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Abstract. We propose a hybrid geometric+algebraic multigrid method, or HyGA, for weighted residual methods with
hierarchical basis functions. We present a unified derivation of restriction and prolongation operators for these methods. Based
on this derivation, we propose a hybrid multigrid method HyGA, which combines a high-quality hierarchical mesh generator,
a geometric multigrid solver with a multilevel weighted residual formulation, and an algebraic multigrid solver at the coarsest
levels. Our method combines the rigor, high accuracy and runtime-and-memory efficiency of geometric multigrid with the
robustness and flexibility of algebraic multigrid, and at the same time it is relatively easy to implement. We apply HyGA
to weighted-residual finite element methods in both 2-D and 3-D, and present numerical experiments to demonstrate the
effectiveness of HyGA compared with both geometric and algebraic multigrid methods.
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1. Introduction. Multigrid methods are efficient and effective for solving large sparse linear systems,
especially those from numerical discretizations of partial differential equations (PDEs). The multigrid meth-
ods are based on stationary iterative methods (such as Jacobi, Gauss-Seidel, and damped Gauss-Seidel),
which serve as smoothers at different resolutions to smooth out errors at different frequencies. The residual
and correction vectors are transferred back and forth between different resolutions to effectively accelerate
the convergence of the stationary iterative methods.

Generally speaking, multigrid methods may be classified into geometric multigrid (GMG) and algebraic
multigrid (AMG), each of which has advantages and disadvantages. The advantages of GMG include its
better convergence with smooth solutions, better efficiency in terms of computational time, and also better
efficiency in storage, especially with a matrix-free implementation. However, GMG tends to have difficulties
for non-smooth problems or very coarse resolutions, and it is difficult to implement and to scale with
unstructured meshes, especially for domains with complex topologies. The advantages of AMG include
its simplicity and flexibility, and its robustness for non-smooth solutions and irregular domains. However,
AMG tends to be more expensive, especially in terms of its setup stage. It also tends to generate denser
matrices than GMG and cannot be easily implemented in a matrix-free fashion, so it has higher memory
and computational costs. A more serious problem is that AMG has no guarantee on the condition numbers
of the matrices at the coarse level, which may lead to non-convergence. Table 1.1 summarizes a comparison
of GMG and AMG.

The goal of this paper is to develop a novel and general hybrid geometric+algebraic multigrid method,
or HyGA, which will combine the advantages and overcome the disadvantages of the GMG and AMG, as
shown in Table 1.1. We focus on sparse linear systems arising from a weighted residual method for linear
PDEs over unstructured meshes. Linear PDEs cover a wide range of mathematical models, such as Poisson
equations and heat equations. The weighted residuals are general discretization techniques, which can unify
many commonly used finite elements and finite differences by defining different weighting functions. In
addition, unstructured meshes are very general in resolving complex geometries. An important contribution
of this paper is a new, unified derivation of restriction and prolongation operators for weighted residuals
with hierarchical basis functions. This rigorous analysis coupled with the generality of our formulation will
allow us to address a large class of linear systems arising from scientific and engineering applications.

At the algorithmic level, the main contribution of this paper is the hybrid multigrid solver HyGA, which
combines a high-quality hierarchical mesh generator, a geometric multigrid solver with a multilevel weighted
residual formulation, and an algebraic multigrid solver at the coarsest levels. Our proposed algorithm may
be summarized as follows. Our hierarchical mesh generator starts from a good-quality coarse unstructured
mesh that is sufficiently accurate for representing the topology and for reconstructing the geometry of the
domain. It iteratively refines the mesh with guaranteed mesh quality (by uniform refinements) and geometric
accuracy (by high-order boundary reconstruction). Because this refinement involves only local operations,
it is highly efficient and scalable. We apply GMG with a multilevel weighted-residual formulation on these
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Table 1.1
Advantages and disadvantages of GMG and AMG. The goal of HyGA is to combine their advantages.

geometric MG algebraic MG HyGA
set up stage inexpensive expensive inexpensive

memory requirement low high low
matrix free possible impossible possible at finer levels

computational cost low high low
matrix quality high no control high at finer levels
convergence faster slower faster

implementation difficult simple intermediate
irregular domains not robust robust robust

hierarchical meshes using our unified prolongation and restriction operators, which are coupled with PDE
rediscretizations over coarse meshes. This combination enables efficient matrix-free implementations on the
finer levels, and also effective control of the sparsity and the condition numbers of the resulting matrices.
At the coarsest level, we employ the classical AMG, which allow us to resolve complex topologies easily and
handle non-smooth solutions robustly. In addition, the relatively high setup cost and memory requirement
of AMG become negligible due to the significantly reduced problem size. Therefore, our approach effectively
combines the rigor, high accuracy and runtime-and-memory efficiency of GMG with the simplicity, robustness
and flexibility of AMG, and at the same time it is relatively easy to implement. We will present numerical
experiments to demonstrate the effectiveness of HyGA compared with both geometric and algebraic multigrid
methods for 2-D and 3-D problems.

The remainder of the paper is organized as follows. Section 2 reviews some background and related work
on geometric and algebraic multigrid solvers. Section 3 describes a general, multilevel weighted-residual
formulation with hierarchical basis functions, and derive the restriction and prolongation operators for it.
Section 4 describes our hybrid multigrid algorithm, with a focus on the generation of hierarchical meshes
for complex geometries with curved boundaries, and the application of the multilevel weighted-residual
formulation to hierarchical meshes. Section 5 presents some preliminary results with our method, and some
comparisons with both geometric and algebraic multigrid methods. Section 6 concludes the paper with a
discussion on future research directions.

2. Background and Related Work. We briefly review the multigrid method and introduce some
notation, similar to those in textbooks such as [7] and [22]. Let us first consider a two-level approach for
solving a linear system Au = b. Let A(1) = A be the coefficient matrix on the finer level, and A(2) be that
on the coarser level. We outline a two-level method as follows:
Pre-smoothing: starting from initial solution u0, run smoother on A(1)u(1) = b for a few iterations to

obtain u(1);
Restriction: compute residual vector r(1) = b−A(1)u(1) and r(2) = Rr(1), where R is a restriction matrix ;
Smoothing: construct coarse-grid operator A(2) and run smoother on A(2)s(2) = r(2) for a few iterations

to obtain s(2), starting from initial guess s(2) = 0;
Prolongation: compute correction vector s(1) = Ps(2), where P is prolongation matrix ;
Post-smoothing: run smoother on A(1)s(1) = r(1) for a few iterations from prolongated s(1), and update

solution u(1) ← u(1) + s(1).
Ideally, A(2) ≈ RA(1)P , although this may be implemented in a matrix-free fashion without using matrix-
matrix multiplications. The above procedure may repeat for many iterations. When more than two levels
are used, the smoothing step is performed on the coarsest level, whereas the restriction, prolongation, pre-
and post-smoothing operations are applied between adjacent levels in a global loop for all the levels, in a
so-called V-cycle, W-cycle, or full-multigrid cycle.

There are many variants of multigrid/multilevel methods. The smoothers in different methods are
similar, typically based on a stationary iterative method (such as some variant of Jacobi or Gauss-Seidel
iterations) [5]. The main differences between different methods lie in the choices of the coarse-grid, restriction,
and prolongation operators. Based on coarse-grid operators, multigrid methods are typically categorized into
geometric (GMG) or algebraic (AMG). In our proposed approach, we use different coarse-grid operators (and
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also different restriction and prolongation operators) for the upper and lower levels.
Geometric multigrid was first developed for structured meshes over regular domains; see e.g. [10]. They

can be generalized to semi-structured meshes over regular domains (such as octree [17]). For applications
with complex geometries, it is more desirable to use unstructured meshes [2, 15, 16]. A typical process of
these methods is to start from a fine mesh and coarsen it repeatedly, which is a difficult process. A dual
approach is to refine a coarse mesh repeatedly, such as in [14]. This approach is substantially simpler and
more effective, but it is less general and requires tighter integration with mesh generation. Our hybrid
method combines the latter approach with AMG.

Algebraic multigrid methods (AMGs) construct the coarse-grid operator directly from the matrix without
explicit knowledge of the geometry. There are several variants of AMGs: classical algebraic multigrid [7],
smoothed aggregation [21], element interpolation [6]. etc.. These methods are effective for solving problems
involving anisotropy, discontinuity, or irregular domains, where GMG may be difficult to apply. Our work
leverages the classical AMG, whose core idea is the complementarity of smoothing and coarse grid correction.
In particular, it utilizes this principle to define smooth errors as the near null space of coefficient matrix.
The coarsening and interpolations are chosen to ensure good approximation of fine grid smooth errors.

The multigrid methods have been implemented in some software packages, such as Hypre [8] and Trilinos
[9] for AMG, and Prometheus [1] for GMG. These packages are effective when they are applicable, but they
are often not robust enough as standalone solvers. For this reason, multigrid methods are often used as
preconditioners of Krylov-subspace iterative methods (such as in PETSc [3]). One objective of our proposed
approach is to combine GMG and AMG to deliver a more robust multigrid solver.

3. Multilevel Weighted Residual Methods. The weighted residual formulation is a general nume-
rical technique for solving PDEs, of which both the Galerkin finite element methods and the finite difference
methods can be viewed as special cases. We describe a general form of multilevel weighted residuals for
linear partial differential equations over a hierarchy of basis functions. We will use this form to derive a
geometric multigrid over hierarchical meshes in the next section.

3.1. A General Weighted Residual Formulation of Linear PDEs. For generality, let us consider
an abstract but general form of linear, time-independent partial differential equations

P u(x) = f(x), (3.1)

with Dirichlet or Neumman boundary conditions, where P is a linear differential operator. In a weighted
residual method,1 given a set of test functions Ψ(x) = {ψj(x)}, we obtain a linear equation for each ψj as

ˆ
Ω

P u(x)ψjdx =

ˆ
Ω

f(x)ψjdx, (3.2)

and then the boundary conditions may be applied by modifying the linear system. In general, a set of basis
functions Φ(x) = {φi(x)} is used to approximate u and f , where Φ and Ψ do not need to be equal.

The above formulation with (3.1) and (3.2) is general, and it unifies large classes of PDEs and of numerical
methods. Examples of (3.1) include the Poisson equation −∆u(x) = f(x) and other linear elliptic problems.
An example of (3.2) is the finite element methods, where the basis and test functions are piecewise Lagrange
polynomials. When Φ = Ψ, this reduces to the Galerkin method. Another example is the classical and
the generalized finite difference methods [4], where the test functions are the Dirac delta functions at each
node of a mesh, and the basis functions are piecewise polynomials (i.e., the basis functions of the polynomial
interpolations/approximations in computing the finite-difference formulae). This unification will allow us to
derive a general formulation of the restriction and prolongation operators for geometric multigrid methods.

For the convenience of notation, suppose Φ and Ψ are both column vectors composed of the basis
functions, i.e. Φ = [φ1, φ2, . . . , φn]T and Ψ = [ψ1, ψ2, . . . , ψn]T . Let u denote the vector of coefficients ui
associated with φi in the approximation of u, i.e., u ≈ uTΦ =

∑
i uiφi, and similarly f(x) ≈ fTΦ =

∑
i fiφi.

Then P u = P
(
uTΦ

)
= uTPΦ, and from (3.2) we obtain a linear system

Au = b, (3.3)

1The term “residual” appears in two different contexts in this paper: the residual of a linear system (b − Au) and the
residual of a PDE (f(x)−P u(x)). A “residual equation” is based on the former, and “weighted residual” is based on the latter.
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where

Aij =

ˆ
Ω

(P φj(x)) ψi(x)dx and bi =

ˆ
Ω

f(x)ψi(x)dx.

For example, for the Poisson equation, we have Aij =
´

Ω
−∆φj(x)ψi(x)dx =

´
Ω
∇φj(x) · ∇ψi(x)dx.

The matrix A is the stiffness matrix, and b is the force vector. The equation (3.3) needs to be updated
to incorporate the boundary conditions. The solution of (3.3) gives a vector u such that the residual
fTΦ−P(uTΦ) is orthogonal to the test functions ψj . If Φ is composed of Lagrange basis functions, such as
in the finite element methods, u and f are composed of the nodal values of u and f on a mesh, respectively.

Remark: In finite-element methods, the integral in the left-hand side of (3.2) is often transformed
into integrals of a lower-order differential operator multiplied (in an inner-product sense) with ∇ψj(x). For
example, in a finite element method where ψj vanishes along the boundary,

´
Ω
−∆u(x)ψjdx =

´
Ω
∇u(x) ·

∇ψjdx. We omit this detail as it does not affect the derivations.

3.2. Weighted Residuals with Hierarchical Basis. In a multilevel context, we assume a hierar-

chy of basis functions Φ(k)(x) =
[
φ

(k)
1 (x), φ

(k)
2 (x), . . . , φ

(k)
nk (x)

]T
, and similarly for the test functions Ψ(k).

Without loss of generality, let us consider two levels first, and the construction will apply to adjacent levels
in a multilevel setting. Suppose Φ(1) and Φ(2) correspond to the basis functions on the fine and coarse levels,
respectively, and the functional space spanned by Φ(2) is a subspace of Φ(1). Let R(1,2)

Φ denote a restriction
matrix of the functional space such that

Φ(2) = R
(1,2)
Φ Φ(1),

where R
(1,2)
Φ ∈ Rn2×n1 . Similarly, let Ψ(2) = R

(1,2)
Ψ Ψ(1) with another restriction matrix R

(1,2)
Ψ .

At the kth level, let A(k) denote the matrix A in (3.3). A key question is the relationships between
A(1) and A(2). To derive this, let us re-write A(k) in the form of an integral of an outer product of Ψ(k) and
P Φ(k), i.e.,

A(k) =

ˆ
Ω

Ψ(k)
(
P Φ(k)

)T
dx.

Substituting Φ(2) = R
(1,2)
Φ Φ(1) and Ψ(2) = R

(1,2)
Ψ Ψ(1) into it, we then obtain

A(2) =

ˆ
Ω

(
R

(1,2)
Ψ Ψ(1)

)(
PR

(1,2)
Φ Φ(1)

)T
dx = R

(1,2)
Ψ

(ˆ
Ω

Ψ(1)
(
P Φ(1)

)T
dx

)(
R

(1,2)
Φ

)T
= R

(1,2)
Ψ A(1)

(
R

(1,2)
Φ

)T
. (3.4)

From Eq. (3.4), we conclude that the restriction matrix R and the prolongation matrix P in a two-level
multigrid method for weighted residual methods should be

R = R
(1,2)
Ψ and P =

(
R

(1,2)
Φ

)T
. (3.5)

In particular, for Galerkin methods, P = RT =
(
R

(1,2)
Φ

)T
is an interpolation matrix, which is a well-known

result for Poisson equations [18] and [7, Chapter 10]. For finite difference methods with nested meshes, P
is also an interpolation matrix, but R 6= P T . However, R should be an n2 × n1 permutation matrix (an
injection operator), because the ψj are Dirac delta functions.

Our general result in (3.5) seems to be new, and we prove it as follows. Let u(1) =
(
u(1)

)T
Φ(1) denote

the approximation of u with basis Φ(1), and let b(1) denote the right-hand vector in (3.3). The residual of
linear system (3.3) with basis Φ(1) is r(1) = b(1) − A(1)u(1). Let r(2) = R

(1,2)
Ψ r(1), and then the residual

equation with Φ(2) is

A(2)s(2) = R
(1,2)
Ψ r(1),
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Fig. 4.1. Illustration of refinement of triangle (left) and tetrahedron (right).

where s(2) is the correction vector with Φ(2). Substituting (3.4) into it, we then obtain

R
(1,2)
Ψ A(1)

(
R

(1,2)
Φ

)T
s(2) = R

(1,2)
Ψ A(1)s(1) = R

(1,2)
Ψ r(1), (3.6)

where s(1) = Ps(2) =
(
R

(1,2)
Φ

)T
s(2) is the prolongated correction vector with Φ(1). In the functional form,

(3.6) can be rewritten as
ˆ

Ω

Ψ(2)
(

Φ(1)
)T (

u(1) + s(1)
)
dx =

ˆ
Ω

Ψ(2)f(x) dx,

i.e., s(1) gives a correction to u(1) so that the updated residual of the PDE is orthogonal to all the test
functions in Ψ(2).

From (3.4) and (3.5), we see that the matrix A(2) is identical to the matrix RA(1)P in a multilevel
weighted-residual formulation with hierarchical basis functions for any linear partial differential equation in
the form of (3.1). This allows us to discretize the PDE directly to obtain A(2). This is advantageous as it
avoids sparse matrix-matrix multiplications and allows a matrix-free implementation.

4. Hybrid Multigrid Methods. We now present our hybrid multigrid method utilizing our results on
multilevel weighted residuals. Our hybrid multigrid method, called HyGA, combines a geometric multigrid
solver with a few levels of hierarchical meshes, and an algebraic multigrid on the coarsest level. We will
focus on finite element methods with linear simplicial elements in 2-D and 3-D (in particular, triangles
and tetrahedra) in this paper, although the approach can be generalized to higher-order elements and to
generalized finite difference methods, which we will explore our future research.

4.1. Generation of Hierarchical Meshes. We first describe the construction of hierarchical meshes.
which are needed for our geometric multigrid based on multilevel weighted residuals.

Guaranteed-Quality Mesh Refinement. We construct hierarchical meshes through iterative mesh
refinement, instead of mesh coarsening. In two dimensions, we start from a good-quality coarse triangular
mesh. To generate a finer mesh, we subdivide each triangle into four equal sub-triangles that are similar to
the original triangle, as illustrated in FIgure 4.1(left). The element quality (in terms of angles) is preserved
under mesh refinement. To generate an `-level hierarchical mesh, we repeat the refinement (`− 1) times. In
three dimensions, we start from a good-quality coarse tetrahedral mesh, and subdivide each tetrahedron into
eight sub-tetrahedra, as illustrated in FIgure 4.1(right). There are three different choices in the subdivisions.
Any of these subdivisions will produce eight sub-tetrahedra of the same volume, so it does not introduce
very poor-quality elements. Among these sub-tetrahedra, the four sub-tetrahedra incident on the original
corner vertices are similar to the original tetrahedra. The four interior sub-tetrahedra may vary in shapes.
We choose the subdivision that minimizes the edge lengths, as it tends to minimize the aspect ratio, defined
as the ratio of the sum of squared edge lengths and the two-thirds root of the volume [13].

Treatment of Curved Boundaries. One of the main reasons why unstructured meshes are useful in
practice is its flexibility to deal with complex geometries, especially those with curved boundaries. When
generating hierarchical meshes, we need to respect the curved boundaries. We achieve this by projecting the
newly inserted mid-edge points onto the curved geometry, as illustrated in Figure 4.2. The projection can
be done either analytically if the geometry is known, or through a high-order reconstruction of the geometry
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Fig. 4.2. Illustration of the treatment of curved boundary by projecting inserted mid-edge points.

[11, 12]. Note that if the mesh is too coarse at a concave region, some mesh smoothing may be needed to
avoid inverted elements (i.e., elements with negative Jacobian) We omit this issue in this paper.

4.2. Prolongation and Restriction Operators. After we obtain the hierarchical meshes, the basis
and test functions are determined on each level. In Galerkin finite elements, the basis functions Φ(k) and test
functions Ψ(k) are the same, and they are piecewise Lagrange polynomials. Assume the meshes are exactly
nested, then the functional spaces on a coarser mesh is strictly a subspace of that on a finer mesh. Therefore,
there is an exact restriction matrix R

(k,k+1)
Φ of the functional space between levels k and k + 1. As we have

shown in section 3.2, for Galerkin finite elements the optimal prolongation operator is P (k) =
(
R

(k,k+1)
Φ

)T
,

and the optimal restriction operator is R(k) = R
(k,k+1)
Φ . With these definitions, the matrix A(k+1) from

discretizing the PDE over the (k + 1)st grid is equivalent to R(k)A(k)P (k).
In general, computing R

(k,k+1)
Φ may be a daunting task. However for Lagrange basis functions over

hierarchical meshes, R(k,k+1)
Φ is precisely the transpose of the interpolation matrix I(k+1,k) of the nodal

values from the (k + 1)st level mesh to the kth level mesh. This may not be straightforward, because as
noted in [22], such nodal interpolations may require proper scaling to produce the correct prolongation and

restriction operators. In the following, we show that R(k,k+1)
Φ =

(
I(k+1,k)

)T
.

Without loss of generality, let k = 1, and let ũ(2) =
(
ũ(2)

)T
Φ(2) denote the approximation of u with

basis Φ(2). Since Φ(2) = R
(1,2)
Φ Φ(1), then

ũ(2) =
(
ũ(2)

)T
R

(1,2)
Φ Φ(1) =

(
ũ(1)

)T
Φ(1),

where ũ(1) =
(
R

(1,2)
Φ

)T
ũ(2). At the same, in terms of nodal interpolation I(2,1), because Φ(k) are Lagrange

basis functions,

ũ(2) =
(
I(2,1)ũ(2)

)T
Φ(1).

Thus, I(2,1)ũ(2) =
(
R

(1,2)
Φ

)T
ũ(2) for any ũ, so R

(1,2)
Φ −

(
I(2,1)

)T
= 0.

In summary, for hierarchical Lagrange basis functions, P (k) = I(k+1,k), i.e., interpolation matrix of
nodal values from (k + 1)st level to the kth level. In addition for the Galerkin finite element methods,

R(k) =
(
I(k+1,k)

)T
. One subtle point is that after we project the points onto curved boundaries, the

elements is no longer nested, so the Lagrange basis functions are no longer strictly hierarchical. When
constructing the prolongation and restriction matrices, we treat the elements as nested (in other words,
creating the prolongation and restriction operators as if boundary projection did not occur). This is because
that for linear elements, whose geometric errors are second order when approximating curved boundaries, this
projection introduces second-order corrections to the positions between each pair of meshes. Therefore, the
additional errors introduced by omitting the curved boundaries in the prolongation and restriction operators
are in the same order as the truncation errors, so it would not affect the convergence rate.
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4.3. Hybrid Geometric+Algebraic Multigrid. Our preceding formulation based on hierarchical
basis functions is rigorous, efficient, and relatively easy to implement. However, it has one limitation: it
requires a hierarchical mesh. In practice, it is reasonable to assume a small number of levels (such as two
or three levels) in a hierarchical mesh, but we cannot expect to have too many levels. This can limit the
scalability of GMG with hierarchical meshes alone.

To overcome this issue, we propose to use a hybrid geometric+algebraic multgird method, or HyGA. In
this approach, we use geometric multigrid based on multilevel weighted residuals on the upper levels with
the hierarchical mesh. On the coarsest level, we switch to an algebraic multigrid (AMG) method, and in
particular the classical AMG. For completeness, we give a brief review of the classical AMG, Its coarsening
process is performed by the following steps:
1) Choose a threshold value 0 < θ 6 1 to define strong dependence.
2) Choose an independent set containing points, which strongly influences as many other points as possible.
3) Convert some of the fine grid points into coarse ones to satisfy interpolation requirement.

After coarse grid points and fine grid points are chosen, the prolongation operator is built by:

P (ei) =

{
ei if i is in coarse mesh∑
wijej otherwise.

The weights wij are given by

wij = −
aij +

∑
m∈Ds

i

(
aimamj∑
k∈Ci

amk

)
aii +

∑
n∈Dw

i
ain

,

whereDs
i , Ci andDw

i are three sets partitioned by strong dependence. The prolongation operator is expressed
in a matrix P , and the restriction matrix R is defined as P T . The matrix on the coarse grid is then RAP .

Note that in both GMG and AMG, the coefficient matrix on the coarse grid is equal to RAP . The
difference is that in GMG, we obtain the hierarchy through iterative mesh refinement and we compute the
coefficient matrix by discretizing the PDE, which is more accurate and more efficient, whereas in AMG, the
hierarchy is obtained through coarsening, which is more flexible. Compared to a pure GMG method, the
hybrid approach provides us more flexibility in resolving irregular geometries. Compared to a pure AMG
method, the hybrid approach can potentially deliver better convergence and higher efficiency, because at the
finer levels, GMG is more accurate and less expensive. In the next section, we will present comparisons of
GMG, AMG and HyGA to demonstrate the advantages of HyGA.

5. Numerical Experimentations. We present some numerical experimentations using HyGA. In
particular, we solve some large-scale linear systems from finite-element methods for Poisson equations with
Dirichlet boundary conditions in both 2-D and 3-D. Figure 5.1 shows the test geometries, both of which have
curved boundaries and hence require unstructured meshes.

Let ` denote the number of levels of a hierarchical mesh. We solve the linear system using the following
five strategies and compare their performances:
AMG(`+ 1): classical AMG with `+ 1 levels, since AMG with ` levels performed poorly.
GMG(`): GMG with multilevel weighted-residual formulation with ` levels.
HyGA(2,`− 2): GMG on first two levels and classical AMG on `− 2 coarse levels.
HyGA(3,`− 3): GMG on first three levels and classical AMG on `− 3 coarse levels.
HyGA(3,`− 2): GMG on first three levels and classical AMG on `− 2 coarse levels.
For all the tests, we use one cycle of full multigrid, followed by V-cycles. We use the Gauss-Seidel method
as the smoothers, with ten iterations at the coarsest level. For the pre- and post-smoothing, we use two the
Gauss-Seidel iterations for 2-D problems and four iterations for 3D problems.

5.1. Convergence Results in 2-D. For our 2-D test, we solve the Poisson equation

∆u(x) = f(x), where f(x) = −2π2 (sin(πx) + sin(πy))

with homogeneous boundary conditions on three quarters of a unit disk. Starting from a 2-D initial mesh
generated using Triangle [19], we generated three meshes with different resolutions, by refining the initial
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Fig. 5.1. Coarsest initial meshes for 2-D (left) and 3-D tests (right) .

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations

r
e

s
id

u
a

l

 

 

5−AMG

4−GMG

2−GMG+2−AMG

3−GMG+1−AMG

3−GMG+2−AMG

(a) 8,906 unknowns with 4 levels.

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations

r
e

s
id

u
a

l

 

 

6−AMG

5−GMG

2−GMG+3−AMG

3−GMG+2−AMG

3−GMG+3−AMG

(b) 35,986 unknowns with 5 levels.

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations

r
e

s
id

u
a

l

 

 

7−AMG

6−GMG

2−GMG+4−AMG

3−GMG+3−AMG

3−GMG+4−AMG

(c) 144,674 unknowns with 6 levels.

Fig. 5.2. Relative residual versus numbers of iterations for 2-D test cases.

mesh in Figure 5.1(left) for three, four, and five times, to obtain hierarchical meshes with four, five, and six
levels, respectively. After each refinement, we projected the newly inserted boundary points onto the curved
boundary.

Figure 5.2 shows the convergence of these different strategies. From the plots, it can be seen that GMG(`)
converges a few times faster than AMG(` + 1). We do not show the results for AMG(`), as it took about
twice more iterations than AMG(` + 1). For AMG, we set its parameter θ = 0.25 (c.f. section 4.3), as it
seemed to deliver the best performance. Most importantly, for HyGA with only two or three levels of GMG,
its convergence rate was comparable to GMG with the same total number of levels, and it was consistently
faster when we added one additional AMG level at the coarse level. These results indicate that the finer
levels are more critical to the overall convergence of multigrid methods, so it is advantageous to use GMG
to achieve the best accuracy at finer levels. For the coarse levels, the slower converging but more flexible
AMG suffices to ensure good overall convergence of HyGA. This alleviates the compilations of further mesh
coarsening of a pure GMG, and also allows us to adapt the total number of levels easily.

5.2. Convergence Results in 3-D. For our 3-D test, we solve the Poisson equation

∆u(x) = f(x), where f(x) = −3π2 (sin(πx) + sin(πy) + sin(πz))

with homogeneous boundary conditions on a slotted sphere. We generate a tetrahedral mesh from the surface
mesh shown in Figure 5.1(right) using TetGen [20], and then build three meshes with different resolutions
by refining the initial mesh in Figure 5.1(right) for two, three and four times, to obtain hierarchical meshes
with three, four and five levels, respectively. Let ` denote the number of levels for each case. We use similar
strategies and settings as for the 2-D tests. However for AMG, it failed to converge with θ = 0.25 for some
of our test meshes. To ensure convergence, we set θ = 0.25, 0.5, and 0.7 for the three cases, respectively.
Figure 5.3 shows the convergence of the different strategies, which are qualitatively similar to the 2-D results.
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Fig. 5.3. Relative residual versus numbers of iterations for 3-D test cases.

It can be seen that GMG(`) converged faster than AMG(` + 1). At the same time, HyGA performed very
similarly to GMG(`), while being much more flexible and requiring fewer mesh levels.

5.3. Comparison of Runtimes. In terms of computational times, Table 5.1 compares the runtimes
of these different strategies on a Mac Pro with two 2.4 GHz quad-core Intel Xeon processor and 24 GB of
memory, running Mac OS X 10.7.5 with gcc 4.2. For AMG(`), we show the runtimes of setup and solve
steps separately. For the others, we show only the solve time since the setup time is negligible. As a
reference, we also show the running times of MATLAB’s built-in preconditioned conjugate gradient (PCG)
with incomplete Cholesky factorization (ichol) as the preconditioner, which is the best in its class. It can be
seen that HyGA(3,`− 2) delivered the best overall performance in 2-D. It is about five times faster than the
solve-step of AMG(`+ 1), and more than an order of magnitude faster than PCG. For 3-D problems, HyGA
schemes were much faster than AMG and PCG, and performed similarly to GMG.

Table 5.1
Timing results (in seconds) for AMG, GMG and HyGA. For references, times for PCG (with incomplete Cholesky pre-

conditioner) are shown. Numbers in parentheses denote numbers of levels, which depend on parameter `.

dim test case AMG(`+ 1) GMG(`) HyGA PCG
vertices levels (`) setup solve solve (2,`-2) (3,`-3) (3,`-2) (ichol)

2D
8,906 4 0.03 0.13 0.04 0.08 0.04 0.03 0.21
35,986 5 0.15 0.74 0.16 0.36 0.20 0.14 1.27
144,674 6 0.63 3.68 0.65 1.52 0.90 0.58 11.1

3D
31,841 3 0.37 1.79 0.38 0.42 0.38 0.39 0.44
291,684 4 3.98 24.5 5.66 7.32 5.71 5.77 9.32

2,484,807 5 28.5 509 58.3 89.5 59.2 59.8 186

6. Conclusions and Discussions. In this paper, we introduced a novel hybrid geometric+algebraic
multigrid solver, HyGA, for weighted-residual methods with hierarchical basis functions, such as finite ele-
ments with hierarchical unstructured meshes. Our method combines a guaranteed-quality hierarchical mesh
generator, a geometric multigrid solver at the finer levels, enabled by our unified derivation of prolongation
and restriction operators for multilevel weighted residuals, and an algebraic multigrid solver at the coarse
levels. We showed that this approach combines the high accuracy and efficiency of geometric multigrid with
the robustness and flexibility of algebraic multigrid, to enable better convergence, while being relatively easy
to implement. Our numerical experiments demonstrated the advantages of our proposed hybrid technique
compared to the classical GMG and AMG separately.

HyGA has the potential to deliver an efficient, robust, and easy-to-implement multigrid solver for PDEs.
A few issues have yet to be addressed to achieve full efficiency and robustness. In terms of efficiency, the
implementation presented in this paper was serial. We are currently developing parallel implementations of
HyGA. In terms of robustness, one potential issue is that AMG does not guarantee the conditioning of the
matrices at the coarse levels. We have observed non-convergence of AMG occasionally, which may also affect
the convergence of HyGA. We will address this issue in our future research.
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