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Abstract. Traditional algebraic multigrid (AMG) methods use (Petrov-)Galerkin coarsening where
the sparsity pattern and operator complexity of the multigrid hierarchy is dictated by the multigrid
transfer operators. Therefore, AMG algorithms usually compromise between the quality of these
operators and the aggressiveness of the coarsening, which affects their rate of convergence and oper-
ator complexity. In many scenarios, the multigrid coarse operators tend to be much denser than the
fine operator as the coarsening progresses. Such behavior is especially problematic in parallel AMG
computations where it imposes expensive communication overhead. In this work we present a new
algebraic technique for controlling the sparsity pattern of the operators in the multigrid hierarchy,
independently of the choice of transfer operators. Our algorithm sparsifies the (Petrov-)Galerking
operators while preserving their right and left near null-spaces. Numerical experiments for Convec-
tion Diffusion problems demonstrate the efficiency and potential of this multigrid approach.

1. Introduction

Multigrid methods are well known for their efficiency in solving linear systems arising from the
discretization of elliptic partial differential equations (PDEs) [3, 18, 6, 21]. The discretization
yields a sparse, typically large system of equations, Ax = b where A ∈ Rn×n, and x,b ∈ Rn. To
solve it, AMG methods use two complementary components: relaxations, and coarse-grid correction
(CGC). The relaxations are local iterative methods, such as Jacobi or Gauss-Seidel, and are usually
inefficient in handling certain error modes, called “algebraically smooth”. CGC aims at handling
these modes, and is done by solving a coarse-grid problem Acec = rc. In most AMG methods, this
problem is defined by the (Petrov-)Galerkin coarsening

(1) Ac = RAP, rc = R(b−Ax),

which is a projection of the error equation onto the subspace defined by the full-rank prolongation
and restriction operators, P ∈ Rn×nc and R ∈ Rnc×n, respectively, with nc < n. The process is
applied recursively, resulting in a hierarchy of successively coarser problems and their associated
operators.

One drawback of the (Petrov-)Galerkin coarsening is that the control over the sparsity of Ac is
quite limited and is dictated by P and R. This might lead to a reduced sparsity of the Galerkin
coarse-grid operators and high overall computational complexity of the multigrid algorithm. In
the case of large-scale parallel computing, this usually leads to high communication overhead on
coarse grids [15, 14] and loss of scalability, especially in 3D. Thus, one must often compromise
between the quality of these operators and the aggressiveness of coarsening, which affects the rate
of convergence and the operator complexity of the algorithm. Recently, there has been an effort to
develop efficient multigrid algorithms that explicitly control the sparsity pattern of the multigrid
hierarchy [20, 22], or sparsify the Galerkin AMG operators [14]. These ideas have yet to reach their
full potential, and were only applied for symmetric problems. We follow a similar framework in
this paper.
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In this paper we consider non-symmetric problems, focusing on the convection-diffusion equation

(2) −ε∆u+ v · ∇u = f

that appears in flow simulations. One popular approach to treating this problem is by using
aggregation-based AMG methods [19, 7, 1, 2, 13, 9, 10, 11], where the coarsening is done by clus-
tering (aggregating) the grid unknowns. In its simplest form of pure (non-smoothed) aggregation
(AGG), P and R are sparser than those obtained by most other AMG approaches, and the oper-
ator complexity of the multigrid hierarchy is usually well-bounded and attractive. However, it is
difficult to obtain grid independent convergence using this approach, and therefore, the approach
of Smoothed Aggregation (SA) [19, 1, 2, 13, 8] is often preferred over AGG. In SA we smooth the
simple aggregation operators by a relaxation operator. This improves the convergence properties
of the multigrid solver, but it also increases the operator complexity of the multigrid hierarchy.
Therefore, when using SA we must make sure that our coarsening is aggressive enough to prevent
exaggerated stencil growth on coarse-grids. However, for a convection-dominated problem (2), such
aggressive aggregation coarsening (say 3 × 3 for 2D problems on structured meshes) significantly
harms the quality of the aggregation operators compared to moderate coarsening (say, 2 × 2) [7],
whereas the latter leads to an unbounded operator complexity using SA. This behavior is just an-
other example of the tradeoff between using quality transfer operator vs. maintaining low operator
complexity.

In a very recent paper [11], impressive results are achieved for solving (2) using AGG with
moderate coarsening (coarsening factor of about 4). To overcome the slow convergence caused by
using pure aggregation, the multigrid process includes acceleration on all levels of the hierarchy
(known as K-cycle), requiring a more elaborate recursive structure (usually W-cycles). A similar
technique is also used in [12]. However, such cycles may be costly, even though their storage
complexity is well-bounded, especially when considering parallel multigrid computations [15, 5].

In this paper, we present a new AMG algorithm that controls the sparsity pattern of the multi-
grid hierarchy, using ideas related to [22, 14]. The new algorithm is developed for non-symmetric
problems but it preserves the symmetry property of the coarse operators for symmetric fine oper-
ators. Our algorithm uses the aggregation framework as a basis platform, by applying smoothed
aggregation to define the transfer operators and simple aggregation Galerkin coarse-grid operators
for defining a sparse non-zero pattern of Ac. Once the transfer operators and the target sparsity
pattern are set, our algorithm sparsifies the Galerkin SA coarse operator to match the chosen
sparsity pattern of Ac.

2. Algorithm Description

We follow the rationale of [20, 22], where the main idea is to separate the issue of the coarse-grid
operator sparsity pattern from the transfer operators R and P . We fix the sparsity pattern of Ac
and, independently, use high quality transfer operators P and R. Furthermore, suppose that Ac
is constructed in such a way that it yields an exact approximation of the Galerkin operator with
respect to certain basis vectors. Assume that the current error, e, is in the range of P , i.e., e = Pec.
Also, assume that Ac is constructed such that Acec = RAPec, implying that ec can be represented
as a linear combination of the basis vectors that are used to define Ac. Then, the two-level cycle
of such an algorithm eliminates the error e:

(3)
enew =

[
I − P (Ac)

−1RA
]
e = [I − P (Ac)

−1RA]Pec
= [P − P (Ac)

−1RAP ]ec = P (Ac)
−1[Ac −RAP ]ec = 0.

This property motivates our work, as well as the work of [20, 22].
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2.1. The Sparsified Smoothed Aggregation (SpSA) Framework. Our approach is based
on aggregation, which is defined by a partitioning of the fine-grid index set {1, ..., n} into nc dis-
joint subsets {Cj}nc

j=1, called aggregates. Given these aggregates, a piece-wise constant tentative

prolongation operator, which we denote by Pa (a for aggregation), is defined:

(4) (Pa)i,j =

{
1 i ∈ Cj ,
0 otherwise.

For the tentative restriction operator Ra we use Ra = P Ta . In this work, we define our aggregation
by the Bottom-Up approach used in [16, 17], but other aggregation-based coarsening methods as
in [19, 10, 11] may also be suitable for our algorithm.

As mentioned above, we use SA to improve the convergence properties of AGG, by smoothing the
aggregation operators Pa and Ra. More precisely, general SA operators Ps and Rs (s for smoothed
aggregation) are often defined by

(5) Ps = (I − ωQAF )Pa, Rs = Ra(I − ωAFQ).

where the matrix Q is a diagonal preconditioner of A, ω is a damping parameter, and AF is a
filtered version of the matrix A. For Q, the inverse of the diagonal of A is usually chosen. Then
I − ωQA is the error propagation matrix associated with the damped Jacobi relaxation. In this
work, we use the SPAI diagonal preconditioner [4] for Q, i.e., we choose Q as the diagonal matrix
that minimizes ‖I −QA‖F which leads to

(6) Qii =
Ai,i∑
j A

2
i,j

, i = 1, ..., n.

This is a more sophisticated relaxation operator than Jacobi, and in the context of smoothing Pa it
is related to the energy minimization diagonal preconditioner (EMIN) [13]. As in [13], we also found
that such a Q is much more efficient for solving (2) than the Jacobi diagonal preconditioner. We also
found that additional damping is worthwhile, at least with the moderate Bottom-Up aggregation
[17] that we use (in [13], a much more aggressive aggregation is used). We note that the diagonal
preconditioner (6) is defined using A, and not using AF .

The filtering in (5) aims at removing small entries from Ps and Rs, to prevent unnecessary stencil
growth. In the context of convection-dominated problem (2), the small diffusion entries may have
little influence on the quality of Ps but still cause a severe stencil growth. Such is also the case in
anisotropic diffusion. We use the standard filtering of [19]: let Ni(ε) = {j : |Ai,j | ≥ ε

√
Ai,iAj,j},

then AF is defined by

(7) AFi,j =

{
Ai,j if j ∈ Ni(ε)

0 otherwise

}
, AFi,i = Ai,i −

∑
j 6∈Ni(ε)

Ai,j .

In this work we use ε = 0.02.
Our next step is to define two Galerkin operators:

(8) Aac = RaAPa, and Asc = RsAPs,

that are based on the non-smoothed and smoothed aggregation operators, respectively. Next we
perform the “sparsening” process, where we sparsify Asc to achieve the sparsity pattern of Aac . This
setup process is described in Algorithm 1.

2.1.1. Sparsity Patterns in the Aggregation Framework. The transfer operators in (5) and
(8) have some unique properties that are related to their sparsity patterns. These will be used in
our sparsening algorithm, described later. We denote the sparsity pattern of any matrix A as

(9) SP(A) = {(i, j) : Ai,j 6= 0}.
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Algorithm: SpSA-Setup

(1) Define the tentative prolongation Pa and restriction Ra = P Ta .
(2) Define SA operators Ps, Rs.
(3) Apply Petrov-Galerkin Coarsening: Aac = RaAPa, A

s
c = RsAPs.

(4) Sparsify Asc onto the sparsity pattern of Aac : Ac = Sparsify(Asc, A
a
c )

(5) Apply recursion on Ac to generate the next levels.

Algorithm 1: Sparsified Smoothed Aggregation (SpSA) Setup

By (5), we have that

(10) SP(Asc) ⊇ SP(Aac )

up to chance cancellations of elements which we ignore in our description. In addition, since
SP(A) = SP(I −QA) for our choice of Q in (6), we have that

(11) SP(Aac ) ⊇ SP(RsPa) and SP(Aac ) ⊇ SP(RaPs),

with equalities in the case of no filtering in (5).

2.2. The Sparsening Procedure. We next describe our sparsening procedure used to approxi-
mate Asc using only the sparsity pattern of Aac . Our process aims to generate a coarse matrix Ac
that, on top of its sparsity constraints, has the same product as Asc and (Asc)

T with two vectors x
and y, respectively. That is, motivated by (3), we impose Acx = Ascx and (Ac)

Ty = (Asc)
Ty. The

vectors x and y are the right and left near null-space “prototypes” that also usually feature in the
construction of prolongation and restriction operators in many multigrid algorithms; see [2, 17] and
references therein. We require that x and y are strictly positive, which is the case for M-matrices
for example.

We start our process by copying the values in the entries of Asc that belong to SP(Aac ), i.e.,

(12) if (Aac )k,i 6= 0 then (Ac)k,i ← (Asc)k,i.

Otherwise, we have an entry satisfying (Aac )k,i = 0 and (Asc)k,i 6= 0; this is an entry that we wish

to eliminate (set (Ac)k,i = 0), while maintaining the product of Asc and (Asc)
T with the right and

left near null-spaces x and y respectively. That is, we impose

(13)
∑

`(A
s
c)k,`x` =

∑
`(Ac)k,`x` and

∑
`(A

s
c)`,jy` =

∑
`(Ac)`,jy`.

Now, if we set (Ac)k,i = 0, and do not have a (k, i) entry on the right-hand-sides of (13), we break
these equalities, and thus we need to correct them by changing other entries as well. We elaborate
on the choice of these entries in the next section.

2.2.1. Obtaining a surrogate path for eliminating the (k, i) entry. First, we remark that
we must avoid the simplest choice of entries to make up for an elimination of a (k, i) entry—the
diagonal and “mirror” entries, (k, k), (i, i) and (i, k). Considering that we might need to eliminate
both (Asc)k,i and (Asc)i,k, we have to satisfy four equations: the equalities (13) for both i and k. Since
we have only the two diagonal entries (k, k), (i, i) at our disposal (the off-diagonals are zeroed),
this task is impossible, since we have four equations and only two variables to satisfy them. Thus,
we conclude that additional or other entries need to be changed.

We next describe a set of entries in Aac that are safe to use for eliminating (Asc)k,i. In Petrov-
Galerkin coarsening, every non-zero entry satisfies

(14) (Asc)k,i =
∑
j

∑
`

(Rs)k,jAj,`(Ps)`,i,
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Figure 1. A surrogate path of (Asc)k,j . The dashed arrow represents the eliminated
entry, while the surrogate path is in solid arrows.

which means that every entry in Asc is generated by a sum of three-term multiplications. Now, if
(Aac )k,i = 0 and (Asc)k,i 6= 0, then we have at least one non-zero term (Rs)k,jAj,`(Ps)`,i in the right
hand side of (14), in which ` belongs to the aggregate Cm1 and j belongs to the aggregate Cm2 , and
at least one of them is different from k and j (note that j and ` are fine-grid variables while the
rest are coarse-grid variables). Also,

(15) (RsPa)k,m2 6= 0, (RaPs)m1,i 6= 0, and (Aac )m2,m1 6= 0.

Furthermore, by (11), all these entries also belong to SP(Aac ), and hence can be used together with
their associated diagonal entries to eliminate (Asc)k,i. Overall, in order to eliminate (Asc)k,i we add
to Asc a submatrix of the form

(16)
i
m1

m2

k

i m1 m2 k
0 0 0 0
× × 0 0
0 × × 0

−(Asc)k,i 0 × 0


where × denotes a non-zero entry (we excluded (i, i) and (k, k) because they are singles in their
row and column, respectively, and hence cannot be changed). Since the marked non-zero entries
constitute a distance-three path i → m1 → m2 → k in Aac , we will denote (i,m1,m2, k) as the
“surrogate path” for eliminating the (k, i) entry. Figure 1 demonstrates this path.

2.2.2. Setting values in the surrogate path for eliminating the (k, i) entry. We now de-
scribe how to set the values in the submatrix (16) so that Acx = Ascx and (Ac)

Ty = (Asc)
Ty are

satisfied for the right and left strictly positive near null-space “prototypes” x and y, i.e., (13) is
maintained. This is satisfied if x[i,m1,m2,k] and y[i,m1,m2,k] subvectors are the right and left null-space
vectors of (16).

Setting (Ac)k,i = 0 first breaks the equalities (13) for the i-th column and k-th row. To satisfy
them we must set:

(17)
(Ac)m1,i ← (Ac)m1,i + (Asc)k,i

yk
ym1

(Ac)k,m2 ← (Ac)k,m2 + (Asc)k,i
xi
xm2

.

Now, the corresponding equalities (13) for the m1-th row and the m2-th column are broken, so we
must satisfy them as well by

(18)
(Ac)m1,m1 ← (Ac)m1,m1 − (Asc)k,i

yk
ym1

xi
xm1

(Ac)m2,m2 ← (Ac)m2,m2 − (Asc)k,i
yk
ym2

xi
xm2

.

This again breaks the equalities for the m1-th column and m2-th row, and to finally satisfy them
both we must apply

(19) (Ac)m2,m1 ← (Ac)m2,m1 + (Asc)k,i
yk
ym2

xi
xm2

.
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Overall, following (17)-(19), the submatrix (16) is given by

(20)
i
m1

m2

k

i m1 m2 k
0 0 0 0

(Asc)k,i
yk
ym1

−(Asc)k,i
yk
ym1

xi
xm1

0 0

0 (Asc)k,i
yk
ym2

xi
xm2

−(Asc)k,i
yk
ym2

xi
xm2

0

−(Asc)k,i 0 (Asc)k,i
xi
xm2

0


and its right and left kernels are x[i,m1,m2,k] and y[i,m1,m2,k] respectively.

In practice, there may be several paths from i to k, so we eliminate (Asc)k,i using all paths
simultaneously, each eliminating a portion 0 < θ(i,m1,m2,k) < 1 of (Asc)k,i (all portions sum to
one) . The weights θ(i,m1,m2,k) are chosen proportionally to the strength of the connection in the
associated path. More specifically, we use |(RaPs)m1,i(A

a
c )m2,m1(RsPa)k,m2 | as the strength of the

path (i,m1,m2, k). However, there are situations where there is a distance-two path between i
and k, featuring only one connector, i.e., m1 = m2. In such cases we choose the weight associated
with the path (i,m,m, k) as |(RaPs)m,i(RsPa)k,m| and set the weight of the distance-three paths
to 0. Also, the distance-two paths are computationally easier to find . We note that if we consider
only symmetric problems, then our distance-two surrogate is similar to that of [14]. Lastly, our
sparsening process treats the designated non-zero entries one by one, independently of their order,
and hence it can be fully parallelized. A precise description of the sparsening algorithm appears in
Algorithm 2.

2.3. Theoretical properties of the sparsening procedure.

Proposition 1. If the fine matrix A is symmetric, Ra = P Ta , Rs = P Ts , and x = y, then Ac is
symmetric as well.

Proof. By the given symmetries and (8), we get that Asc and Aac are symmetric, and so are their
sparsity patterns. Now, if the entry (k, i) needs to be eliminated, i.e., (k, i) ∈ SP(Asc)\SP(Aac ), then
the entry (i, k) needs to be eliminated as well. Furthermore, if there is a path from i to k such that

(21) (P Ts Pa)k,m2 6= 0, (P Ta Ps)m1,i 6= 0, and (Aac )m2,m1 6= 0,

then the same path exists from k to i in the opposite direction (i.e., via m2 and m1), because
(P Ts Pa)

T = (P Ta Ps) and (Aac ) is symmetric. Using this path, the submatrix (20) that corresponds
to the elimination of (Asc)i,k is given by:

(22)
i
m1

m2

k

i m1 m2 k
0 (Asc)i,k

xk
xm1

0 −(Asc)i,k

0 −(Asc)i,k
xk
xm1

yi
ym1

(Asc)i,k
xk
xm2

yi
ym1

0

0 0 −(Asc)i,k
xk
xm2

yi
ym2

(Asc)i,k
yi
ym2

0 0 0 0

 .

If we set x = y and (Asc)i,k = (Asc)k,i in (22) and in (20), we can see that they are the transpose
of each other. This means, that the sum of (20) and (22) is a symmetric submatrix under these
conditions. Thus, when eliminating each pair (i, k) and (k, i), we add a symmetric submatrix to
Asc, and therefore Ac remains symmetric. �

For the next proposition, we consider diagonally dominant M-matrices. A matrix A is called
an M-matrix if it has the form of A = sI − B, where B ≥ 0 is non-negative and s ≥ ρ(B)
(ρ(B) = maxi{|λi|} is the spectral radius of B). Furthermore, a matrix A is called diagonally
dominant if for every row i we have Ai,i ≥

∑
j 6=i |Ai,j |.
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Algorithm: Ac ← Sparsify(Asc, A
a
c , RsPa, RaPs)

% Asc - a Petrov-Galerkin smoothed aggregation operator that needs to be sparsified

% Aac - a Petrov-Gelerkin aggregation operator that defines the result sparsity pattern

% RsPa, RaPs - Aggregated transfer operators. These help establishing surrogate paths.

% Ac - SpSA operator - has the sparsity pattern of Aac and the quality of Asc.

foreach (k, i) ∈ SP(Aac ) do
(Ac)k,i ← (Asc)k,i

end

Define x and y: the right and left near null-space prototypes of Asc.

foreach (k, i) ∈ SP(Asc)\SP(Aac ) do
% Try to define a set of distance-two surrogate paths:

Sk→i = {(i,m,m, k) : (RaPs)m,i 6= 0 & (RsPa)k,m 6= 0}.
if Sk→i 6= ∅ then

foreach (i,m,m, k) ∈ Sk→i, associate a weight θ(i,m,m,k) = |(RaPs)m,i(RsPa)k,m|
else

% Define a set of distance-three surrogate paths:

Sk→i = {(i,m1,m2, k) : (RaPs)m1,i 6= 0 & (Aac )m2,m1 6= 0 & (RsPa)k,m2 6= 0}.
foreach (i,m1,m2, k) ∈ Sk→i, associate θ(i,m1,m2,k) = |(RaPs)m,i(Aac )m2,m1(RsPa)k,m|

end

% Here, the set of surrogate paths Sk→i is non-empty

Normalize the weights: θ(i,m1,m2,k) ←
θ(i,m1,m2,k)∑

(i,p,q,k)∈Sk→i

θ(i,p,q,k)

foreach (i,m1,m2, k) ∈ Sk→i do
Define a portion of (Asc)k,i: δ = (Asc)k,i · θ(i,m1,m2,k).

Collapse δ onto the path (i,m1,m2, k):

(Ac)m1,i ← (Ac)m1,i + δ yk
ym1

,

(Ac)k,m2 ← (Ac)k,m2 + δ xi
xm2

,

(Ac)m1,m1 ← (Ac)m1,m1 − δ
yk
ym1

xi
xm1

,

(Ac)m2,m2 ← (Ac)m2,m2 − δ
yk
ym2

xi
xm2

,

(Ac)m2,m1 ← (Ac)m2,m1 + δ yk
ym2

xi
xm2

.

end

end

Algorithm 2: The Sparsening procedure

Proposition 2. Let X = diag(x) and Y = diag(y) be diagonal matrices whose diagonal entries
are given by the vectors x and y respectively. Then, if Y AscX is a diagonally dominant M-matrix,
then Y AcX is a diagonally dominant M-matrix as well.

Proof. By definition, each entry (k, i) of Y AscX is given by (Asc)k,iykxi. Since this matrix is a
diagonally dominant M-matrix, then for every row k: (Asc)k,kykxk ≥ −

∑
j 6=k (Asc)k,jykxj , or in

matrix form: (Y AscX)1 ≥ 0, where 1 is the vector of ones. By the sparsening construction in
Algorithm 2, (Y AcX)1 = (Y AscX)1 ≥ 0. Furthermore, since any off-diagonal entry (Asc)k,iykxi is
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non-positive, the diagonally scaled submatrix (20) for replacing (Asc)k,i is given by

(23)
i
m1

m2

k

i m1 m2 k
0 0 0 0
1 −1 0 0
0 1 −1 0
−1 0 1 0

 × (Asc)k,iykxi.

Now, except for the (k, i) entry which remains zero in Ac, all other entries that are added to Y (Asc)X
are non-positive for an off-diagonal entry or non-negative for a diagonal entry. This means that
the sign-structure of Y AcX still corresponds to an M-matrix. This, together with (Y AcX)1 ≥ 0
means that (Y AcX) is diagonally dominant. Finally, by the Gerschgorin theorem, Y AcX it is also
positive definite and hence an M-matrix. �

3. Numerical Results

In this section, the sparsening approach is compared to both smoothed aggregation (SA) and
simple aggregation (AGG). We consider the 2D and 3D convection-diffusion equation (2) on the
unit square/cube with Dirichlet boundary conditions. The problem is discretized using the first
order upwind finite differences method, leading to a five-point stencil on a discrete domain. We use
the problems in [13, 11]:

(24)

recirc: v = (x(1− x)(2y − 1),−(2x− 1)y(1− y))T

bent-pipe: v = (x(x− 2)(1− 2y),−4y(y − 1)(1− x))T ,
3D-1: v = (2x(1− x)(2y − 1)z,−(2x− 1)y(1− y),−(2x− 1)(2y − 1)z(1− z))T

3D-2: v =

 if ‖(x− 1
2 , y −

1
2 , z −

1
2)‖2 < 0.4,

((y − 1
2)(z − 1

2), (x− 1
2)(z − 1

2),−2(x− 1
2)(y − 1

2))T

otherwise 0,

and generate f in (2) so that the solution is given by u = sin(πx)2 + sin(πy)2 for 2D or u =
sin(πx)2 + sin(πy)2 + sin(πz)2 for 3D.

We use GMRES(5) acceleration, preconditioned with V(1,1) cycles, with one pre-smoothing of
forward Gauss-Seidel and one post-smoothing of backward Gauss-Seidel for all methods. For all
cases, we start with a zero initial guess and count the number of cycles required to reduce the initial
residual by a factor of 108. We also compare operator complexity, Cop, which is the total number
of non-zero elements in the operators A on all the grids, divided by that of the fine-level operator.
Our coarsening is performed until n < 100.

For all the methods, we use the same Bottom-Up aggregation scheme [17], with a strong con-
nection threshold θ = 0.25. For the 2D problems we use average aggregate sizes s = 4, targeting
aggregate size of 4, while for 3D we use s = 6. For the SA and SpSA methods, we calculate Q
according to (6). For the sparsening procedure (Algorithm 2), we use x = y = 1, that is related to
the piece-wise constant operators (4). Also, we use the following damping parameters: for SA we
use ω = 0.6 for all tests; for SpSA we use ω = 0.8 in the 2D tests, and ω = 0.7 in the 3D tests. In
addition, we also use a moderate overcorrection of 1.1 for all methods.

Table 1 compares the three aggregation methods AGG, SA and SpSA for the 2D convection-
diffusion (2) with the first two velocity fields in (24). It is clear that the AGG method is not
mesh independent and not efficient, especially for the recirc problem. It also struggles for the
diffusion-dominated bent-pipe problem (ε = 10−2). The SA method shows good scalability for
all combinations, but has a rather high operator complexity, especially in the more convective
problems, where the aggregation becomes more moderate. The SpSA obviously has the rather low
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recirc bent-pipe

ε n AGG SpSA SA AGG SpSA SA
#it Cop #it Cop #it Cop #it Cop #it Cop #it Cop

2562 47 1.33 9 1.33 10 2.18 58 1.33 10 1.33 12 2.11
10−2 5122 62 1.33 10 1.33 10 2.22 78 1.33 10 1.33 13 2.13

10242 79 1.33 10 1.33 11 2.22 >100 1.33 11 1.33 13 2.13
2562 >100 1.64 14 1.64 13 3.23 29 1.72 15 1.73 13 3.79

10−4 5122 >100 1.49 15 1.51 14 2.76 46 1.66 15 1.68 13 3.60
10242 >100 1.33 19 1.35 16 2.23 74 1.59 16 1.60 14 3.19
2562 95 1.81 18 1.82 16 3.22 28 1.77 16 1.78 15 3.14

10−6 5122 >100 1.81 20 1.82 18 3.21 35 1.76 18 1.77 16 3.13
10242 >100 1.79 23 1.80 19 3.18 44 1.75 21 1.76 18 3.10

Table 1. Comparison of AGG, SA and SpSA for 2D convection-diffusion.
#it denotes the number of V(1,1) cycles needed for convergence, while Cop is the
operator complexity.

3D-1 3D-2

ε n AGG SpSA SA AGG SpSA SA
#it Cop #it Cop #it Cop #it Cop #it Cop #it Cop

643 38 1.38 14 1.40 13 3.22 36 1.34 15 1.35 14 3.08
10−2 963 47 1.41 15 1.42 14 3.41 53 1.35 16 1.35 15 3.20

1283 55 1.41 15 1.42 18 3.50 65 1.34 18 1.34 19 3.24
643 24 1.61 12 1.62 12 6.49 34 1.38 14 1.39 12 3.16

10−4 963 31 1.58 12 1.59 12 6.44 54 1.39 15 1.40 14 3.27
1283 37 1.56 12 1.57 13 6.07 72 1.39 15 1.40 17 3.39
643 23 1.66 14 1.68 13 5.22 23 1.38 11 1.40 9 3.15

10−6 963 28 1.65 14 1.67 14 5.45 33 1.39 13 1.40 11 3.30
1283 32 1.65 15 1.66 14 5.39 41 1.39 14 1.40 13 3.37

Table 2. Comparison of AGG, SA and SpSA for 3D convection-diffusion.
#it denotes the number of V(1,1) cycles needed for convergence, while Cop is the
operator complexity.

operator complexity of AGG, but also enjoys the attractive and scalable convergence behavior of
SA for both the diffusive and convective problems. It seems to be the best option of the three.

Table 2 shows the results for the 3D problems. Although we used larger aggregates, we see even
larger operator complexities for SA than in 2D, especially for the convection-dominated problems
(ε = 10−4, 10−6). The convergence of SA is rather good and scalable, as in the 2D case. Unlike
in 2D, the AGG method shows moderate convergence, albeit not mesh-independent, especially for
the convective problems. Its convergence is expected to further deteriorate as the problem gets
bigger. As in 2D, SpSA has the low operator complexity of AGG and convergence similar to SA.
We note that the SpSA setup is more expensive in 3D than in 2D because more non-zeros need to
be eliminated using more surrogate paths. Reducing the number of surrogate paths is one subject
of our future research. Other than that, the SpSA method again seems to be the most efficient.
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4. Conclusions

In this paper we have presented a new algebraic multigrid algorithm where the choice of the
sparsity pattern of the coarse operators is independent of the choice of the high-quality transfer
operators. This property makes the algorithm particulary worthwhile for parallel settings.

The new algorithm uses the well-known aggregation framework, adopting simple non-smoothed
aggregation for determining the sparsity pattern of the coarse operators, and smoothed aggregation
for high-quality transfer operators. It sparsifies the smoothed aggregation coarse operators onto
the simple aggregation sparsity patterns. Numerical experiments show that the algorithm has
promising capabilities for 2D and 3D convection-diffusion problems. It seems scalable and robust
and may be advantageous in cases where strict sparsity constraints prevent us from using high-
quality Galerkin operators. We expect that our algorithm will have similar performance for such
problems also on unstructured settings.
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