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SUMMARY

This paper describes an adaptive algebraic multigrid method based on [8] and [14]. The target is to efficiently
solve large sequences of problems. To this purpose, already built hierarchies of spaces are reused and adapted
so that efficient algebraic multilevel preconditioners are quickly constructed for nearby problems. The main
considered application is the solution of linear systems arising in Markov chain Monte Carlo simulations of
subsurface flow with uncertainty in the conductivity field. A set of numerical experiments demonstrate the
efficiency of the method for the target application. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we treat the construction and adaptation of algebraic multigrid iterative methods
(or preconditioners) for solving sequences of linear systems originating from finite-element
discretization of elliptic partial differential equations (PDEs) where the matrices change gradually
throughout the sequence. Such sequences arise in the iterative solution of nonlinear PDE [1],
topology optimization in material design [2], and the quantification of uncertainty via the Markov
chain Monte Carlo (MCMC) method [3].

We concentrate particularly on the case of uncertainty quantification in subsurface flow simulation
when geological models of the hydraulic conductivity are conditioned to observed data [4]. The
MCMC method is used to sample from the conditional distribution. This requires the numerical
solution of thousands of PDEs with gradually changing diffusion coefficient realizations varying
several orders of magnitude within small subdomains. Furthermore, the solver must handle higher-
order discretizations and anisotropic media. The linear system solves are the most computationally
intensive part of such simulations [4]. Thus, robust and efficient solvers are crucial to carrying out
efficient simulations.

The proposed method attempts to reuse a multilevel hierarchy constructed for a previous linear
system by quickly adapting it so that it would be efficient for solving a system with a nearby matrix.
It is founded upon the element-based algebraic multigrid (AMGe) method [5, 6] in the sense that
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the proposed method uses local problems to obtain coarse basis that capture local features of the
problem. The method also utilizes ideas from smoothed aggregation (SA) multigrid [7] to developed
hierarchy of spaces that has good approximation properties independent of the coefficient contrast
[8]. Additionally, it incorporates the adaptive AMG methodology (see [9, 10], and in AMGe context
see [11, 12, 13]) to automatically identify the modes that should be included into the new solver to
produce accurate enough coarse spaces. A two-grid version of the proposed method and efficient
adaptation strategies are developed in [8, 14]. In this paper we use the so-called minimal intersection
sets [6, 15] to define coarse degrees of freedom (dofs) and element matrices which allows for the
multilevel extension of the method.

The remainder of the paper is organized as follows: In Section 2 we describe the model
problem we are solving, the finite-element discretization, and the basics of MCMC subsurface
flow simulation. In Section 3 we present the algebraic multigrid method and the adaptive approach
that we apply to efficiently solve the sequence of equations. In Section 4 we present a numerical
experiments based on MCMC simulations showing the efficacy of the proposed method. Finally, we
make some concluding remarks in Section 5.

2. BACKGROUND

2.1. Model Problems and Discretization

A simple model problem close to subsurface flow is the single-phase steady-state flow equations

q (x, ω) + k (x, ω)∇p (x, ω) = g (x) in D × Ω,

∇ · q (x, ω) = f (x) in D × Ω,
(1)

subject to suitable boundary conditions. Here, q is the Darcy flux, k is the hydraulic conductivity
field, and p is the pressure head. The stochasticity in the PDE coefficient is denoted by ω that,
in uncertainty quantification of subsurface flow, may represent a random variable on a probability
space Ω which describes the geological properties of the subsurface. Notice that since p and q
depend on k, they also depend on ω.

Re-writing (1) as a 2nd-order elliptic PDE, and adding boundary conditions, we have

−div [k (x, ω)∇p (x, ω)] = f (x)−∇ · g (x) in D × Ω
p (x) = g

D
(x) on ∂DD

∇p (x) · n = g
N

(x) on ∂DN .

(2)

The proposed method is also applicable when the source term and boundary conditions depend on
ω.

We are particularly interested in highly anisotropic conductivity fields. In this case, k (x, ω) can
be written as a d-dimensional tensor, i.e. for d = 2 we have

k (x, ω) =
[

k11 (x, ω) k12 (x, ω)
k21 (x, ω) k22 (x, ω)

]
.

Consider the polygonal domain D ⊂ R2. Let Th be a quasi-uniform triangulation of D with
mesh size h and collection of elements {τ}. Let Vh be the finite element space associated with
Lagrangian dofs Nh. We assume that each realization of conductivity field is represented by
piecewise-polynomial functions of degree one less than the degree of the polynomial basis in Vh.
For example, if we take Vh to be the space of piecewise linear functions over Th, then k (x, ω) is
represented by piecewise constants over Th.

For fixed ω, the bilinear form corresponding to (2) is

a (u, v) =
∫

D

k (x, ω)∇u · ∇v dx.
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ADAPTIVE AMG FOR SEQUENCES OF PROBLEMS 3

Denote by ϕj the basis function corresponding to dof j. Define the element stiffness matrix for τ as

[Aτ ]ij =
∫

τ

k (x, ω)∇ϕi · ∇ϕj dx,∀i, j ∈ τ.

Finally, the global fine-grid stiffness matrix A can be defined and assembled according to

uT Av =
∑
τ∈Th

uT
τ Aτvτ ,

where uτ is the restriction of global finite-element function u to τ .

2.2. Classical and Markov Chain Monte Carlo Simulations

The goal of subsurface simulation is to compute moments of some quantity of interest given
reasonable assumptions on the uncertainty in the data. Suppose that k has probability distribution
π (k) and we wish to compute moments of some quantity of interest Q which, for the model problem,
is a function of k and p. The mean of Q can be approximated using a Monte Carlo estimator

Q̂MC =
1
N

N∑
i=1

Q(i),

by drawing samples k(i) from π (k), obtaining corresponding solutions p(i), and computing Q(i) ≡
Q(i)

(
p(i); k(i)

)
.

A popular choice is to model k as a log-normal random field with two-point correlation structure
[16]. Then, k is expanded in a so-called truncated Karhunen-Loève Expansion (KLE)

k (x, ω) = exp [YM (x, ω)], (3)

where

YM (x, ω) = Y0 (x) +
M∑

j=1

√
λjφj (x) ξj (ω) . (4)

Here, M is the number of terms in the expansion, Y0 (x) is the mean, ξj are independent standard
normal random variables, and (λj , φj) are eigenpairs of the integral equation with covariance
function C (x,x′) as a kernel. Take

C (x,x′) = σ2
k exp

(
−|x1 − x′1|

γ1
− |x2 − x′2|

γ2

)
, (5)

where σ2
k is the variance of the stochastic field and γj is the correlation length in the jth direction. For

this choice there exist analytic expressions for (λj , φj) [16]. Then, to draw a random sample k(i)

only requires generating M independent random variables ξj ∼ N (0, 1) and computing k (x, ω).
Having k(i), the remaining steps to obtain Q(i) are familiar.

However, when π (k) is complex or not given explicitly (e.g. incorporating dynamic data like
observed pressure values or flow rates), computing Q̂MC is not straight-forward. In such cases
MCMC methods are necessary since they give a feasible way of sampling from such distributions.

Suppose that the subsurface is modeled by a simple (e.g. log-normal) prior distribution P (k) and
we have some observed data F , accurate up to some level of measurement error. Then, we wish
to draw samples of k from the prior distribution conditioned to the observed data, i.e. from the
posterior distribution π (k) = P (k|F ). Bayes’ Law gives

P (k|F ) ∝ P (F |k) P (k) ,

where P (F |k) is the likelihood that data F is observed given k. Finally, we model the likelihood
function as a Gaussian
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P (F |k) ∝ exp

(
−‖F − Fk‖2

σ2
f

)
,

where σ2
f is the likelihood variance and Fk is the model response obtained by solving (2) with k as

a fixed coefficient.
In this paper we use the standard Metropolis-Hastings MCMC method [3] shown in Algorithm

2.1. Notice that we require a transition probability q (k′|k) defining a transition from field k to k′.

Algorithm 2.1 Metropolis-Hastings MCMC
PROCEDURE: kn+1 ←MH (kn).
INPUT: Current conductivity sample kn.
OUTPUT: New conductivity sample kn+1.
Generate proposal k′ from transition probability q (k′|kn) and compute acceptance probability

α (kn, k′) = min
(

1,
π (k′) q (kn|k′)
π (kn) q (k′|kn)

)
.

Take kn+1 = k′ with probability α (kn, k′), and kn+1 = kn with probability 1− α (kn, k′).

It is well-known [3] that after sufficiently long burn-in, samples {kn} come from the desired
distribution π (k). They are then used in a Monte Carlo estimator. Note again that each evaluation
of π (k) requires solution of (2) which is the main computational hardship in the simulation.

The transition probability that we consider is the random walker. Namely, each random coefficient
in the KLE of k (x, ω) is perturbed by an independent random variable from N

(
0, δ2

k

)
, where δk

is the step-size parameter. That is, for j = 1, . . . ,M draw ηj ∼ N
(
0, δ2

k

)
and set ξ′j = ξj + ηj . The

choice of δk affects the acceptance rate in Algorithm 2.1. Namely, increasing δk results in decreased
acceptance and vice versa.

3. AMG FOR SEQUENCES OF LINEAR SYSTEMS

The foundation of the proposed adaptive method is the algorithm introduced in [8] (see also [17]),
which combines the spectral AMGe (ρAMGe) [15] and SA-AMG [7] methods. In this section we
give an algorithmic description, present the extensions we use to build a multilevel version of the
method, and discuss the adaptive methodology.

3.1. Multilevel SA-ρAMGe

Multigrid methods are popular due to their potential to solve N ×N sparse linear systems like
Ax = b in O(N) time and space. Their efficiency is due to the synergy of relaxation and coarse-
grid correction [1]. A general two-grid cycle is given in Algorithm 3.1 which provides the s.p.d.
mapping b 7→ B−1

TGb with x0 = 0. We generally choose relaxation which is A-convergent (i.e.
‖I −A1/2M−1A1/2‖ < 1) and inexpensive to compute. Applying Algorithm 3.1 recursively for
the coarse problems results in the well-known V-cycle.

Consider the collection of elements T = {τ}, where each element is a set of small number of
dofs and their union covers N – the set of all dofs. Note that elements are overlapping in terms
of dofs. We assume that non-overlapping partitioning of the set T in agglomerated elements (AEs)
{T} has been constructed, where each T is a (connected) union of elements τ . Clearly, AEs are also
overlapping in terms of dofs and their union covers N . In addition, the set of dofs N is partitioned
in a corresponding number of non-overlapping aggregates {A} such that each A is contained in a
unique agglomerate T . This is accomplished by arbitrating dofs lying on the interface between AEs.
Namely, we assign a shared dof to the neighboring aggregate to which it is most strongly connected.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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Algorithm 3.1 Two-Level (TL) Algorithm
PROCEDURE: xTG ← TL (A,b,x0,M, P )
INPUT: Matrix A, vector b, initial iterate x0, relaxation operator M , interpolation operator P .
OUTPUT: Two-grid iterate xTG = x.
Initialize: x = x0.
Pre-relax: x← x + M−1 (b−Ax).
Correct: x← x + P

(
PT AP

)−1
PT (b−Ax).

Post-relax: x← x + M−T (b−Ax).

More precisely, let aij = [A]ij and for given dof i and aggregate A compute

σi(A) = max
j∈A

(
|aij |√
aiiajj

)
.

Then, assign i to the candidate aggregate A with largest σi(A).
Furthermore,N is partitioned in minimal intersection sets {I} [6, 15]. By definition, the minimal

intersection sets are equivalence classes defined by the relation that two dofs as equivalent if they
belong to identical sets of AEs. Then, intersecting the aggregates {A} with the sets {I} gives the
partitioning of N in refined aggregates {α}. Appropriately selected collections of these refined
aggregates cover exactly each agglomerate T and each (big) aggregate A.

Assume that we have the element stiffness matrices for the elements in T . Thus, for each T
we assemble the local stiffness matrix AT . Consider the Schur complement SA based on AT and
corresponding to the dofs of the aggregate A ⊂ T . We solve the generalized eigenvalue problem

SAqk = λkDAqk, k = 1, . . . , nA,

where DA is a diagonal matrix and nA is the size of A. Assuming that the eigenpairs are sorted
in ascending order according to their eigenvalues, for a prescribed tolerance θ, we select the first
mA ≤ nA eigenvectors such that λk ≤ θλnA for all k ≤ mA. In practice, we take DA to be the
restriction to A of the weighted `1-smoother DT corresponding to AT . That is, DT = diag (di),
where di =

∑
j |aij |

√
aii/ajj and aij = [AT ]ij . With this choice we are guaranteed that λnA ≤ 1.

Having computed the eigenvectors, we describe two possible ways to proceed. The first way
is to simply take the local tentative interpolant P̂A = [q1, . . . ,qmA ]. Note that this approach does
not make use of the refined aggregates. The second method allows the construction of multilevel
hierarchies. Namely, for every α ⊂ A take the restriction of the eigenvectors on α, i.e. Qα =
[q1|α, . . . ,qmA |α]. Then, by othogonalizing the columns of Qα, we arrive at the local tentative
interpolant P̂α whose mα ≤ mA columns span the column space of Qα. Finally, depending on the
choice of local tentative interpolant constructions described above, we build one of the following
global tentative interpolants

P̂{A} =


P̂A1 0 0
0 P̂A2 0

0 0
. . .

...
0 0 . . . P̂Anc

 , P̂{α} =


P̂α1 0 0
0 P̂α2 0

0 0
. . .

...
0 0 . . . P̂αNc

 ·
Denote P̂ = {P̂{A} or P̂{α}}. In order to make the interpolation operator P stable in energy

norm, P̂ is smoothed by an appropriate polynomial smoother. That is, P = SP̂ , where matrix S
is a polynomial in D−1A and D is a diagonal matrix spectrally equivalent to the diagonal of A.
Particularly, we use S = sνp

(
b−1D−1A

)
, where ‖D−1/2AD−1/2‖ ≤ b = O (1) and

sν (t) = (−1)ν 1
2ν + 1

T2ν+1

(√
t
)

√
t

,
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6 D. KALCHEV, C. KETELSEN AND P. S. VASSILEVSKI

is the well-known smoothed aggregation polynomial [13]. Here, Tl (t) is the degree-l first-kind
Chebyshev polynomial over [−1,+1]. For relaxation we use I −M−1A = pνr

(
b−1D−1A

)
where

pν (t) =
(
1− T 2

2ν+1(
√

t)
)

sν(t).

In practice, we choose D to be the weighted `1-smoother corresponding to A which allows us to
take b = 1.

Clearly, for identical sets of eigenvectors, range(P̂{A}) ⊂ range(P̂{α}) and hence the results in
[8] hold for both choices of tentative interpolants above. Thus, using P̂{α} results in larger coarse
spaces than using P̂{A} but the former allows for multilevel hierarchies. However, it is still practical
to apply the latter for building the coarsest level in the hierarchy.

To produce multiple levels we want to apply the described method recursively. Although it is
easy to see that agglomerates are appropriate choice for coarse elements, we still need to adequately
define coarse dofs, coarse elements in terms of coarse dofs, and their corresponding coarse element
matrices. These ingredients are sufficient to apply the above approach recursively and thus build
multilevel preconditioners. To this purpose we use P̂ = P̂{α} and identify the coarse dofs with the
columns of P̂ . Then, for any agglomerate T , its coarse dofs are all columns of P̂ coming from all
refined aggregates α ⊂ T . Consider the agglomerate interpolant P̂T = [P̂α]α⊂T where the columns
of P̂α are extended by zero on T \ α. This allows us to define coarse element matrices based on
agglomerate stiffness matrices AT . Namely, for coarse element τ := T , its coarse element stiffness
matrix is given by the product

Aτ = (P̂T )T AT P̂T .

Having all the pieces, we invoke the above procedure to recursively build P0, . . . , Pl−1, where the
finest grid is defined to be level 0.

3.2. Adaptive SA-ρAMGe

An extensive description of the adaptive strategies that we use is given in [14]. Here we present
a concise discussion of the methodology applied to the first coarse level in the hierarchy. That is,
only the first interpolant P0 is adapted while the rest of the hierarchy is always rebuilt from scratch.
Thus, we save substantial fine-grid work which is the most expensive component of the hierarchy
construction.

Assume that we have a multilevel preconditioner B built as described in Section 3.1 for matrix A
and that a new nearby matrix A′ is given. We want to quickly produce preconditioner B′ efficient
for solving A′x = b. Using A′ and updated M in Algorithm 3.1 (as a recursive V-cycle) we perform
νa iterations

xk =
(
I −B−1A′)xk−1, (6)

with random x0, and we monitor the convergence ‖xk‖A′ → 0. If the convergence rate is better than
a prescribed ρtarget, then we use B′ = B as the new preconditioner. Otherwise, we set xbad = xνa

and take its restriction xbad
A = xbad|A on each aggregate A. Here, xbad exposes the algebraically

smooth components of the error on the finest grid that are not efficiently damped by the coarse-grid
correction. Then, we solve the modified generalized eigenvalue problem for each A

S′Azk = µkD′
Azk, k = 1, . . . , n′A ≤ mA + 1, (7)

in the subspace spanned by {q1, . . . ,qmA ,xbad
A }, where {q1, . . . ,qmA} is the local basis used for

building the current P0. Next, as above, we consider the lower part of the spectrum, i.e. we select the
first m′

A ≤ n′A ≤ mA + 1 eigenvectors such that µk ≤ θ‖(D′
A)−1/2S′A(D′

A)−1/2‖ for all k ≤ m′
A.

Note that (7) is solved in a small subspace which is much faster than solving the full local problem
necessary when building P0 from scratch.

After obtaining all eigenvectors, we proceed as before. That is, we assemble the global tentative
interpolation operator and smooth it to produce the adapted interpolant P ′

0. Then, using the
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procedure in Section 3.1 we rebuild the rest of the hierarchy from scratch, i.e. P ′
1, . . . , P

′
l−1, and

in the end we obtain the adapted preconditioner B′. The procedure is repeated, starting from (6),
until the desired convergence determined by ρtarget is achieved. If the convergence fails to improve
by some factor (e.g. 0.9) during the adaptation, we increase the tolerance θ to get more local vectors
from xbad in the coarse space. Namely, we take

θ′ =
1
nc

nc∑
i=1

µ
(Ai)
n′Ai

,

where nc is the number of aggregates. It is precisely the average of the maximal eigenvalues in
problems (7).

Additionally, we use an adaptive approach to choose the initial tolerance θ for every linear system
in the sequence. Denote by θi (i = 1, . . . , n) the final value of θ used for the ith linear system. Then,
if adaptation is needed for the (n + 1)st linear system it is invoked with initial spectral tolerance

θn+1 = κθn + (1− κ)
1

n− 1

n−1∑
i=1

θi,

where κ ∈ [0, 1] is a tuning parameter.
As explained, our final goal is to solve large sequences of linear systems where consecutive

matrices are in a sense similar. In such case, instead of starting with convergence check (6) for
each system by running the stationary iteration for Ax = 0, it is more practical to attempt to
solve the linear system with the desired right hand side, i.e. Ax = b. In the case that the method
does not return a solution for a prescribed number of iterations, or the reduction factor of the
residual is not satisfactory, only then the adaptation procedure is invoked to improve the method
until the desired ρtarget is reached. Otherwise, the solution is obtained and used in the MCMC
simulation. Furthermore, for difficult problems it may be more beneficial to execute a predefined
number of adaptation steps per linear system whenever adaptation is necessary, instead of requiring
convergence better than ρtarget regardless of the adaptivity cost.

4. NUMERICAL EXPERIMENTS

We apply the proposed method for solving sequences of linear systems coming from MCMC
simulations. The model problem we consider is given in (8).

−div [k (x, ω)∇p (x, ω)] = 0 in [0, 1]2 × Ω
p (x) = 1− x1 on x1 = {0, 1}

∇p (x) · n = 0 on x2 = {0, 1}
(8)

We use three different forms of k: corresponding to scalar, grid-aligned anisotropic, and non-grid-
aligned anisotropic conductivity tensors. Also, linear finite-element discretizations on a uniform
triangular mesh are used. In all cases, we assume that the observed data F comes from measurements
of the pressure head at several fixed points in the domain. As described in Section 2.2, YM (x, ω)
(see (4)) is a Gaussian field with two-point correlation structure (5) expanded in a M -term truncated
KLE. For the experiments, we choose M = 1000, Y0 ≡ 0, σ2

k = 3, and γ1 = γ2 = 0.1. In the case
of scalar conductivity, k is modeled as a log-normal random field (see (3)). For the parameters used,
two sample realizations of YM are shown in Figure 1. It is visible that conductivity realizations vary
as many as six orders of magnitude over small length scales.

When anisotropic conductivity is used, the problem becomes significantly more difficult. Let
YM,x ≡ YM,x (x, ω) and YM,y ≡ YM,y (x, ω) be two independent instances of the Gaussian process
described above. Then, the grid-aligned and non-grid-aligned anisotropic conductivity tensors are
respectively given as follows

k (x, ω) =
[

Y 2
M,x + ε 0

0 Y 2
M,y + ε

]
, k (x, ω) =

[
Y 2

M,x + ε YM,yYM,x

YM,xYM,y Y 2
M,y + ε

]
,

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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8 D. KALCHEV, C. KETELSEN AND P. S. VASSILEVSKI

where ε is a small parameter.

Figure 1. Two realizations of YM (x, ω).

Table I. Average results for simulations with scalar conductivity field.

nf ρ CA Nr Nb L

66049 0.82 (0.38) 1.26 0.0% NA 3
263169 0.88 (0.46) 1.28 0.3% 1.0 4

Table II. Average results for simulations with grid-aligned anisotropic conductivity field.

nf ρ CA Nr Nb L

66049 0.90 (0.50) 1.34 0.8% 3.0 3
263169 0.91 (0.51) 1.77 2.8% 3.0 4

Table III. Average results for simulations with non-grid-aligned anisotropic conductivity field.

nf ρ CA Nr Nb L

66049 0.91 (0.49) 1.97 10.8% 3.0 3
263169 0.92 (0.53) 1.91 36.4% 3.0 3

In all experiments, ρtarget is 0.9 and δk is tuned so that 20− 25% acceptance rate is observed
in the MCMC algorithm. For each test case, we run several simulations for a total number of 5000
MCMC iterations. We report: the number of dofs on the finest grid (nf ); the number of levels (L);
the average convergence factor (ρ) for the stationary iteration and the conjugate gradient method
(given in parentheses) preconditioned by the proposed multilevel preconditioner; the percentage
of configurations for which adaptation is necessary (Nr); the average number of adaptive cycles
performed when adaptation is necessary (Nb); and the average operator complexity (CA), where

CA =
1

nnz (A0)

l∑
i=0

nnz (Ai) .

Here, l is the coarsest level and Ai is the operator on level i. In the anisotropic cases, we set a fixed
number of adaptive cycles to be performed when adaptation is necessary. Results of these numerical
experiments are displayed in Tables I-III.

For some difficult problems (e.g. for non-grid-aligned anisotropic conductivity field) we see
notable increase in the number of configurations for which adaptation is necessary with (finest) mesh
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ADAPTIVE AMG FOR SEQUENCES OF PROBLEMS 9

refinement. Note that the proposed adaptive approach is expected to be efficient when consecutive
coefficient realizations are similar in a local sense, i.e. similarities are observed within agglomerates.
Nevertheless, in our experiments, as we refine the finest mesh we keep M , δk, and H

h fixed, where
H is the diameter of the agglomerated elements on the finest mesh. Thus, the first coarse level
also gets refined and while coefficient realizations seem globally similar, they become less locally
similar with mesh refinement. Clearly, we can expect to preserve local similarity as h is decreased
by appropriately increasing the number of KL modes, M , and accordingly decreasing δk. Here,
decreasing δk is quite natural as we want to keep the acceptance rate within some desired bounds.
However, even when adaptation is frequently necessary, the adaptive method may still be applicable
depending on the cost of building the hierarchy from scratch.

5. CONCLUSION

In conclusion, we have described a multilevel AMG method that utilizes hierarchy adaptation
to efficiently solve sequences of linear systems coming from finite-element discretizations of
elliptic PDEs with gradually changing conductivity coefficients. The method constructs robust
hierarchies that provide effective solvers for many linear systems where the conductivity field is
highly heterogeneous or anisotropic. We particularly considered the application of the presented
approach in Markov chain Monte Carlo simulation of steady-state subsurface flow. In this context
we demonstrated by performing numerical experiments the potential of the proposed method for
constructing efficient preconditioners for the arising sequences of linear systems.
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