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Abstract. We consider optimal-scaling multigrid solvers for the linear systems that arise from the discretization
of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-
marching approach, meaning solving for one time step after the other. These traditional time integration techniques
lead to optimal-scaling but not parallelizable algorithms. However, current trends in computer architectures are
leading towards more, but slower, processors and, therefore, driving the need for greater parallelism. One approach to
achieve parallelism in time is with multigrid, but while classical multigrid methods rely on multiscale representations
in space, that arise naturally from decomposing a function into a hierarchy of frequencies from global smooth modes
to local oscillations, these approaches do not extend to evolutionary variables in a straightforward manner, because of
the fundamentally local structure of the evolution. In this paper, we present an optimal and scalable multigrid-in-time
algorithm for diffusion equations as simple examples of evolution equations. Our algorithm is based on interpreting
the parareal time integration method [13] as a two-level reduction scheme, and developing a multilevel algorithm from
this viewpoint. We demonstrate optimality of our algorithm for solving the one-dimensional diffusion equation in
numerical experiments. Furthermore, by using parallel performance models, we show that we can expect speedup in
comparison to sequential time-marching on modern architectures.

1. Introduction. One of the major challenges facing the computational science community
with future architectures is illustrated in Figure 1.1: although transistor counts are still growing
according to Moore’s Law, clock speeds are no longer increasing and core counts are going up
sharply.
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Fig. 1.1: From Kathy Yelick’s talk titled “Ten Ways to Waste a Parallel Computer.” Also published
in [4], Figure 2.1. Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris
Batten, and Krste Asanoviç.

As a consequence, traditional time marching is becoming a huge sequential bottleneck. Solv-
ing for multiple time steps in parallel and, therefore, increasing concurrency would remove this
bottleneck. Because time is sequential by nature, the idea of simultaneously solving for multiple
time steps is not intuitive. Yet it is possible, with work on this topic going back to as early as
1964 [17]. Other papers on this subject include [1, 6–11, 13–16, 22]. One approach to achieve paral-
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lelism in time are multigrid methods, but there are only a few known optimal multigrid algorithms
such as [10, 21]. Furthermore, these methods are full space-time algorithms, whereas our algorithm
employs a semi-coarsening strategy using coarsening only in the time dimension as discussed below.

While classical multigrid methods rely on multiscale representations in space, that arise naturally
from decomposing a function into a hierarchy of frequencies from global smooth modes to local
oscillations, these approaches do not extend to evolutionary variables in a straightforward manner.
There are two approaches for extending classical multigrid methods to include the time dimension:
multigrid only in time and space-time multigrid. In this paper, we present a multigrid-in-time
algorithm that is based on interpreting the parareal time integration method [13] as a two-level
reduction method. This non-traditional view of parareal allows us to develop an optimal-scaling
multilevel algorithm, while exploiting the non-intrusiveness on existing codes from parareal; i. e.,
our multigrid-in-time algorithm simply calls an existing time-stepping routine. However, to achieve
the full benefit of computing multiple time steps at once, space-time multigrid methods, where time
is simply another dimension in the grid, have to be considered. This approach is more intrusive on
existing codes and is a separate research topic not explored here.

This paper is organized as follows. First, in §2, we consider the connection of time integration
methods to linear systems of equations. Based on this correspondence, we then describe the parareal
algorithm. In §3, we introduce our multigrid-in-time algorithm. We start by showing how the
parareal algorithm can be interpreted as a two-level reduction scheme, followed by a description
of a multilevel algorithm developed from this viewpoint. Finally, in §4, we consider optimality
and parallel performance of our multigrid-in-time algorithm. We demonstrate optimality of our
algorithm for solving a parabolic model problem, the one-dimensional diffusion equation. Then, we
use parallel performance models to show that we can expect speedup in comparison to sequential
time-marching on future architectures, followed by a discussion in §5.

2. Time integration methods. Time integration methods for solving problems with evolu-
tionary behavior are typically based on a time-marching approach. While these traditional tech-
niques lead to optimal-scaling algorithms, they are not parallelizable. The parareal algorithm,
introduced by Lions, Maday, and Turinici in [13], is a time integration method that does allow
parallelism in the solution process. The name refers to the characteristic of the algorithm, namely
using parallel real time computations to solve evolution problems that cannot be solved in real time
using one processor only.

In §2.1, we consider the connection of time integration methods to the solution of linear systems
of equations. This correspondence is the basis of our description of the parareal algorithm in §2.2.
It is a non-traditional view of parareal but, as in [7], it allows us to show how the algorithm fits into
the framework of multigrid-in-time methods.

2.1. Connection to linear systems. We consider a system of ordinary differential equations
(ODEs) of the form

u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T ], (2.1)

such as in a method of lines approximation of a parabolic PDE. Let ti = i δt, i = 0,1, . . . ,Nt, be a
temporal mesh with constant spacing δt, and, for i = 1, . . . ,Nt, let ui be an approximation to u(ti)
and u0 = u(0). Then, a general one-step time discretization method for (2.1) can be written as

u0 = u0

ui = Φi(ui−1) + gi, i = 1,2, . . . ,Nt.
(2.2)

In the case of a linear problem, the function Φi(⋅), corresponds to a matrix-vector product. For
simplicity, we consider a time-independent discretization, thus, function Φi(⋅) corresponds to a
matrix-vector product with a fixed matrix which we denote by Φ, Φi(ui−1) = Φui−1; a specific
example of Φ will be given in §4.1. Then, the time discretization method (2.2) is equivalent to the
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linear system of equations

Au ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φ I

⋱ ⋱
−Φ I
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⋮
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g0

g1

⋮
gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≡ g, (2.3)

where g0 = u(0). Note that traditional time marching corresponds to a block forward-solve of this
system, which is not parallelizable. Considering the lower block bidiagonal structure, we could apply
cyclic reduction. However, although cyclic reduction is optimal for scalar systems, for time discretiza-
tions, it requires products of spatial blocks that produce fill-in in the spatial dimension, yielding a
method that is overall non-optimal. Nonetheless, the cyclic-reduction viewpoint can be useful in de-
veloping truly optimal and parallelizable methods. In fact, there are many spatial multigrid methods
that have been designed from a similar reduction viewpoint. The idea is to replace interpolation
and/or the Petrov-Galerkin coarse-grid operator with suitable approximations. Using this perspec-
tive for the time dimension allows us to design a multigrid-in-time algorithm. Before we pursue this
approach, we first describe how parareal can be viewed as a method that uses a fine and a coarse
temporal mesh, laying the foundation of our interpretation of parareal as a two-level reduction-
based multigrid method, considered in §3.1. The connection to reduction-based multigrid methods
is crucial to achieve optimality when extending the two-level algorithm to a full multilevel scheme.

2.2. Parareal. The idea of the parareal algorithm is, instead of solving the system (2.3) with
a direct method, to solve it iteratively by introducing a preconditioner on a coarse temporal mesh.
Therefore, let Tj = j ∆T, j = 0,1, . . . ,Nt/m, be a coarse temporal mesh with constant spacing
∆T =m δt, where m is a positive integer (see Figure 2.1).

t0 t1 t2 t3 ⋯ tNt

T0 T1 ⋯

δt

∆T =mδt

Fig. 2.1: Uniformly-spaced fine and coarse time discretization meshes.

It is easy to verify that the solution, u, of (2.3) at mesh points i = jm satisfies the coarse system
of equations

A∆u∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φm I

⋱ ⋱
−Φm I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u∆,0

u∆,1

⋮
u∆,Nt/m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= RΦg ≡ g∆, (2.4)

where u∆,j = ujm, j = 0,1, . . . ,Nt/m, and RΦ is the rectangular restriction operator

RΦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
Φm−1 ⋯ Φ I

⋱
Φm−1 ⋯ Φ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)

The parareal algorithm solves this coarse system iteratively, then computes the remaining fine values
in parallel using (2.2) on each interval (tjm, tjm+m−1). To solve the coarse system (2.4), parareal
uses the simple residual correction scheme

uk+1
∆ = uk

∆ +B−1
∆ (g∆ −A∆uk

∆), (2.6)

where B∆ is some coarse-scale time discretization of (2.1) (the analog of A on the coarse mesh),

B∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φ∆ I

⋱ ⋱
−Φ∆ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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The residual correction (2.6) is usually presented as the following equivalent update step in the
parareal literature

uk+1
∆,j+1 = Φ∆uk+1

∆,j +Φmuk
∆,j −Φ∆uk

∆,j + g∆,j , j = 1,2, . . . , with uk
∆,0 = g∆,0. (2.7)

3. The multigrid-in-time algorithm. The key feature of parareal is the use of a coarse-
scale time discretization that approximates the fine-scale evolution over the coarse-scale subspace.
This idea is similar to the idea of multigrid reduction methods. Motivated by this observation,
we interpret the parareal algorithm as a two-level reduction scheme. Gander and Vandewalle have
demonstrated in [7, Section 3] that parareal coincides with a two-level multigrid-in-time method
for a particular choice of smoother, restriction, and interpolation operators. Our interpretation is
based on a different choice of operators, but it is straightforward to show that the resulting two-level
methods are the same. The advantage of the operator choice of [7] is its simplicity, but the advantage
of our operator choice is that multigrid components are more typical and, thus, allow us to extend
the two-level method to a full multilevel algorithm.

In §3.1, we show how the parareal algorithm can be interpreted as an approximate two-level
reduction method and, in §3.2, we describe how this viewpoint can be used to extend parareal to a
multilevel algorithm.

3.1. Parareal as a two-level multigrid reduction method. We partition the temporal
mesh into C-points, given by the set of coarse time-scale points, {i = jm}, and F -points. Reordering
the fine-grid operator, A, by F -points first and using the subscript notation c and f to indicate the
two sets of points, we consider the following well-known matrix decomposition, valid for any matrix
as long as Aff is nonsingular,

A = [Aff Afc

Acf Acc
] = [ If 0

AcfA
−1
ff Ic

] [Aff 0
0 Scc

] [If A−1
ffAfc

0 Ic
] , (3.1)

where Scc = Acc −AcfA
−1
ffAfc is the Schur complement and where Ic and If are identity operators.

We define the operators RΦ, PΦ (known as “ideal” restriction and interpolation), and S by

RΦ = [−AcfA
−1
ff Ic] , PΦ = [−A

−1
ffAfc

Ic
] , S = [If

0
] . (3.2)

Then, since Aff = STAS and Scc = RΦAPΦ, it is straightforward to see from (3.1) that

A−1 = S (STAS)−1
ST + PΦ (RΦAPΦ)−1

RΦ,

and, thus,

0 = (I −A−1A) (3.3)

= (I − PΦ(RΦAPΦ)−1RΦA)(I − S(STAS)−1STA). (3.4)

Both (3.3) and (3.4) can be thought of as error propagators for exact methods that can be used
to develop iterative methods by making various approximations. Equation (3.4) defines the error
propagator of an exact two-level multigrid method, with the first term corresponding to the error
propagator of coarse-grid correction using the Petrov-Galerkin coarse-grid operator, RΦAPΦ, and the
second term being the error propagator of F -relaxation. To produce an iterative multigrid method,
the MGR method [3, 12, 18–20], for example, replaces the Petrov-Galerkin coarse-grid operator,
RΦAPΦ, with a suitable approximation and adds relaxation. The method then recurses on the
coarse grid to achieve a full multilevel V -cycle.

The parareal algorithm does something similar to MGR. With the fine-grid operator, A, given
by (2.3), the restriction operator, RΦ, in (3.2) is the same as that in (2.5). Furthermore, the parareal
coarse-grid operator, A∆, given by (2.4), satisfies the Petrov-Galerkin condition, A∆ = RΦAPΦ. It
is therefore easy to show that the error propagator for the parareal algorithm is basically given by
(3.4), with the coarse-grid operator, A∆, replaced by the coarse-scale time discretization, B∆,

(I − PΦB
−1
∆ RΦA)(I − S(STAS)−1STA). (3.5)
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3.2. The optimal-scaling multilevel algorithm. Our multigrid-in-time algorithm is a full
multilevel V -cycle scheme that results from extending the parareal method using techniques sim-
ilar to those used in MGR. In particular, we replace F -relaxation in the two-level method (3.5)
by FCF -relaxation, thus, we add one full FC relaxation sweep, and apply the resulting method
recursively to solve the coarse system of equations defined by the coarse-scale time discretization,
B∆. Furthermore, since RΦAPΦ = RIAPΦ, where RI = [0 Ic] is injection, we can replace RΦ with
RI in (3.5) to save some computational work.

To describe our method, we consider a hierarchy of time discretization meshes, Ωl, l = 1, . . . , L =
logm(Nt) with constant spacing δt on level 1, mδt on level 2, etc., for a positive coarsening factor,
m. Let Alul = gl be the linear system of equations on level l = 1, . . . , L, where Al is the time
discretization on the mesh Ωl, characterized by the matrix Φl. For each level, l, we decompose the
matrix Al into F - and C-points and define the interpolation operator, PΦ, as in (3.2). Then, our
multigrid-in-time algorithm for solving (2.1) can be written as follows:

MGIT(l)
if l is the coarsest level, L

● Solve coarse-grid system ALuL = gL.
else

● Relax on Alul = gl using FCF -relaxation.
● Compute and restrict residual using injection, gl+1 = RI(gl−Alul).
● Solve on next level using this algorithm: MGIT(l + 1).
● Correct using “ideal interpolation”, ul ← ul + PΦul+1.

end

Fig. 3.1: Our multigrid-in-time algorithm.

Note that parareal and our algorithm solve for the exact solution in Nt/m iterations corre-
sponding to the number of points on the first coarse level. This is an interesting property of the
two algorithms, however, in practice, the fact that they converge to some error tolerance in O(1)
iterations is more relevant.

4. Numerical results. In this section, we consider optimality and parallel performance of our
multigrid-in-time algorithm. In §4.1, we describe our parabolic model problem, the one-dimensional
diffusion equation, and a simple discretization that defines the matrix, Φ, of a constant coefficient
one-step method and, thus, the entries on the lower diagonal of the matrices of the linear systems
on each level. In §4.2, we then demonstrate optimality of our algorithm for solving the model
problem. Section 4.3 is devoted to a brief review of a simple parallel performance model, followed
by a comparison of our algorithm to sequential time-marching using this model.

4.1. The parabolic model problem and its discretization. We consider the one-
dimensional diffusion equation,

ut = κuxx + b(x, t), κ > 0, x ∈ [0, π], t ∈ [0, T ], (4.1)

subject to an initial condition and zero Dirichlet boundary conditions,

u(x,0) = u0(x), x ∈ [0, π] (4.2)

u(0, t) = u(π, t) = 0, t ∈ [0, T ]. (4.3)

We use the method of lines to transform our model problem to a system of ODEs of the
form (2.1). Let xj = j ∆x, j = 0,1, . . . ,Nx, be a spatial mesh with constant spacing ∆x and, for
j = 0,1, . . . ,Nx and a given time, t, let uj(t) be an approximation to u(xj , t) with u0(t) = uNx(t) = 0
using the boundary conditions, (4.3). Using central finite differences, the method of lines approxi-
mation of (4.1) is

∂uj

∂t
= κ

uj−1(t) − 2uj(t) + uj+1(t)
(∆x)2

+ bj(t), j = 1,2, . . . ,Nx − 1. (4.4)
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With

M = κ

(∆x)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.5)

the method of lines approximation in Equation (4.4) becomes

∂u(t)
∂t

=Mu(t) + b(t) ≡ f(t,u(t)).

Now, let ti = i δt, i = 0,1, . . . ,Nt, be a temporal mesh with constant spacing δt, and, for i =
0,1, . . . ,Nt, let ui be an approximation to u(ti) with u0 = u0 using the initial condition, (4.2). If
we use backward Euler, we obtain

(I − δtM)ui − δtbi = ui−1, i = 1,2, . . . ,Nt,

defining a one-step method of the form (2.2) with Φ = (I − δtM)−1 and gi = (I − δtM)−1δtbi for
i = 1,2, . . . ,Nt. If we use forward Euler, then Φ = I + δtM and gi = δtbi−1 for i = 1,2, . . . ,Nt.

4.2. Optimality of the multigrid-in-time algorithm. We report on tests of using our
multigrid-in-time algorithm to solve the model problem described in §4.1, with a zero right-hand
side, κ = 1, and subject to the initial condition u(0, x) = sin(x), 0 ≤ x ≤ π, as well as zero Dirichlet
boundary conditions. Choosing a zero right-hand side simplifies verifying that our algorithm com-
putes a good approximation to the true solution. However, we want to emphasize that a non-zero
right-hand side does not change our algorithm, since it only defines the right-hand side, g, of the
linear system (2.3). We consider both the two-level and full multilevel, L = logm(Nt), variants of
our multigrid-in-time algorithm. On the finest grid, we use the initial condition as the initial guess
for t = 0, and a random initial guess for all other times. Choosing a random initial guess for all times
t > 0 corresponds to not using any knowledge of the right-hand side that could affect convergence.
For simplicity, we first consider factor-2 coarsening only; other coarsening factors are discussed later.

Tables 1 and 2 show the number of multigrid iterations for solving the model problem discretized
using backward Euler in time and central finite differences in space with the two-level or full multilevel
versions of our multigrid-in-time algorithm with factor-2 coarsening and FCF -relaxation on different
space-time grids. We used the relative residual norm, measured in the L2-norm, to be less than
10−9 as the stopping criterion for our algorithm. The time step on the finest grid is chosen to be
δt = (∆x)2, and 2l−1δt for all other levels, l > 1. In Table 1, we consider the effect of increasing
the number of time steps, Nt, and, thus, varying the length of the time interval, T , for a fixed
number of spatial steps, Nx. Since we are using a semi-coarsening strategy with coarsening in time
only, this test is important for answering the question whether convergence is independent of the
problem size or not. Results show that iterations of the two-level and full multilevel variants of our
multigrid-in-time algorithm are bounded independently of the problem size.

Nt = 25 Nt = 26 Nt = 27 Nt = 28 Nt = 29 Nt = 210 Nt = 211

two-level 6 7 7 7 7 7 7

full multilevel 6 7 8 8 8 9 9

Table 1: Number of iterations for solving the model problem discretized using backward Euler
in time and central finite differences in space with the two-level or full multilevel versions of our
multigrid-in-time algorithm with factor-2 coarsening and FCF -relaxation on 16 × Nt space-time
grids.

Increasing only the number of time steps while fixing the number of spatial steps and the
ratio δt/(∆x)2 changes the domain of the problem. In Table 2, we consider a domain refinement
corresponding to simultaneously scaling up the spatial and temporal resolutions. Fixing δt = (∆x)2,
we have to quadruple the number of points in time when doubling the number of points in space.
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Nx ×Nt = 24 × 25 Nx ×Nt = 25 × 27 Nx ×Nt = 26 × 29 Nx ×Nt = 27 × 211

two-level 6 7 7 6

full multilevel 6 8 8 9

Table 2: Number of iterations for solving the model problem discretized using backward Euler
in time and central finite differences in space with the two-level or full multilevel versions of our
multigrid-in-time algorithm with factor-2 coarsening and FCF -relaxation on Nx × Nt space-time
grids.

Again, the number of iterations of the two-level and full multilevel variants of our multigrid-in-time
algorithm appear to be bounded independently of the problem size.

Our multigrid-in-time algorithm results from extending the parareal algorithm using techniques
similar to those used in MGR. In particular, we replaced F -relaxation by FCF -relaxation. Table
3 shows that the additional full FC relaxation sweep is necessary to achieve optimality in the full
multilevel algorithm. Note that the two-level algorithm is the parareal method.

Nt = 25 Nt = 26 Nt = 27 Nt = 28 Nt = 29 Nt = 210 Nt = 211 Nt = 212

two-level 9 9 9 9 9 9 9 9

full multilevel 10 13 16 20 23 23 25 31

Table 3: Number of iterations for solving the model problem discretized using backward Euler in time
and central finite differences in space with the two-level or full multilevel versions of our multigrid-
in-time algorithm with factor-2 coarsening and F -relaxation (no additional full FC relaxation) on
16 ×Nt space-time grids.

So far, we have only presented results for factor-2 coarsening. Table 4 shows results similar
to those in Table 1 for factor-4 coarsening. Coarsening by a factor of 4 is particularly interesting
for extending our algorithm to simultaneously coarsen in space and time. Results look promising
for this approach since, again, the number of iterations of the two-level and full multilevel variants
of our multigrid-in-time algorithm are bounded independently of the problem size. Furthermore,
the numbers of iterations appear to be independent of the coarsening factor and, thus, factor-4
coarsening could produce a more efficient algorithm, since we have less work on the coarse grids.

Nt = 43 Nt = 44 Nt = 45 Nt = 46 Nt = 47

two-level 7 7 7 7 7

full multilevel 7 7 9 9 9

Table 4: Number of iterations for solving the model problem discretized using backward Euler
in time and central finite differences in space with the two-level or full multilevel versions of our
multigrid-in-time algorithm with factor-4 coarsening and FCF -relaxation on 16 × Nt space-time
grids.

4.3. Parallel performance. Current trends in computer architectures are leading towards
more, but slower, processors. In contrast to traditional time marching that only allows parallelization
in space, using our multigrid-in-time algorithm, we can parallelize the solution process of space-time
problems in both space and time and, thus, increase concurrency. In this section, we use a simple
parallel performance model to compare the time to solve a given problem with our multigrid-in-time
algorithm to the time to do sequential time marching. In particular, we are interested in answering
three questions. First, is it beneficial to use our multigrid-in-time algorithm on modern architectures?
Second, considering the time to solution with both methods as functions of the number of processors,
where is the crossover point? And third, what speedup can we expect from using our algorithm?

We consider the d-dimensional diffusion equation. Using an implicit time discretization method
of the form (2.2), the function Φi(⋅), or Φ(⋅) in the time-independent case, corresponds to a spatial
solve. We assume that we solve these spatial problems in parallel using multigrid-in-space with
coarsening by a factor of 2 in each dimension. The time to do sequential time marching, is therefore,
given by the number of time steps multiplied by the time of one spatial solve, thus, the time of one
parallel multigrid-in-space V -cycle multiplied by the number of iterations necessary to solve to a
given accuracy. For the d-dimensional diffusion equation, we have to solve a system with a Laplacian
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and, therefore, it is reasonable to assume eight multigrid-in-space iterations. Since our multigrid-in-
time algorithm is a V -cycle scheme, the time to solve the d-dimensional diffusion equation is given by
the time of one parallel multigrid-in-time V -cycle multiplied by the number of iterations necessary
to solve to a given accuracy. Numerical experiments presented in §4.2 show that the number of
iterations is bounded by nine for solving the one-dimensional diffusion equation. Since the spatial
solve corresponds to a function call (of Φ) in our multigrid-in-time algorithm, we assume that the
number of iterations does not change when we consider more space dimensions.

We estimate the time of multigrid-in-space and multigrid-in-time V -cycles by applying a simple
performance model. We assume that the time to communicate n doubles is given by

Tcomm = α + nβ, (4.6)

where α represents the communication latency and β is the actual communication time per double.
Furthermore, let the time to perform n floating point operations be of the form

Tcomp = nγ. (4.7)

We assume that the spatial domain consists of Nd
x points distributed across P d

x processors.
For our multigrid-in-time algorithm with factor-m coarsening, we furthermore assume that the time
domain consists of Nt =mqNx points, where q is a positive integer. We choose the temporal problem
size to be a multiple of the spatial problem size since, for small problems, sequential time-stepping
with multigrid-in-space is already efficient. The temporal domain is distributed across Pt processors
such that we consider a perfect hypercube in space-time on each processor.

Using the above assumptions, expressions for the time to solve a given problem with our
multigrid-in-time algorithm and for the time to do sequential time-stepping can be derived. As-
suming the communication and computation models in Equations (4.6) and (4.7), the expressions
depend on the machine parameters α,β, and γ. The numbers in [5, Table 2] can be used as the
basis for choosing two parameter sets characterizing modern machines: a “computation dominant”
set consisting of the parameters

α = 1 µs, β = 10 ns/double, γ = 8 ns/flop, (4.8)

and a “communication dominant” set defined by

α = 1 µs, β = 0.74 ns/double, γ = 0.15 ns/flop. (4.9)

The ratios α/β and α/γ are assumed to be “small” in the computation dominant set and “large” in
the communication dominant set. To define the parameter sets (4.8) and (4.9), we have set α = 1 µs
and chosen β and γ such that the ratios α/β and α/γ are equal to the minimum or maximum ratios
from [5, Table 2], respectively.

Based on the two parameter sets (4.8) and (4.9), we compare the two time integration ap-
proaches. Figure 4.1 shows the time to solve a 10243 × 16,384 space-time problem using sequential
time-stepping and the time to solution for applying our multigrid-in-time algorithm as functions
of the number of processors used for the computations. The left plot shows the expected behav-
ior based on the computation dominant parameters (4.8), and the right plot presents the expected
behavior based on the communication dominant parameters (4.9). Considering a smaller number
of processors, sequential time-stepping is both faster and uses less memory (for sequential time-
stepping, one has to store data from one time step only, whereas for the multigrid-in-time approach,
a whole space-time subdomain, i. e., data from several time steps, needs to be stored). On a larger
number of processors, however, multigrid-in-time is faster. The choice of which algorithm to use,
therefore, depends primarily on the available computational resources. More precisely, for the com-
putation dominant model, the crossover point at which it becomes beneficial to use our multigrid-
in-time algorithm is at about 224(∼ 17 million) processors. Increasing the number of processors to
228(∼ 268 million) results in an expected speedup of about six compared to sequential time-stepping.
For the communication dominant model, the crossover point is at about one million processors at
which point we already expect a speedup of about two. Using 224 processors leads to an expected
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speedup of about seven, while with 228 processors it is about 14. With current trends in computer
architectures leading towards more processors, our multigrid-in-time algorithm looks promising to
speedup computations, especially for the communication dominant model. This result is attractive
since on future architectures, we expect the parameters to be most likely in the more communication
dominant regime.

Fig. 4.1: Time to solve a 10243 × 16,384 space-time problem using sequential time-stepping or
our multigrid-in-time algorithm. At left, expected behavior based on the computation dominant
parameters (4.8) and at right, expected behavior based on the communication dominant parameters
(4.9).

Benefits of our multigrid-in-time approach can also be realized at smaller scales. Comparing
the two time integration approaches for other problem sizes, the time curves look similar to those
in Figure 4.1, but the crossover point changes. For a 1283 × 2048 space-time problem, for example,
the crossover point is at about 100k processors when considering the computation dominant model.
Increasing the number of processors to one million results in an expected speedup of about two
compared to sequential time-stepping. For the communication dominant model, the crossover point
is at about 212(= 4096) processors, and using 216(∼ 65k) processors leads to an expected speedup of
about two. In general, the larger the time dimension in comparison to the spatial dimension (the
factor mq in our experiments), the greater is the potential for speedup.

Increasing the number of processors decreases the local problem size and, consequently, increases
the ratio of boundary to domain or, equivalently, decreases the computation/communication ratio.
However, even though a small computation/communication ratio seems unreasonable at first, if the
code runs faster by adding more processors, small local problems may be reasonable and beneficial
provided that computational resources are available. Our multigrid-in-time algorithm allows one to
exploit substantially more computational resources than standard sequential time-stepping.

5. Discussion. We have presented an optimal-scaling multigrid-in-time algorithm for solving
evolution equations in parallel. With current trends in computer architectures leading towards
more, but slower, processors, solving for multiple time steps in parallel is an important practical
consideration. One approach to achieve parallelism in time are multigrid methods, but research is
needed for extending classical (spatial) multigrid methods to include the time dimension. Although
we are interested in full space-time multigrid schemes, in this work we pursued a multigrid method
that only coarsens in time. The benefit of this approach is that the resulting method is fairly
unintrusive on existing codes, meaning parallelization in time can be added with very few changes
in an existing code. Our multigrid-in-time algorithm inherits this property from the parareal time
integration method which served as the starting point of our research. Interpreting parareal as a
two-level reduction method is non-traditional, but precisely this perspective allowed us to draw a
connection to the MGR method needed to extend the two-level scheme to an optimal full multilevel
algorithm. More precisely, the MGR viewpoint made it possible to see that replacing F -relaxation
with FCF -relaxation would be needed for optimality.

If the problem (2.1) is nonlinear, our MGR ideas can be generalized to the full approximation
storage (FAS) setting. FAS was originally proposed by Brandt [2] and can essentially be seen as
“nonlinear multigrid”. The main differences between two-level FAS and linear two-level multigrid
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are that relaxation is nonlinear and that the nonlinear coarse system of equations is used to compute
a coarse approximation to the fine-grid solution, not the fine-grid error. For linear systems, the two
approaches are equivalent. The two-level interpretation of parareal in [7] was described as an FAS
method for the full nonlinear setting of (2.2). It is similarly straightforward to generalize our MGR
ideas to the nonlinear setting, though convergence questions become even harder to answer.

A preliminary parallel scaling study shows that our multigrid-in-time algorithm looks promising
when an implicit time discretization method is used. Since, in general, performance models give a
good qualitative picture of the relationship between compared algorithms, motivated by the results
of our performance model, future work also includes writing parallel code to compare actual behavior
to expectations.

For explicit time discretization schemes, stability has to be considered. Numerical experiments
for solving the one-dimensional diffusion equation using forward Euler instead of backward Euler
time discretization show that results are no longer scalable unless the CFL condition is satisfied on
all levels. Simultaneously coarsening in space and time and, therefore, extending to a space-time
multigrid approach could help with these stability issues.
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