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1 Introduction

Elliptic equations with discontinuous coefficients across a codimensional-one interface arise in several applications.
Interface-fitted grid methods are difficult to use in the case of moving interfaces, because of the computationally
expensive meshing procedures needed at each time step. In such cases an approach treating the interface as embedded
in a Cartesian grid may be preferred. For the methods based on embedding the domain in a Cartesian grid, a detailed
survey can be found in [6].

Multigrid technique is one of the most efficient strategy to solve a class of partial differential equations, using a
hierarchy of discretizations. Several multigrid approaches exist in literature to treat the jumping coefficient problem
in 2D when the interface is aligned with the Cartesian grid. We mention the method based on operator-dependent
interpolation [2, 5], where the interpolation is carried out by exploiting the continuity of the flux instead of the gradient
of the solution, and the method based on Galerkin Coarse Grid Operator [7]. Other relevant papers are [1, 10, 11].

In this work, the method proposed in [4] to treat the discontinuous coefficient case in one dimensional problems is
extended in higher dimensions. We obtain second-order accuracy in the solution and the gradient. A proper multigrid
solver is described, following the technique used in [3] for continuous coefficients and mixed boundary conditions.

2 Model Problem

Let D = [−1, 1]2 be the computational domain and Ω ⊂ D be a domain such that ∂Ω ∩ ∂D = ∅. Let us consider a

partition Ω = Ω− ∪ Ω+, i.e. Ω+ and Ω− are two non-empty domains such that
◦

Ω− ∩
◦

Ω+= ∅. Let Γ be the interface
separating the two subdomains, i.e. Γ = ∂Ω−∩∂Ω+, while the boundary is ∂Ω. Consider the following Model Problem:

Model problem 1:
−∇ · (β±∇u±) = f± in Ω±

[[u]] = gD on Γ[[
β
∂u

∂n

]]
= gN on Γ

u = g on ∂Ω

(1) Ω Γ+ Ω-
nΓ

nΩ

where β− and β+ are positive functions. With [[·]] we denote the jump across the interface Γ. The domains and
the interface are implicitly known by two level set functions φ and φΓ in such a way:

Ω = {(x, y) : φ(x, y) < 0} , Ω− =
{

(x, y) : φΓ(x, y) < 0 and φ(x, y) < 0
}
,

Ω+ =
{

(x, y) : φΓ(x, y) >= 0 and φ(x, y) < 0
}
, Γ =

{
(x, y) : φΓ(x, y) = 0 and φ(x, y) < 0

}
.

(2)
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Let us suppose that φ and φΓ are signed distance functions, i.e. |∇φ| = 1 (we can obtain the signed distance function
by the level-set functions by reinitialization [8])

2.1 Notation

Let N ≥ 1 be an integer and h = 2/N the spatial step. Let Dh = jh, j = (j1, . . . , jd) ∈ {−N,N}d be the discrete
versions of D. Dh is the set of the grid points. Let Ω+

h = Ω+ ∩Dh and Ω−h = Ω− ∩Dh be the discrete versions of Ω+

and Ω− respectively. Let Γ++
h be the set of the ghost points for Ω+, namely the grid points outside Ω+ and belonging

to some five-point stencil centered in a grid point inside Ω+, i.e.

(x, y) ∈ Γ++
h ⇐⇒ (x, y) ∈ Dh\Ω+

h and {(x± h, y), (x, y ± h)} ∩ Ω+
h 6= ∅.

Similarly we define Γ−−h and Γh the set of the ghost points for respectively Ω− and Ω. Let us define Γ−h = Γ−−h \Γh and
Γ+
h = Γ++

h \Γh. We call N+
i =

∣∣Ω+
h

∣∣, N+
g =

∣∣Γ+
h

∣∣, N−i =
∣∣Ω−h ∣∣, N−g =

∣∣Γ−h ∣∣, Ng = |Γh|, N++
i =

∣∣Γ++
h

∣∣, N−−i =
∣∣Γ−−h ∣∣.

3 Discretization of the problem

The final linear system coming from the discretization of the problem will consist in a Ñ × Ñ linear system, where
Ñ = N+

i +N+
g +N−i +N−g +Ng. The N−i equations coming from the grid points of Ω−h are obtained discretizing the

first Eq. of (1) by usual central differences:

β−i+1/2,j

(
u−i,j − u

−
i+1,j

)
+ β−i−1/2,j

(
u−i,j − u

−
i−1,j

)
+ β−i,j+1/2

(
u−i,j − u

−
i,j+1

)
+ β−i,j−1/2

(
u−i,j − u

−
i,j−1

)
= f−i,j h

2 (3)

where β−i±1/2,j = (β−i,j + β−i±1,j)/2, β−i,j±1/2 = (β−i,j + β−i,j±1)/2. Similarly, we write an equation for each grid point of

Ω+
h . Therefore, to close the linear system, we must write an equation for each ghost point G ∈ Γh ∪ Γ+

h ∪ Γ−h .

3.1 Discretization of the boundary conditions

Let G ∈ Γh. Then, we discretize the boundary condition on Ω, i.e. the fourth equation of (1). We compute the
outward unit normal in G, that is nG = (nxG, n

y
G) = ∇φ, using a second-order accurate discretization for ∇φ, such as

central difference in G. Now we can compute the closest boundary point to G, that we call B, by the signed distance
function:

B = G− φ(G)nG. (4)

Therefore, the equation of the linear system for the ghost point G is:

ũ(B) = g(B) (5)

where ũ is the biquadratic interpolant of u on a suitable upwind nine-point stencil contained in Ωh∪Γh. We choose the
upwind nine-point stencil in the following manner (see Fig. 1 for the case nx, ny > 0, the other cases are analogous).
If |xB −xG| < |yB − yG| (as in Figs. 1 and 2), the nine-point stencil will be composed by three points of the column i,
three points of the column i− 1, three points of the column i− 2; while if |xB − xG| ≥ |yB − yG| it will be composed
by three points of the row j, three points of the row j − 1, three points of the row j − 2. We prefer when possible the
3× 3 squared stencil.

If it is not possible to build the nine-point stencil, we revert to a more robust (less accurate) three-point stencil
(Fig. 2): (i, j)h, (i− 1, j)h, (i, j − 1)h. Note that these three points belong to Ωh ∪ Γh, since B ≡ (i, j)h ∈ Ωh.
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Fig. 1: The squared grid points do not belong to Ωh ∪ Γh, thus
they must be exluded from the nine-point stencil. The circled grid
points are the modified nine-point stencil for the ghost point G.
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Fig. 2: Reduction of the nine-point stencil to a three-point stencil
for the ghost point G.

3.2 Discretization of the interface conditions

If G ∈ Γ−h ∪Γ+
h we discretize the interface conditions (second and third equations of (1)). We compute an approximation

of the unit normal vector to Γ in G pointing from Ω− to Ω+, that is nΓ
G =

(
∇φΓ

)∣∣
G

, using a second order accurate
discretization, such as central differences in G. Now we can compute the closest interface point to G, that we call I,
as:

I = G− nG · φ(G). (6)

G

I
Ω Ω- +

i i+1i-1

j

j+1

j-1

Fig. 3: In this figure G ∈ Γ−h . The blue nine-point stencil

is contained in Ω+
h ∪ Γ+

h and serves for interpolating ũ+; the

red nine-point stencil is contained in Ω−h ∪ Γ−h and serves for

interpolating ũ−.
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Fig. 4: In this figure G ∈ Γ−h . The nine-point stencil contained

in Ω+
h ∪ Γ+

h serving to interpolate ũ+ has been reduced to the
blue three-point stencil.

The equation of the linear system for the ghost point G is obtained discretizing one of the jump conditions (second
and third equation of (1)): more precisely, if G ∈ Γ−h we use one of the two jump conditions, while if G ∈ Γ+

h we
use the other jump condition. Which jump condition has to be used in each case constitutes a choice, that can be
based, for example, on the condition number of the resulting linear system. Let us suppose we want to discretize the
equation for the ghost point G ∈ Γ− and that β− < β+. If we discretize the jump in the flux (third equation of (1)) to
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construct the equation of the linear system, then the diagonal entry is multiplied by β−, while some of the off-diagonal
entries are multiplied by β+ > β−, leading to ill-conditioned system.

Therefore:

• if
{
G ∈ Γ+

h and β+(I) < β−(I)
}

or
{
G ∈ Γ−h and β+(I) > β−(I)

}
, then the equation for the ghost point G is

obtained from [[u]] (I) = gD(I):

ũ+
h (I)− ũ−h (I) = gD(I) (7)

• otherwise, it is obtained from

[[
β
∂u

∂n

]]
(I) = gN (I):

(
β+∇ũ+

h − β
−∇ũ−h

)∣∣
I
·

 ∇φ̃h∣∣∣∇φ̃h∣∣∣
∣∣∣∣∣∣

I

= gN (I) (8)

where ũ+
h (resp. ũ−h ) is the biquadratic interpolant of u+

h (resp. u−h ) in a suitable nine-point stencil contained in

Ω+
h ∪ Γ++

h (resp. Ω−h ∪ Γ−−h ), and φ̃h is the biquadratic interpolant of φ in a nine-point stencil surrounding I. What
is left is the choice of the nine-point stencils contained in Ω−h ∪ Γ−−h and Ω+

h ∪ Γ++
h . Let us suppose that G ∈ Γ−h (the

case G ∈ Γ+
h is treated similarly). The nine-point stencil contained in Ω−h ∪ Γ−−h is chosen in upwind direction, as

described in Sec. 3.1. The nine-point stencil contained in Ω+
h ∪ Γ++

h will be set as follows: if |xG − xI | ≥ |yG − yI | (as
in Figs. 3 and 4) it will be composed by three points of the row j − 1, three points of the row j, three points of the
row j + 1; while if |xG − xI | < |yG − yI | it will be composed by three points of the column i− 1, three points of the
column i, three points of the column i+ 1.

If it is not possible to build the nine-point stencil, we revert to a more robust (less accurate) three-point stencil
(Fig. 4): (i, j)h, (i − 1, j)h, (i, j − 1)h. Note that these three points belong to Ω+

h ∪ Γ++
h , since G ≡ (i, j)h ∈ Ω+

h . If
G ∈ Γ−h the procedure is the same, provided to interchange the subscripts + and −.

4 Multigrid approach

4.1 Relaxation scheme

Let us denote by Au = f the linear system obtained in Sec. 3, where A = (ak,l)k,l=1,...,Ñ ∈ RÑ×Ñ , u, f ∈ RÑ , with

Ñ = N+
i + N+

g + N−i + N−g + Ng. The relaxation scheme of the multigrid is obtained by the following Richardson
iteration:

u(m+1) = u(m) + P−1 (f −Au) (9)

with a diagonal preconditioner P . Let us call D̃ = diag(dk)k=1,...Ñ a diagonal matrix such that the diagonal entries
satisfy the following two properties:

|dk| ≥ max
l=1,...,Ñ

|ak,l| , dk · ak,k > 0. (10)

If k refers to an inner equation, we choose dk = maxl=1,...,Ñ = |ak,k| (see (3)), else if k refers to the boundary condition
(see (5)) or the jump condition on the solution (see (7)) we choose |dk| = 1, else if k refers to the jump condition on the
flux (see (8)) we choose |dk| = 3/2

√
2 max {β−, β+}. If we choose P = D̃, we observed numerically that the iteration

scheme (9) is convergent. Furthermore, such iteration scheme is Jacobi-like for the inner equations, since dk = |ak,k|.
Therefore, it is a suitable building-block for the multigrid solver. However, since we want to use a good smoother,
we must use the weighted-Jacobi scheme or the Gauss-Seidel scheme. We switch to the Gauss-Seidel version of the
scheme, i.e. we choose P = D̃ + E, where E is the lower triangular part of A.
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4.1.1 Smoothing property

The smoothing property of the Gauss-Seidel scheme depends on the ordering chosen for the variables. It is well known
(see [9]) that the Red-Black Gauss-Seidel (RB-GS) scheme is a better smoother with respect to the Lexicographic
Gauss-Seidel (LEX-GS) scheme, but, for simplicity, we just study the smoothing properties of the GS-LEX scheme,
and we compare the convergence factor with the predicted one by the Local Fourier Analysis (see [9] for more details)
for LEX-GS scheme. In order to avoid that the boundary effects degrade the convergence factor, we add some extra-
relaxations (on each grid level and for each relaxation) on two suitable layers surrounding respectively the interface
and the boundary, that is, chosen two parameters λ and δ, we add λ extra-relaxations on the following two sets:

Ω
(δ)
h = {P ∈ Ωh such that − φ(P ) < δ} , Ω

± (δ)
h =

{
P ∈ Ω±h such that − φΓ(P ) < δ

}
.

We experienced that in this case a good choice of the parameters λ and δ is λ = 5, δ = 5 h.

4.2 Extension operator

Let us consider the whole domain Ω (the argument can be easily repeated with the two subdomains Ω− and Ω+).
Such a domain is defined by a level-set function φ and it defines a set of inner grid points Ωh and a set of ghost
points Γh. Let us suppose we know a grid function ωh defined in Γh and we want to extend such a function in all the
domain Dh − Ωh. The extended function ωexth can be obtained extrapolating ωh constant along the normal direction

to ∂Ω, i.e. solving the transport equation
∂ω

∂τ
+∇ω · n = 0 in a few steps of a fictitious time τ , where ω = ωh in Γh,

and n ≡ (nx, ny) = ∇φ/|∇φ| is the unit normal vector to the level-set. We can resume the extension process by an
extension operator ωexth = E [Γh;φh](ωh).

4.3 Transfer (restriction and interpolation) operators

We want to define a suitable restriction operator Ih2h. We perform the usual full-weighting restriction away from
the boundary/interface. When we are close to the boundary/interface, we modify the restriction operator for inner
equations in such a way we use only values coming from the same side of the boundary/interface, since the values
from the other sides refer to a different operator, whether the value of the other side is considered as an inner point
of the other subdomain (in which case we have a discontinuity of the operator) or it is considered as a ghost point
(in which case the operator refers to the boundary/interface condition, that scales with a different power of h). The
modified restriction operator is represented in Fig. 5.

The restriction of the boundary/interface conditions is performed similarly, provided we extend the defect of the
boundary/interface conditions away from the boundary/interface and then perform the same restriction procedure,
using only the values coming from the same side of the boundary/interface. The procedure will be described in details
in Sec. 4.4.

Since the interpolation operator acts on the error, which is supposed to be continuous across the boundary/interface,
we use the standard linear interpolation operator.

4.4 Two-Grid Correction scheme

In order to describe the multigrid technique, we just describe the TGCS (Two-Grid Correction Scheme), since any
other basic multigrid algorithm (such as V -cycle, W -cycle, Full Multigrid, and so on) can be easily derived from it
(see [9] for more details). The TGCS consists into the following algorithm:

• Relax ν1 times on the grid with spatial step h.
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Fig. 5: Upper, the nine points of N (x, y) and the green boundary of the rectangle T . The bold red point is on the coarser and finer grids,
while the little red points are on the finer grid. The arrows represent the action of the restriction operators. Below, the respective stencil
to be used.

• Compute the defects: rΩ−

h = rh|Ω−
h
, rΩ+

h = rh|Ω+
h
, rΓ−

h = rh|Γ−
h
, rΓ+

h = rh|Γ+
h
, rΓ

h = rh|Γh
, where

rh = f −Au.

• Extend the defects rΓ−

h , rΓ+

h and rΓ
h, using the extension operator defined in (4.2):

rΓ−,ext
h = E [Γ−h ;−φΓ

h](rΓ−

h ), rΓ+,ext
h = E [Γ+

h ;φΓ
h](rΓ+

h ), rΓh,ext
h = E [Γh;φh](rΓ

h).

• Transfer these defects to a coarser grid with spatial step 2h by the restriction operator defined in Sec. 4.3:

rΩ−

2h = Ih2h

(
rΩ−

h

)
, rΩ+

2h = Ih2h

(
rΩ+

h

)
, rΓ−

2h = Ih2h

(
rΓ−,ext
h

)
, rΓ+

2h = Ih2h

(
rΓ+,ext
h

)
, rΓ

2h = Ih2h

(
rΓ,ext
h

)
.

• Solve exactly the residual problem in the coarser grid.

• Transfer the error to the finer grid by the interpolation operator: eh = I2h
h (e2h).

• Correct the fine-grid approximation uh : = uh + eh.

• Relax ν2 times on the grid with spatial step h.

5 Numerical tests

5.1 Example 1: circular domains

Let us consider the following data:

φΓ(x, y) =
√

(x− x0)2 + (y − y0)2 −R1, φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R2,

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy),

β− = 106 + 105 sin(πx) cos(3πy), β+ = 1 + 0.5 sin(2πx) cos(4πy) (11)
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Fig. 6: Domains Ω− and Ω+ of the Example 5.1 (left) and of the Example 5.2 (right).

or
β− = 1 + 0.5 sin(2πx) cos(4πy), β+ = 106 + 105 sin(πx) cos(3πy). (12)

We choose x0 =
√

2/30, y0 =
√

3/40, R1 = 0.353 and R2 = 0.753. The domain is represented in Fig. 6 (left side).
We performed one test with (11) and one test with (12). We list in Tables 1 and 2 the errors of the solution and its
gradient in the L1 and L∞ norms, while Fig. 7 shows the related bestfit lines. The error presented in Table 1 (and
also in Table 3) is quite large. This phenomenon, which is physiological for this model, can be explained studying the
residual equation for the discretization error and it is not imputable to the discretization scheme. Such analysis will
be presented in a forthcoming paper.

Tab. 1: Example 5.1. Accuracy order in the solution and in the gradient for the case (11).

N2 L1 error of u order L∞ error of u order L1 error of |∇u| order L∞ error of |∇u| order
322 8.34 ·103 - 7.70 ·104 - 1.46 ·105 - 3.90 ·105 -
642 2.07 ·103 2.01 1.85 ·104 2.06 3.49 ·104 2.06 1.06 ·105 1.88
1282 5.79 ·102 1.84 5.10 ·103 1.86 9.56 ·103 1.87 2.96 ·104 1.84
2562 1.46 ·102 1.99 1.28 ·103 2.00 2.39 ·103 2.00 7.45 ·103 1.99

Tab. 2: Example 5.1. Accuracy order in the solution and in the gradient for the case (12).

N2 L1 error of u order L∞ error of u order L1 error of |∇u| order L∞ error of |∇u| order
322 4.40 ·10−3 - 1.22 ·10−1 - 3.93 ·10−1 - 3.52 ·100 -
642 1.02 ·10−3 2.11 2.93 ·10−2 2.06 9.95 ·10−2 1.98 9.71 ·10−1 1.86
1282 3.29 ·10−4 1.64 7.61 ·10−3 1.95 2.63 ·10−2 1.92 2.80 ·10−1 1.80
2562 8.24 ·10−5 2.00 2.14 ·10−3 1.83 6.60 ·10−3 1.99 7.32 ·10−2 1.93
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Fig. 7: Example 5.1. Bestfit lines of the errors in the solution and in the gradient (Tables 1 and 2) in both the
L1 and L∞ norms. Left: β− and β+ are given by (11); Right: β− and β+ are given by (12).

5.2 Example 2: flower-shaped domains

Let us consider the general flower-shaped interface with parametric equations:

X(ϑ) = r(ϑ) cos(ϑ) + x0,

Y (ϑ) = r(ϑ) sin(ϑ) + y0,

with ϑ ∈ [0, 2π] and r(ϑ) = r0 + r1 sin(ωϑ). Let us consider ω = 5. The level-set representation of this interface is:

flower(r0, r1, x0, y0;x, y) = r − r0 − r1
(y − y0)5 + 5(x− x0)4(y − y0)− 10(x− x0)2(y − y0)3

r5
.

where r =
√

(x− x0)2 + (y − y0)2. Let us choose the following data:

φΓ(x, y) = flower(0.45, 1/7, 0.01
√

3, 0.02
√

2;x, y), φ(x, y) = flower(0.75, 1/8, 0.01
√

3, 0.02
√

2;x, y),

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy),

β− = 106 + 105 sin(πx) cos(3πy), β− = 1 + 0.5 sin(2πx) cos(4πy) (13)

or
β− = 1 + 0.5 sin(2πx) cos(4πy), β− = 106 + 105 sin(πx) cos(3πy). (14)

The domain is represented in Fig. 6 (right side). We performed one test with (13) and one test with (14). We list
in Tables 3 and 4 the errors of the solution and its gradient in the L1 and L∞ norms, while Fig. 8 shows the related
bestfit lines.

5.3 Example 3: Convergence factor of the multigrid

In this example we show that the asymptotic convergence factor does not depend on the jump of the coefficient and
on the size of the problem. The study we want to carry out about the convergence factor concerns how it is close to
the optimal one (see Table 5), i.e. the convergence factor predicted by the Local Fourier Analysis for inner equations.
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Tab. 3: Example 5.2. Accuracy order in the solution and in the gradient for the case (13).

N2 L1 error of u order L∞ error of u order L1 error of |∇u| order L∞ error of |∇u| order
322 1.41 ·104 - 1.03 ·105 - 2.49 ·105 - 8.38 ·105 -
642 2.54 ·103 2.48 1.78 ·104 2.53 4.34 ·104 2.52 1.57 ·105 2.42
1282 8.07 ·102 1.65 5.58 ·103 1.67 1.35 ·104 1.68 4.94 ·104 1.67
2562 1.57 ·102 2.36 1.07 ·103 2.38 2.60 ·103 2.38 9.65 ·103 2.36

Tab. 4: Example 5.2. Accuracy order in the solution and in the gradient for the case (14).

N2 L1 error of u order L∞ error of u order L1 error of |∇u| order L∞ error of |∇u| order
322 6.63 ·10−3 - 2.51 ·10−1 - 6.70 ·10−1 - 4.30 ·100 -
642 2.49 ·10−3 1.41 8.18 ·10−2 1.62 1.91 ·10−1 1.81 1.19 ·100 1.86
1282 5.02 ·10−4 2.31 1.66 ·10−2 2.30 4.64 ·10−2 2.04 3.31 ·10−1 1.84
2562 1.28 ·10−4 1.98 4.03 ·10−3 2.04 1.18 ·10−2 1.97 1.23 ·10−1 1.43
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Fig. 8: Example 5.2. Bestfit lines of the errors in the solution and in the gradient (Tables 3 and 4) in both the
L1 and L∞ norms. Left: β− and β+ are given by (13); Right: β− and β+ are given by (13).

Tab. 5: Predicted convergence factor ρloc by LFA for GS-LEX and FW restriction operator.

ν = ν1 + ν2 1 2 3 4

ρloc 0.400 0.193 0.119 0.084

Let us recall that we estimate the asymptotic convergence factor as: ρ = limm→∞ ρ(m) = limm→∞

(∥∥∥r(m)
h

∥∥∥
∞
/
∥∥∥r(m−1)
h

∥∥∥
∞

)
.

We perform the homogeneous model problem, namely the Model Problem 1 (1) with f± = gD = gN = g = 0 (starting
with an initial guess different from zero), in order to avoid difficulties related to numerical instability related to the
machine precision.

The numerical tests have been performed by a W -cycle algorithm with ν1 = 2 pre-smoothing and ν2 = 1 post-
smoothing (therefore ν = 3 in Table 5), and with the coarsest grid having 16 × 16 grid points. Table 6 shows the
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estimated convergence factors in the more complicated geometry of Example 5.2. We choose β− = 10p, β+ = 1. As
we see the convergence factor is quite good over an extremely large range of jumps in the coefficients.

Tab. 6: Example 5.3. Asymptotic convergence factor (ν = ν1 + ν2 = 3).

p -9 -7 -5 -3 -1 1 3 5 7 9
N2

322 0.0776 0.0776 0.0776 0.0773 0.0486 0.1563 0.1586 0.1585 0.1585 0.1585
642 0.0930 0.0930 0.0930 0.0930 0.1107 0.0931 0.1027 0.1029 0.1029 0.1029
1282 0.1544 0.1544 0.1544 0.1544 0.1544 0.1543 0.1543 0.1544 0.1544 0.1544
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