV2k = U2kH
T
2k,2k,

A−1U2k = V2k+1H2k+1,2k = V2kH2k,2k + δk v−k e
T
2k.

Here, e2k is the 2kth unit vector and the coefficients βk−1 and δk are entries of the
matrices T and H and will be specified below. The matrices T and H turn out to be
tridiagonal matrices with a special structure as we will show in the next proposition.
The leading submatrices T2k−1 ∈ R(2k−1)×(2k−1) and H2k ∈ R(2k)×(2k) are given by

T2k−1 = UT2k−1AV2k−1, H2k = V T
2kA

−1U2k.

Proposition 2.1.
(a) The matrix T2k−1 is tridiagonal and of the form

α0 β0
α1

β−1 α−1 β1
α2

β−2 α−2 β2
α3

. . .


,

where its entries satisfy

t2j,2j = αj = ‖A−Tvj‖−1 = ‖ATu−j‖,
t2j+1,2j = β−j = uTj Avj ,

t2j+1,2j+1 = α−j = uTj Av−j ,

t2j+1,2j+2 = βj = ‖ATuj − (uTj Avj)vj − (uTj Av−j)v−j‖.

(b) The matrix H2k is tridiagonal and of the form

α−10 δ0
α−11

δ1 α−1−1 δ−1
α−12

δ2 α−1−2 δ−2
α−13

. . .


,
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where its entries satisfy

h2j,2j = αj = ‖A−Tvj‖−1 = ‖ATu−j‖,
h2j+1,2j = δj = ‖Av−j‖−1,
h2j+1,2j+1 = α−j = uTj Av−j ,

h2j+1,2j+2 = δ−j = ‖ATuj − (uTj Avj)vj − (uTj Av−j)v−j‖.

Let θ
(2k−1)
1 ≥ · · · ≥ θ

(2k−1)
2k−1 be the singular values of T2k−1, and ξ

(2k)
1 ≥ · · · ≥ ξ

(2k)
2k be

the singular values of H2k. These values are approximations of the singular values of
A and A−1, respectively. We will avoid the use of superscripts if this is clear from the
context. Further, let cj and dj indicate the corresponding right singular vectors of
T2k−1 and H2k, respectively. We will now study the behavior of these values θj and
ξj to obtain guaranteed bounds for the extreme singular values of A.

Proposition 2.2.
(a) For 1 ≤ j ≤ 2k − 1 the singular values of T2k−1 converge monotonically to the

largest singular values of A:

θ
(2k−1)
j ≤ θ(2k)j ≤ σj(A).

(b) For 1 ≤ j ≤ 2k − 1 the inverse singular values of H2k converge monotonically to
the smallest singular values of A:

σn−j+1(A) =
(
σj(A

−1)
)−1 ≤ (ξ(2k)j

)−1 ≤ (ξ(2k−1)j

)−1
.

Proof. The matrix T2k−1 can be seen as the matrix T2k from which the 2kth row
and column have been deleted. The same can be said of the matrices H2k−1 and H2k.
Now we apply [5, Cor. 3.1.3].

Proposition 2.2 shows in particular that the largest singular value of the matrices
T2k−1 converges monotonically to σ1, and the inverse of the largest singular value of
the matrices H2k converges monotonically to σn. After the kth step of the procedure,

we obtain the value θ
(2k−1)
1 , a guaranteed lower bound for σ1, and the value (ξ

(2k)
1 )−1,

a guaranteed upper bound for σn.

Proposition 2.3. After the kth step of the extended Lanczos bidiagonalization
we obtain a guaranteed lower bound for the condition number of A:

(2.3) κlow(A) = θ1ξ1 ≤
σ1
σn

= κ(A).

The experiments in Section 5 show for different matrices that the guaranteed lower
bound achieved by the extended Lanczos bidiagonalization may often be very good.

We can reformulate the expressions in (2.2) to see the similarities with the ex-
tended Lanczos method, see, e.g., [7], with starting vector v0 and matrix ATA:

(2.4)

ATAV2k−1 = ATU2k−1T2k−1,2k−1

= V2k−1(T2k−1,2k−1)
TT2k−1,2k−1 + βk−1 vk e

T
2k−1T2k−1,2k−1

(ATA)−1V2k = A−1U2kH
T
2k,2k

= V2kH2k,2kH
T
2k,2k + δk v−k e

T
2kH

T
2k,2k.
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In this extended Lanczos process the symmetric matrices (T2k−1,2k−1)
TT2k−1,2k−1 and

H2k,2kH
T
2k,2k are generated. They are both the formation of two tridiagonal matri-

ces with a special structure, namely the matrices obtained from the extended Lanczos
bidiagonalization, and they appear to be pentadiagonal. Furthermore, this way of rep-
resenting the procedure will be convenient in the next section where we will introduce
Laurent polynomials.

3. Polynomials arising in extended Lanczos bidiagonalization. In every
step of the extended Lanczos bidiagonalization procedure four different vectors are
generated (assuming there is no breakdown). For brevity we will focus on the vectors
vk and v−k, but analogous statements can be made about the vectors uk and u−k.
Since these vectors lie in an extended Krylov subspace, they can be expressed using
polynomials:

vk = pk(A
TA)v0 ∈ Kk,k+1(ATA,v0)

v−k = p−k(A
TA)v0 ∈ Kk+1,k+1(ATA,v0).

The polynomials pk and p−k are Laurent polynomials of the form

pk(t) =
k∑

j=−k+1

a
(k)
j tj , p−k(t) =

k∑
j=−k

a
(−k)
j tj .

Recall that θ
(2k−1)
1 ≥ · · · ≥ θ(2k−1)2k−1 are the singular values of T2k−1, the singular values

of H2k are ξ
(2k)
1 ≥ · · · ≥ ξ(2k)2k , and cj and dj indicate the corresponding right singular

vectors of T2k−1 and H2k, respectively.

Proposition 3.1. The zeros of the polynomial pk are exactly θ21, . . . , θ
2
2k−1, and

the zeros of the polynomial p−k are exactly ξ−21 , . . . , ξ−22k .

Proof. Let j ∈ {1, . . . , 2k−1}. Using (2.4) it can be easily seen that the Galerkin
condition holds for the pair (θ2j , V2k−1cj):

ATAV2k−1cj − θ2jV2k−1cj ⊥ V2k−1.

Further, since V2k−1cj ∈ V2k−1 it follows that

(ATA− θ2j I)V2k−1cj ∈ span{(ATA)−k+1v0, . . . , (A
TA)kv0}.

For all j = 1, . . . , 2k − 1 we have that (ATA− θ2j I)V2k−1cj ∈ V2k but is orthogonal to

V2k−1. This means that for all j = 1, . . . , 2k − 1 the vector (ATA − θ2j I)V2k−1cj is a

nonzero multiple of vk = pk(A
TA)v0. Hence pk(t) should contain all factors t − θ2j .

We know that pk(t) =
k∑

j=−k+1

a
(k)
j tj , and thus pk has to be a nonzero multiple of

ν(t) = t−k+1 · (t− θ21) · · · (t− ξ22k−1).

Similarly, let i ∈ {1, . . . , 2k}. Using (2.4) it can be easily seen that the Galerkin
condition holds for the pair (ξ2i , V2kdi):

(ATA)−1V2kdi − ξ2i V2kdi ⊥ V2k.
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Further, since V2kdi ∈ V2k it follows that

((ATA)−1− ξ2i I)V2kdi ∈ span{(ATA)−kv0, . . . , (A
TA)kv0}.

For all i = 1, . . . , 2k we have that ((ATA)−1 − ξ2i I)V2kdi ∈ V2k+1, but also orthogonal
to V2k. This means that for all i = 1, . . . , 2k − 1 the vector ((ATA)−1 − ξ2i I)V2kdi
is a nonzero multiple of v−k = p−k(A

TA)v0. Hence p−k(t) should contain all factors

t−1 − ξ2i . We know that p−k(t) =

k∑
i=−k

a
(−k)
i ti, and thus p−k has to be a nonzero

multiple of

µ(t) = tk · (t−1 − ξ21) · · · (t−1 − ξ22k).

Note that the proofs in [4, p. 467] and [11, p. 266–267] follow the same line of reason-
ing.

We recall from Proposition 2.2 that for increasing k the largest singular value of T2k−1
converges monotonically to σ1, and the inverse of the largest singular value of H2k

converges monotonically to σn. This implies that the largest zero of polynomial pk
increases monotonically to σ21. Likewise, the smallest zero of polynomial p−k decreases
monotonically to σ2n. These polynomials are used in the next section to obtain prob-
abilistic bounds for both the largest and smallest singular value of A.

4. Probabilistic bounds for the condition number. After step k, the ex-
tended Lanczos bidiagonalization implicitly provides Laurent polynomials pk and p−k.
In the previous section we have seen what the zeros of pk and p−k are (Proposition
3.1). Moreover, the polynomials |pk| and |p−k| are strictly increasing to the right of
their largest zero and also to the left of their smallest zero, for t→ 0. These properties
will lead to the derivation of a probabilistic upper bound for κ(A). Therefore, we first
observe the two equalities

1 = ‖vk‖2 = ‖pk(ATA)v0‖2 = ‖
n∑
i=1

pk(A
TA)γiyi‖2 =

n∑
i=1

γ2i pk(σ
2
i )

2,

1 = ‖v−k‖2 = ‖p−k(ATA)v0‖2 = ‖
n∑
i=1

p−k(A
TA)γiyi‖2 =

n∑
i=1

γ2i p−k(σ
2
i )

2.

Here we used, in view of (2.1), that ATAyi = σ2i yi and the fact that the right singular
vectors yi are orthonormal. Since the obtained sums only consist of nonnegative terms,
we conclude that

(4.1) |pk(σ21)| ≤ 1

|γ1|
, and |p−k(σ2n)| ≤ 1

|γn|
.

If γ1 would be known, the first estimate in (4.1) would provide an upper bound for
‖A‖2 = σ21, namely the largest zero of the function

f1(t) = |pk(t)| −
1

|γ1|
.
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Similarly, if γn would be known, the second estimate in (4.1) would provide a lower
bound for ‖A−1‖−2 = σ2n, namely the smallest zero of the function

f2(t) = |p−k(t)| −
1

|γn|
.

However, both γ1 and γn are unknown. Therefore we will compute a value δ that
will be a lower bound for |γ1| and |γn| with a user-chosen probability. Suppose that
|γ1| < δ. Then the largest zero of f δ1 (t) = |pk(t)|− 1

δ is smaller than the largest zero of
fγ11 (t) = |pk(t)| − 1

|γ1| and thus may be less then σ21. This means that δ may not give
an upper bound for σ1. We now compute the value δ such that the probability that
|γ1| < δ (or |γn| < δ) is small, namely ε. Let Sn−1 be the unit sphere in Rn. We choose
the starting vector v0 randomly from a uniform distribution on Sn−1 (Matlab code:
v1=randn(n,1); v1=v1/norm(v1)), see, e.g., [9, p. 1116], which (by an orthogonal
transformation) implies that (γ1, . . . , γn) is also random with respect to the uniform
distribution on Sn−1.

Lemma 4.1. Assume that the starting vector v0 has been chosen randomly with
respect to the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γ1| ≤ δ) = 2B(n−12 , 12)−1 ·
∫ arcsin(δ)

0
cosn−2(t) dt,

where B denotes Euler’s Beta function: B(x, y) =
∫ 1
0 t

x−1(1 − t)y−1dt, and P stands
for probability.

Proof. See [13, Lemma 3.1].

The user selects the probability ε = P (|γ1| ≤ δ), i.e., the probability that the computed
bound may not be an upper bound for the singular value σ1. Given this user-chosen
ε we have to determine the δ for which

(4.2)

∫ arcsin(δ)

0
cosn−2(t) dt = 1

2 εB(n−12 , 12).

The δ can be computed for instance by using Newton’s method. With this δ we
can compute two probabilistic bounds, namely the square root of the largest zero of
the function f δ1 and square root of the smallest zero of the function f δ2 . Computing
these values can be done with Newton’s method or with bisection. We thus acquire a
probabilistic upper bound for σ1 and a probabilistic lower bound for σn:

σ1 < σprobup and σn > σproblow .

Both inequalities are true with probability at least 1− ε. Since the coefficients γ1 and
γn are chosen independently, the probability that both inequalities hold is at least
1− 2ε. This proves the following theorem and corollary.

Theorem 4.2. Assume that the starting vector v0 has been chosen randomly
with respect to the uniform distribution over Sn−1. Let ε ∈ (0, 1) and let δ be given by

(4.2). Then σprobup , the square root of the largest zero of the polynomial

(4.3) f δ1 (t) = |pk(t)| −
1

δ
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is an upper bound for σ1 with probability at least 1− ε. Also, σproblow , the square root of
the smallest zero of the polynomial

(4.4) f δ2 (t) = |p−k(t)| −
1

δ

is a lower bound for σn with probability at least 1− ε.

Combining these two bounds leads to a probabilistic upper bound for the condition
number of A.

Corollary 4.3. The inequality

(4.5) κ(A) =
σ1
σn
≤ σprobup

σproblow

= κup(A).

holds with probability at least 1− 2ε.

5. Numerical experiments. We present the pseudocode for the extended Lanc-
zos bidiagonalization method including the computation of a guaranteed lower bound
and a probabilistic upper bound for the condition number. We test the method to
quickly estimate the condition number for some large matrices. The matrices we
choose are real and nonsymmetric (except for the second) and the number contained
in their name indicates the size of the square matrix (memplus is an 17758 × 17758
matrix and sherman5 is 3312 × 3312). Most of these matrices can be found in the
Matrix Market [10]. The extended Lanczos bidiagonalization method constructs a
basis for the Krylov subspace Kk+1,k+1(ATA,v0) with dimension 2k + 1. Therefore,
we compare the method to standard Lanczos bidiagonalization that builds a Krylov
subspace K2k+1(ATA,v0) of dimension 2k + 1. Standard Lanczos bidiagonalization
builds a bidiagonal matrix B2k+1,2k+2 (see, for instance, [2]), and its condition num-
ber gives a lower bound for κ(A). The starting vector v0 is randomly chosen from
a uniform distribution on Sn−1 as explained in Section 4. For these experiments we
choose ε = 0.01 which corresponds to a reliability of at least 98% for the bounds for
the condition number to be true (see Section 4). We use bisection to compute δ and to
compute the largest and smallest zero of f δ1 and f δ2 , respectively (see (4.3) and (4.4)).
Extended Lanczos bidiagonalization is computationally more expensive compared to
standard Lanczos bidiagonalization, but since the bounds are so superior to those of
the standard Lanczos bidiagonalization this extra cost is fully justified. Finally, we
compute the ratios κ(A)/κlow(A) and κup(A)/κlow(A) (see (2.3) and (4.5)). In our
experiments we used a fixed k. The next step would be to adaptively choose k given
a user-selected ε and desired ratio κup(A)/κlow(A).

6. Discussion and conclusions. We have proposed a new extended Lanczos
bidiagonalization method. This method leads to tridiagonal matrices with a special
structure. Further, the method provides a guaranteed lower bound for κ(A) of good
quality. Also, it yields a tight probabilistic upper bound for κ(A), already after a mod-
est number of steps. Extended Lanczos bidiagonalization is more expensive than the
standard Lanczos bidiagonalization, but it outperforms the standard method giving
much tighter guaranteed lower bounds for the condition number and also probabilistic
upper bounds. In our experiments we used a fixed k. Currently, we are developing a
code that chooses k given a user-selected ε and desired ratio κup(A)/κlow(A).
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Algorithm: Extended Lanczos bidiagonalization method with lower and probabilistic upper bounds

Input: Nonsingular matrix A, random starting vector v0, probability level ε, extended Krylov di-

mension 2k + 1 (we build a basis for Kk+1,k+1(ATA,v0)).

Output: A guaranteed lower bound κlow(A) and a probabilistic upper bound κup(A) for the condi-

tion number κ(A). The probability that κ(A) ≤ κup(A) holds is at least 1− 2ε.

1: Determine δ from n and ε, see (4.2)
2: for j = 0, . . . , k − 1
3: u = Av−j
4: α−j = ‖u‖
5: uj = u /α−j
6: v = ATuj
7: if j > 0
8: β−j = vTj v
9: v = v − β−jvj

10: end
11: v = v − α−jv−j
12: βj = ‖v‖
13: vj+1 = v / βj
14: w = A−Tvj+1

15: αj+1 = ‖w‖−1

16: u−(j+1) = αj+1w
17: z = A−1u−(j+1)

18: δ−j = vT−jz
19: z = z− δ−jv−j − α−1

j+1vj+1

20: δj+1 = ‖z‖
21: v−(j+1) = z / δj+1

22: end
23: Determine the largest singular values θ1 of T2k−1 and ξ1 of H2k

24: Compute guaranteed lower bound κlow(A) = θ1ξ1 for κ(A) (2.3)

25: Determine probabilistic upper bound σprob
up for σ1 with probability ≥ 1− ε using fδ1 (4.3)

26: Determine probabilistic lower bound σprob
low for σn with probability ≥ 1− ε using fδ2 (4.4)

27: Compute probabilistic upper bound κup(A) = σprob
up / σprob

low for κ(A) (4.5)

Table 5.1: The approximations of the condition number of different matrices using a stan-
dard Lanczos bidiagonalization method, and using extended Lanczos bidiagonalization. Both
methods give a guaranteed lower bound for the condition number of the matrix. Extended
Lanczos bidiagonalization also gives a probabilistic upper bound for the condition number
that holds with probability at least 98% (ε = 0.01). We also give the ratios κ(A)/κlow(A) and
κup(A)/κlow(A).

Lan. BD Ext. Lan. BD Ratios
Matrix A κ(A) Guar. l.b. κlow(A) κup(A) κ(A)/κlow(A) κup(A)/κlow(A)

af23560 1.98 · 104 1.80 · 101 1.81 · 104 2.05 · 104 1.10 1.13
diag(1:10000) 1.00 · 104 1.37 · 101 9.72 · 103 1.23 · 104 1.03 1.27
dw2048 2.09 · 103 1.31 · 101 1.99 · 103 2.52 · 103 1.05 1.26
dw8192 3.81 · 106 4.64 · 101 3.78 · 106 4.32 · 106 1.01 1.14
grcar10000 3.63 · 100 3.59 · 100 3.57 · 100 4.75 · 100 1.02 1.33
memplus 1.29 · 105 7.62 · 101 1.28 · 105 1.42 · 105 1.01 1.11
olm5000 3.71 · 107 1.49 · 101 3.67 · 107 4.55 · 107 1.01 1.24
sherman5 1.88 · 105 6.02 · 101 1.88 · 105 1.88 · 105 1.00 1.00
tols2000 6.00 · 106 1.50 · 101 5.81 · 106 6.97 · 106 1.03 1.20
tols4000 2.36 · 107 1.60 · 101 2.31 · 107 2.75 · 107 1.02 1.19
utm5940 4.35 · 108 1.60 · 101 4.07 · 108 5.04 · 108 1.07 1.24
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