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Abstract. Much is known about properties of linear solvers with regard to their stability, convergence rates, complexity,
and efficiency, but little is known about their ability to handle bit-flips that can lead to silent data corruptions (SDCs). As
supercomputers continue to add more cores to increase the performance of the machine, they are becoming more susceptible to
SDCs. Going forward it is paramount that studies on the impact of SDCs on algorithms and applications in widespread use be
conducted. This paper looks at the linear solver Algebraic Multigrid in a environment where bit-flips are possible. We propose
an algorithmic based detection and recovery scheme that maintains the numerical properties of AMG while maintaining near
perfect convergence rates in faulty environments.
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1. Introduction. Many scientific applications from modeling blood flow to electromagnetics depend
upon sparse matrix structures, which are central to the underlying linear algebra computations. These types
of computations comprise a sizable percent of high performance computing (HPC) workloads. One of the
most crucial computations is solving a linear system. Much is known about the efficiency and scalability
of linear solvers, but their behavior in the presence of faults is still unclear. Current and emerging HPC
architectures are expected to experience higher levels of faults than before. In order to efficiently utilize
these resources, we need to elevate fault consideration to a first class priority. Resiliency techniques need to
be developed and analyzed to allow linear solvers the ability to remain efficient and scalable on emerging
HPC architectures.

Modern scientific and engineering computing relies on solving large systems of linear equations. The
matrices that arise from modeling real world phenomena often have sparse structures. Sophisticated solvers
can be employed to take advantage of this sparsity. One popular solver that has shown its flexibility across
a range of different architectures is Algebraic Multigrid (AMG) [11] [21] [5]. AMG continues to gain interest
from many researchers in both industry and academia due to its potential scalability, robustness, and effi-
ciency as a O (n) linear solver. As computing capabilities progress over then next several years demands on
the solver will increase.

As machines are built using a higher number of cores the individual cores themselves are not becoming
more reliable, therefore, as the number of cores in a system increases, the mean time between interruption
decreases. Because of this, fault tolerance and resilience are receiving increased attention. Most of this
attention is devoted to developing traditional checkpoint-restart libraries [17] [4], however, some approaches
are based upon a reworking of the algorithm itself to reduce its susceptibility to faults [8].

Main deterrents for checkpoint-restart schemes are increases in time and energy for a run to complete.
Modern approaches attempt to address these issues, but more can be done via the use of algorithmic ap-
proaches. The use of algorithmic based fault tolerance will increase the resiliency of the application while
at the same time lowering the time and energy required. The focus of this paper is on utilizing algorithmic
based fault tolerance to improve resiliency of AMG. Understanding the level of resiliency that can be pro-
vided by AMG on emerging architectures is vital if AMG is to become the solver of choice for current and
future machines.

To motivate the need for fault detection and recovery in AMG, let’s look at the residual history, Figure
1.1, for the solution of a 2D anisotropic diffusion problem, the problem used in Section 4. A single fault
is inject into the residual calculation before restriction during the second iteration on the second coarsest
level. This fault is a single bit-flip in the first element of the residual vector. This fault doesn’t lead to a
segmentation fault and is thus potently masked. Depending upon what bit was flipped, the number of extra
iterations required to achieve the convergence tolerance of 1e−11 ranges from 0 to 136.
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Fig. 1.1: Motivation for fault detection and correction.

To alleviate these extreme convergence times, this paper makes the following contributions:

• Low overhead algorithmic based recovery scheme for AMG
• Low cost SDCs detectors for iterative linear solvers
• AMG specific SDCs detectors

2. Background.

2.1. Algebraic Multigrid. Sparse matrix computation is a fundamental kernel in numerical comput-
ing. Solving the linear system Ax = b by direct methods incurs increasingly long execution times as the
number of unknowns increases. These direct methods are ill-suited for the sparse nature of many science
and engineering applications. Instead, we can create iterative algorithms that take advantage of these sparse
systems. One such iterative algorithm is Algebraic Multigrid (AMG) [11] [21] [5].

AMG initially proceeds by refining the solution x0 via the use of a smoother until its convergence slows.
At this point all high frequency error has been removed, but low frequency error remains. This error can
be smoothed out but with considerable work. The observation that this low frequency error will appear
oscillatory if sampled on a coarser gird motivates the idea behind AMG. On this coarser grid AMG chooses
to solve the residual equation Ae = r, but since this system has less unknowns that the original the residual
vector must be restricted via the use of a linear operator defined when constructing the coarser version of
A. The residual equation is used because assuming that e = 0 is a good initial guess. Solution to this newly
formed linear system is accomplished by a smoother with the option to recurse and create another level in
the hierarchy, or if the system is small or dense enough a direct solve for the error can be computed. Once
a solution to an equation on a coarser gird is found, it must be interpolated to the finer grids and added
into the solution on that level as a correction. However other traversal strategies are possible; traversing
thought the levels from finest to coarsest and back to finest is know as a V-cycle and is the predominate way
to traverse the AMG hierarchy.

2.2. Resilience. Resilience is not a new problem in computing. The first vacuum tube computers
suffered a high failure rate, on the order of a few days. Once the problem was discovered, it took on the
order of an hour to find the correct tube and replace the faulty tube. With the advent of transistors and
integrated circuits, the reliability of the underlying hardware increased, but with the small feature sizes of
today and computing in low power environments, fault awareness is making a resurgence.

Not every hardware component has the same level of reliability. DRAM and SRAM are susceptible to bit
flips. This is why modern DRAM and SRAM have error correction codes (ECC) that guard against bit-flips.
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The version of ECC most common on memory chips is single error correction - double error detection (SEC-
DED). In this version, parity information is calculated for a bit field, and for every read of that location,
the parity information is recomputed to verify that a bit-flip has not occurred. With this scheme, single bit
errors will be detected and corrected, double bit errors will be detected, but not corrected. Every write to
this location will cause the parity information to be recomputed.

The traditional way to handle transient and fail-stop errors is checkpoint-restart. In this approach, the
application will run for some time and then save its state (in full or in part) to some permanent storage. Upon
detection of a failure, the checkpoint file is read, data structures are rebuilt, and computation is restarted.
Various variations of checkpoint-restart have been designed, with varying levels of required programmer
intervention and checkpoint size and frequency [12] [18] [17] [4]. With certain fault considerations and
applications, checkpointing is not even required [8] [1].

Going forward, detection of silent data corruptions (SDCs) will become a major focus in the fault
tolerance/resilience community [6]. Extensive work has been done for SDC detection in numeric computations
[2] [9]. General methods for detection and correction for SDCs have also been proposed [14] [19], but have
yet to gain mass adoption.

2.3. AMG Resilience. The resiliency of AMG to SDCs has been studied previously [16], in which
checksums were used to detect SDCs. This approach was limited to dense matrices, but it was fairly robust,
having checks for matrix-vector multiplications, relaxation, and interpolation.

More recent work [7] has shown that AMG is resilient to SDCs due to its iterative and multi-level
nature. Provided that AMG does not segmentation fault, an SDC will appear to AMG as error in the
solution vector. This error will be removed at the cost of more work. This induced error can be removed by
working on a coarser level, where this error will be more pronounced. Their recovery scheme addressed the
segmentation fault issue by triplicating key pointers, and used a voting scheme among the three instances
when accessed, accepting the pointer with the most votes. This voting is done for every access to the
protected arrays, therefore, this resiliency scheme has a large ever present overhead, but it can decrease the
number of segmentation faults for AMG in a faulty environment.

Our recovery scheme induces less overhead, even when AMG does not suffer a segmentation fault. In
addition, our scheme provides checks that alert AMG to the presence of an SDC and attempts to remove it
instead of blindly allowing AMG to remove the error via more iterations.

3. Contributions.

3.1. Recovery Scheme. As faults occur inside AMG, their effects can be classified as the following:
• Decreases convergence time
• Increases convergence time
• Converge to wrong solution (solving perturbed problem)
• Never converge (segmentation fault)

Of the possible outcomes, never converging due to a segmentation fault is a clear indication that an error has
occurred. The other possible results from an injection will lead to an SDC, but the algorithm can continue
to function. Our first concern is to handle segmentation faults in a way that will allow AMG to continue
execution with minimal impact to convergence.

Segmentation faults are traditionally handled by allowing the application to crash and be restarted from
a checkpoint or the beginning. Upon investigation of how AMG traverses its hierarchy, we can see that each
level can be thought of as an implicit checkpoint, since the data for that level will be computed via the
previous level. It is possible to build a recovery scheme that takes advantage of this implicit checkpoint. In
order to exploit this facet of AMG, we need to define a segmentation fault handler that, upon invocation, will
restart AMG on the previous level, or, if deemed serious enough, restart the cycle. This same method can
be used to catch and recover from other signals that can arise due to experiencing a fault. The pseudocode
executed by our segmentation fault handler can be found in Algorithm 1.

In order for our restart routine to execute correct we created global state information (direction, level,
iteration) that the solver updates as it traverses through the hierarchy. Saving and restarting at some point
in the hierarchy uses the C functions sigsetjmp and siglongjmp placed as to allow level or cycle restarts.
The solution vector is periodically checkpointed in-memory on the finest level at the end of the V-cycle to
limit the amount of roll back required. These minor augmentations were designed to be generic enough to
be added to any current AMG implementation with minimal effort.
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Algorithm 1: Multi-level Restart

1 if retrying on same level in cycle then
2 xk ← in-memory checkpointed vector on finest level
3 restartLevel(finest)

4 if downpass == TRUE then
5 if level 6= finest level then
6 restartLevel(level − 1)

7 if iteration > 0 then
8 uppass← TRUE
9 downpass← FALSE

10 restartLevel(level + 1)

11 else
12 restartLevel(finest)

13 if upass == TRUE then
14 if level 6= coarsest level then
15 restartLevel(level + 1)

16 else
17 uppass← FALSE
18 downpass← TRUE
19 restartLevel(level − 1)

3.2. Fault Detectors. Faults that do not lead to a segmentation fault will become silent data corrup-
tions (SDCs) and will go unnoticed by the standard AMG algorithm. Simple augmentations to AMG can
be added to allow the detection of these SDCs. These augmentations vary in their overhead, applicability
to other codes, coverage, and recovery cost. Although application specific detectors are not portable, they
offer the best chance of detecting SDCs.

3.2.1. Residual Check. The stopping criterion for AMG is the residual being less than a provided
tolerance. If SDCs occur during a cycle, their effect will be shown in the residual calculated for that cycle,
Figure 1.1, and every cycle thereafter until this added error is removed. Unlike some iterative linear solvers,
AMG makes no guarantee that the residual or relative residual will monotonically decrease from cycle to cycle.
Heuristics have shown that for a large class of problems, the residual does decrease almost monotonically,
therefore, we can devise a low cost check that examines the newly calculated residual and compares it to the
previous residual. Due to the non-monotonically decreasing nature of the residual, we must use a region of
plausibility for the new residual. In this paper we consider anything less than the previous residual scaled by
an order of magnitude to be an acceptable residual. The scaling factor of the previous residual in our check
can be modified depending upon the type of problem being solved to enhance its ability to detect SDCs.
This SDC detector is not just AMG specific; it can be applied to most iterative linear solvers.

3.2.2. Loop Checks. Important work on low cost methods for SDC detection can be found in [13].
Application agnostic SDC checks can be employed to improve the resiliency of AMG. For example, one check
exploits the property that a significant number of fault injections are into loop control variables because of
their high usage. Due to the regular nature of linear algebra computations, loops are highly structured and
deterministic in their execution. These loops often iterate over a vector or through a row or column of a
matrix. Since the stopping point for such loops is deterministic, we can verify that these loops terminate
correctly as shown in Figure 3.1.

Upon closer examination, many loops in numerical linear algebra are idempotent. This key property
allows the recovery for such loops to be attempted locally.

3.2.3. Energy Check. AMG does not guarantee that the residual will decrease monotonically at the
end of every cycle. However, it does guarantee that the error will decrease monotonically with every iteration.
Although we cannot measure error directly, we can use AMG’s sense of energy, Equation 3.1, to check for
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for (i = 0; i < n; i++)

{ ... }

if (i != n)

handleSDC();

Fig. 3.1: Loop SDC Check

SDCs.

(3.1) < Ax, x > −2 < x, b >

This internal sense of energy is valid on each level. That is, energy at level i in the down-pass will be
greater than the energy calculated at level i in the up-pass in the same V-cycle. We utilize the energy check
as a guarantee that the results calculated on a given level are correct before we continue to the next level.
This allows recovery to proceed by the multi-level restart algorithm, Algorithm 1.

4. Experimental Results. To test our recovery scheme and SDC detectors, a clean basic version of
AMG was developed that allowed the SDC detectors and recovery scheme to be easily implemented and
evaluated. All functions with available source code used during the AMG solve phase were compiled using
our fault injector, with each instruction having the same probability of faulting, 1e−9. It is important to
note that we do not inject faults into the creation of the hierarchy, but only during the solve phase.

To evaluate the effectiveness of our multi-level recovery scheme we chose to solve a 2D anisotropic
diffusion problem. We chose this type of problem because historically it has been a challenge for AMG
to solve efficiently. Because of the high number of iterations required, it has more innate susceptibility to
transient faults.

This 2D anisotropic diffusion problem has 10000 unknowns on the finest level, and 7 levels in the
hierarchy. The hierarchy is traversed using V-cycles with weighted Jacobi as the smoother and Gaussian
Elimination for the direct solve. Averages and probabilities presented are based upon 1000 runs.

4.1. Fault Injector. Our fault model considers transient hardware errors that result from the CPU
producing incorrect results. An LLVM [15] based fault injector was used in order to have tight control
over where faults were injected, the ability to collect detailed statistics, and usability in both parallel and
sequential environments.

Our fault injector is based off of [20], and is structured as an LLVM compiler pass. This compiler pass
selectively examines the source code of a parameterized set of modules. For these modules, each instruction
is surrounded by code that probabilistically injects a fault into an operand or the result of the LLVM
instruction.

4.2. Overheads and Fault Characteristics. By their nature, transient faults are infrequent events,
this implies that any resiliency scheme should limit the overhead introduced. To determine the practicality
of our detectors; their ability to detect is often offset by their cost, overhead. Table 4.1 details the overhead
of each SDC detector used. For every detector typed used we also enable the multi-level restart scheme.
Because we are determining the overhead in a fault free case the multi-level restart code is never executed,
therefore, we don’t include the time to restart the AMG solve in the reported times.

Table 4.1: Fault Detector Overheads

Measure Time (s) Percent Overhead

No Resiliency 11.6753 -
Residual 11.7526 0.66%

Loop 12.1600 4.15%
Energy 13.2110 13.15%

All 14.1223 20.96%
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We can see that the residual and loop checks are much cheaper than the energy check. This is offset by
the fact that the energy check is more powerful, able to check for SDCs at each level. Preforming the energy
check on each level will limit the amount of the V-cycle that needs to be recomputed, thus offsetting the
high overhead.

In order to devise effective resiliency schemes we need to determine where faults are injected into AMG.
To determine this we ran 1000 runs of our AMG solver with various SDC detectors enabled. No Resiliency
represents a pure AMG with no added resiliency, Low Cost consists of the multi-level recovery scheme
combined with the loop and residual checks, and All is the same as Low Cost expect the addition of the
energy check. The percentages of where faults are injected can be found in Table 4.2, and the break down
of what types of faults (Pointer, Control, Arithmetic) per function is shown in Table 4.3. The classification
Pointer refers to all calculations directly related to use of a pointer (loads, stores, address calculation).
Control refers to all calculations of branching and control flow (comparisons for branches and loop control
variables modification). The final category of injected faults, Arithmetic, refers to the pure mathematical
operations.

Table 4.2: Injected faults into AMG with various detectors

Function Name No Resiliency Percentage Low Cost Percentage All Percentage

jacobi 82.0 81.3 76.1
csr matvec 16.2 16.6 22.3
residual 0.3 0.9 0.6

residua norm 0.5 0.2 0.3
solve 1.0 1.0 0.7

Table 4.3: Fault Characteristics with various detectors

Function Name Fault Category No Resiliency Percentage Low Cost Percentage All Percentage

jacobi Pointer 55.8 54.6 53.6
Control 25.9 28.7 27.7

Arithmetic 18.3 16.7 18.7
csr matvec Pointer 68.5 67.8 62.5

Control 17.5 17.8 21.7
Arithmetic 14.0 14.4 15.8

residual Pointer 85.7 58.6 73.7
Control 0.0 37.9 15.8

Arithmetic 14.3 3.5 10.5
residual norm Pointer 54.5 33.3 62.5

Control 9.1 50.0 25
Arithmetic 36.4 16.7 12.5

solve Pointer 82.6 64.5 61.9
Control 17.4 19.4 33.3

Arithmetic 0.0 16.1 4.8

From the tables we can see that most of the faults are injected into the jacobi function. This is due to
the code spending most of its time in that function. As we add the energy check that requires a matrix-vector
multiply we see the number of faults injected into the csr matvec routine increases. It is interesting to see
that the majority of faults injected were into Pointer instructions. This is due impart to using sparse matrix
data structures which requires several operations before the data is used. This high level of injected also
signals that segmentation faults are likely, thus a recovery scheme to handle them is needed. We can see a
corresponding increase in the Control classification when the loop check is added.

Adding our SDC detectors can increase resilience, but can also suffer from false positives. The loop and
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residual checks are structured such that a bit-flip in the comparison will still evaluate correctly in all cases
when more than 2 bits are set in the correct comparison result. A false positive in the energy is handled as
if it was a true positive.

4.3. Convergence Analysis. With iterative linear solvers convergence can vary dramatically depend-
ing upon the initial guess and right hand side. To eliminate this variability we use the same initial guess
and right hand side. Since an injected fault can cause an increased time to converge, we set the maximum
number of iterations at 80. This allows 6 more iterations to converge in than the fault free 74 iterations.
Table 4.4 analyzes the convergence of AMG with just a single injection, while Table 4.5 is reserved for
multiple injection per run. In both tables Converged refers to runs that converged the specified tolerance
within the 80 alloted iterations, Didn’t Converge refers to those runs that didn’t crash but were unable to
converge within the alloted iteration count, and Segfault is used to classify those runs that fail to converge
due to segmentation faults that causes the program to crash and not terminate correctly.

Table 4.4: Convergence with single injection

Results No Resiliency Percentage Low Cost Percentage All Percentage

Converged 66.4 99.8 100.0
Didn’t Converge 1.2 0.2 0

Segfault 32.4 0 0

Even just a single injection has drastic impact upon convergence, with almost one-third of all runs
experience a segmentation fault before converging. A high rate of segmentation faults is expected because
most of our faults are being injected into Pointer instructions. Our multi-level recovery scheme is able to
recover from these segmentation faults and with the aid of our SDC detectors converge in almost all cases.
The cases that didn’t converge were very near convergence, and would have converged within a few extra
iterations.

Table 4.5: Convergence with multiple injections (avg. 3 per run)

Results No Resiliency Percentage Low Cost Percentage All Percentage

Converged 15.1 100.0 99.8
Didn’t Converge 2.7 0 0.2

Segfault 82.2 0 0

With multiple injections convergence for the non resilient AMG implementation decreases dramatically,
however, our augmented AMG remains at near perfect convergence. It is interesting to note that upon
examining the residual history for runs in which the multi-level recovery scheme is active, convergence
occurs in fewer iterations than in the fault free cause. This seemingly strange behavior is possible because
recovery starts on a level that has already be executed, and upon the restart on this level further refinement
occurs on its solution vector.

4.3.1. Time to Convergence. A valid and often used recovery scheme to handle the program produces
incorrect output due to faults is to rerun program until correct output is produced. With this recovery scheme
no detectors are used with the assumption that the incorrect run is the exception rather than the norm.
We can compare our multi-recovery scheme to this approach by calculating an approximate convergence
time based upon the ratio of the average time to converge to the probability that it will converge. Table
4.6 compares these two recovery schemes with our normal probability of injecting a fault of 1e−9, and an
order of magnitude higher injection rate, 1e−8, is presented in Table 4.7. Because we are running until
convergence, this process may be infinite. We therefore impose a time limit, 2 minutes, that allows several
attempt at solving the linear system.

Even with out lowest injection rate the rerun recovery scheme fails to provide sufficient convergence.
The reason for this is most of the injected faults lead to segmentation faults that the rerun recovery scheme
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Table 4.6: Approximate time to converge (Injection rate 1e−9)

Detector(s) Prob of convergence Avg time to converge (sec) Approx converge time Speedup

No Resiliency 0.202 34.32 169.90 1.0
Low Cost 0.998 29.13 29.19 5.82

All 1.00 32.00 32.00 5.31

Table 4.7: Approximate time to converge (Injection rate 1e−8)

Detector(s) Prob of convergence Average time to converge Approx converge time Speedup

No Resiliency 0.0 — — —
Low Cost 0.984 27.01 27.45 —

All 1.00 29.17 29.17 —

can not recovery from without high cost. From these tables we can conclude, that if AMG is used inside a
faulty environment our multi-level resiliency provides excellent convergence and a lower time to convergence
even with an order of magnitude higher injection rate. To see what level of injection is required to cause
our most resilient version, All, to fail to converge acceptably, we repeat the previous runs, but we don’t
retry if convergence isn’t achieved on the first try. In Figure 4.1, we increase the level of injection until the
probability of convergence drops below 0.5.
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Fig. 4.1: Convergence of AMG with multi-level recovery scheme.

Even with over 200 faults injected per run our most resilient version of AMG converges in over 85% of
runs. However after this point the probability of convergence decreases dramatically. This is due the the
solver making little, if any forward progress. When a fault is detected we attempt to recover, but as we are
in the recovery process we suffer more faults that require a restart. As we increase the injection rate AMG
makes no forward progress and is constantly attempting to recover from the inject faults.

5. Conclusions and Future Work. Through a combination of general purpose and application spe-
cific detectors we are able to detect SDCs that significantly impact convergence of AMG. With faults detected
our proposed multi-level recovery scheme is able to recover and converge with near perfect probability for a
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high number of faults. Going forward fault consideration is going to become a driving factor in HPC software
development and deployment. With the AMG augmentations presented and evaluated in this paper, AMG
has shown it is capable of being used in faulty environments.

Although we’ve shown that a multi-level recovery scheme for AMG is possible, much can be done to limit
the overhead. For example, limiting the locations detectors are placed or not recovering from every detected
fault, but only those that would extend convergence time. Other future work includes porting theses ideas
into a parallel setting as augmentations to established AMG solvers such as Hypre [10] and PETSC [3].
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