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Abstract. We consider the linear systemAx = b arising from one-dimensional
Poisson's equation with Dirichlet boundary conditions, where A is the square
matrix having the stencil form

[
−1 2 −1

]
. Here we show, using some prop-

erties of centrosymmetric matrices, that a pairwise aggregation-based algebraic
2-grid method reduces the A-norm of the error at each step by at least the
factor 1/

√
2.

1. Introduction

Notations. || · || denotes the 2-norm; For any positive de�nite symmetric matrix
A, the A-norms of a vector x and a matrix G are de�ned as ||x||A = ||A1/2x|| and
||G||A = ||A1/2GA−1/2||, respectively; 〈x, y〉 is the inner product

∑
xjyj .

A 1D Poisson's problem with Dirichlet boundary conditions induces the linear
system Ax = b, where A is the the N by N matrix

[
−1 2 −1

]
. The authors in

[3] show that a pairwise aggregation-based algebraic 2-grid method reduces the A-

norm of the error at each step by at least the factor
√

5/8. Numerical computations,

however, show that the actual reduction factor is 1/
√

2. In this paper, we will show

that the expected factor 1/
√

2 is theoretically correct.

2. Analysis of the A-norm of the error

Assuming that N is even, de�ne the N by N/2 piecewise constant prolongation
matrix P by P2l−1,l = P2l,l = 1 for l = 1, 2, . . . , N/2 with all other entries of P
being 0 and an N/2 by N/2 coarse grid matrix AC by AC = PTAP (Galerkin
condition). After a coarse grid solve followed by a weighted Jacobi iteration, the
authors in [3] show the relation

(1) ||ej+1||A ≤ σ||ej ||A
for the error ej = x− xj , where

σ = ||(I − 1

4
A)(I −A1/2PA−1

C PTA1/2)||

(I is the identity matrix). The procedure is as follows:

(a) Coarse grid solve: ACδC = PT rj , where rj = b−Axj is the residual on the
�ne grid.

Key words and phrases. algebraic multigrid method; Poisson's problem; centrosymmetric
matrices.
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(b) Correction: x′j = xj + PδC = xj + Crj , where C = PA−1
C PT , and its

corresponding residual is r′j = b−Ax′j = (I −AC)rj .
(c) Relaxation: With the weighted Jacobi iteration with damping factor of 2,

xj+1 = x′j + (2diag(A))−1r′j = x′j +
1

4
r′j

rj+1 = b−Axj+1 = (I − 1

4
A)(I −AC)rj

ej+1 = A−1rj+1 = (I − 1

4
A)(I − CA)ej

(d) A-norm of the error: Since

||(I − 1

4
A)(I − CA)||A = ||A1/2(I − 1

4
A)(I − CA)A−1/2||

= ||(I − 1

4
A)(I −A1/2CA1/2)||,

we have the inequality (1).

Moreover, they also show an upper bound for σ as follows:

(a) Following the approach in [2, Ch 12],

σ ≤ max
||y||=||I−A1/2CA1/2||
y∈R(I−A1/2CA1/2)

||(I − 1

4
A)y||,

where R(·) denotes the range. Theorem 12.1.1 in [2] shows that

||I −A1/2CA1/2|| = 1

R(I −A1/2CA1/2) = A−1/2N (PT ),

where N (·) denotes the null space. Thus,

σ ≤ max
||y||=1

y∈A−1/2N (PT )

||(I − 1

4
A)y||

(b) The eigenvalues and orthonormal eigenvectors of A are:

λk = 2− 2 cos
kπ

N + 1
, k = 1, . . . , N

q
(k)
j =

√
2

N + 1
sin

jkπ

N + 1
, j, k = 1, . . . , N

Let Λ = diag(λ1, . . . , λN ) and Q =
(
q(1) · · · q(N)

)
. Since Q is a sym-

metric orthogonal matrix and A = QΛQ,

σ ≤ max
||z||=1

z∈Λ−1/2QN (PT )

||(I − 1

4
Λ)z||

(c) N (PT ) is spanned by the basis {e1− e2, e3− e4, . . . , eN−1− eN}, where ej
is the elementary unit vector with 1 in the jth entry. Therefore,

σ ≤ max
||z||=1
z∈S

||(I − 1

4
Λ)z||,
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where S is the space spanned by the vectors

Λ−1/2(q(1) − q(2)),Λ−1/2(q(2) − q(3)), . . . ,Λ−1/2(q(N−1) − q(N)).

Therefore, to prove ||ej+1||A ≤ 1√
2
||ej ||A, it is enough to show

(2) max
||z||=1
z∈S

||(I − 1

4
Λ)z||2 ≤ 1

2

We will use the following three lemmas to prove (2) in Theorem 4.

Lemma 1. Let xk = kπ/(N + 1).

(a) For any integer n,

(3)

N∑
k=1

cos(nxk) =


0, if n is odd,

N, if n is a multiple of 2(N + 1),

−1, otherwise

(b) For any integers l and m,

(sin(2l − 1)xk − sin(2lxk))(sin(2m− 1)xk − sin(2mxk))

= (1− cosxk) [cos((2l + 2m− 1)xk) + cos(2(l −m)xk)](4)

(c) For any integer n,

(5)

N∑
k=1

(1− cosxk)2 cos(nxk) =


(3N − 1)/2, if n = 0

−N + 1, if n = 1

(N − 7)/4, if n = 2

2(−1)n+1, otherwise

Proof. Since cos(nxN+1−k) = cos(nπ − xk) = (−1)n cos(xk) for any k,

N∑
k=1

cos(nxk) =

{
0 if n is odd

2
∑N/2
k=1 cos(nxk) if n is even

.

If n is a multiple of 2(N+1), then cos(nxk) = 1 for any k and thus
∑N
k=1 cos(nxk) =

N . If n is an even integer, not being a multiple of 2(N + 1), then using the known
formula

N∑
k=1

cos(kθ) =
−1

2
+

sin(N + 1
2 )θ

2 sin 1
2θ

,

we have
N/2∑
k=1

cos(nxk) =
−1

2
+

sin(N + 1) nπ
2(N+1)

2 sin nπ
2(N+1)

=
−1

2

and thus
∑N
k=1 cos(nxk) = −1.
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The remaining two results can be easily shown using the following basic trigono-
metric identities:

2 sinA sinB = cos(A−B)− cos(A+B)

cosA+ cosB = 2 cos
A+B

2
cos

A−B
2

2 cos2 x = 1 + cos(2x)

4 cos3 x = cos(3x) + 3 cosx

�

Lemma 2. For l,m = 1, . . . , N/2, we have

(6) 〈Λ−1/2(q(2l−1) − q(2l)), Λ−1/2(q(2m−1) − q(2m))〉 =

{
N
N+1 , if l = m,
−1
N+1 if l 6= m

(See also [3]) and

(7) 〈Λ1/2(q(2l−1) − q(2l)), Λ1/2(q(2m−1) − q(2m))〉 =


6, if l = m,

1, if l −m = ±1,

0, otherwise

Proof. Let xk = kπ
N+1 . Then,

〈Λ−1/2(q(2l−1) − q(2l)), Λ−1/2(q(2m−1) − q(2m))〉

=

N∑
k=1

λ
−1/2
k (q

(2l−1)
k − q(2l)

k ) · λ−1/2
k (q

(2m−1)
k − q(2m)

k )

=
1

N + 1

N∑
k=1

cos((2l + 2m− 1)xk) +
1

N + 1

N∑
k=1

cos(2(l −m)xk), by (4).

By (3), the �rst sum in the right hand side is 0 for any l,m; meanwhile,

N∑
k=1

cos(2(l −m)xk) =

{
N, if l = m,

−1, otherwise
.

Thus the result (6) follows. Similarly, using (4),

〈Λ1/2(q(2l−1) − q(2l)), Λ1/2(q(2m−1) − q(2m))〉

=

N∑
k=1

λ
1/2
k (q

(2l−1)
k − q(2l)

k ) · λ1/2
k (q

(2m−1)
k − q(2m)

k )

=
4

N + 1

N∑
k=1

(1− cosxk)2 [cos((2l + 2m− 1)xk) + cos(2(l −m)xk)]

and the result (7) follows from (5). �

Let L = N/2. To prove (2), it is enough to show that ||(I − 1
4Λ)z||2 ≤ 1

2 for any z

such that z is a unit vector of the form
∑L
l=1 clΛ

−1/2(q(2l−1) − q(2l)).
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Lemma 3. For z =
∑L
l=1 clΛ

−1/2(q(2l−1) − q(2l)), the constraint ||z|| = 1 is equiv-
alent to

(8)

L∑
l=1

c2l = 1 +
1

2L
+

1

L

∑
1≤l<m≤L

clcm

and the inequality ||(I − 1
4Λ)z||2 ≤ 1

2 is equivalent to

(9)

L∑
l=1

c2l −
1

5

L∑
l=2

cl−1cl ≥
4

5
.

Proof. Since

||z||2 =
∑
l,m

clcm〈Λ−1/2(q(2l−1) − q(2l)),Λ−1/2(q(2m−1) − q(2m))〉

=
2L

2L+ 1

L∑
l=1

c2l −
2

2L+ 1

∑
1≤l<m≤L

clcm

by (6), the constraint ||z|| = 1 is equivalent to (8). Meanwhile, since

〈z,Λz〉 =
∑
l,m

clcm〈(q(2l−1) − q(2l)), (q(2m−1) − q(2m))〉 = 2

L∑
l=1

c2l

by the orthonormal property of the vectors q(k) and

||Λz||2 =
∑
l,m

clcm〈Λ1/2(q(2l−1) − q(2l)),Λ1/2(q(2m−1) − q(2m))〉

= 6

L∑
l=1

c2l +
∑

l−m=±1

clcm

by (7), we have

||(I − 1

4
Λ)z||2 = 1− 1

2
〈z,Λz〉+

1

16
||Λz||2

= 1− 5

8

L∑
l=1

c2l +
1

8

L∑
l=2

cl−1cl

and thus the inequality ||(I − 1
4Λ)z||2 ≤ 1

2 is equivalent to (9). �

Theorem 4. The inequality (9) subject to the constraint (8) holds for any positive
integer L.

Proof. De�ne two functions f(c) and g(c) by

f(c) =

L∑
l=1

c2l −
1

5

L∑
l=2

cl−1cl,

g(c) =

L∑
l=1

c2l − 1− 1

2L
− 1

L

∑
1≤l<m≤L

clcm.
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We will use the method of Lagrange multipliers to show that f(c) ≥ 4
5 subject to

the condition g(c) = 0. The constrained minimum occurs at points c such that
∇cf + λ∇cg = 0 for some λ. The equation can be expressed by

(2I − 1

5
R+ λ(2I − 1

L
S))c = 0

or equivalently

(
1

5
R+

λ

L
S)c = 2(1 + λ)c,

where

R =


0 1

1 0
. . .

. . . 0 1
1 0

 and S =


0 1 · · · 1

1 0
. . . 1

...
. . .

. . . 1
1 · · · 1 0

 .

A matrix X is called centrosymmetric if XJ = JX, where J is the square matrix
with 1 on the counterdiagonal and 0 elsewhere. Since two matrices R and J are
symmetric and centrosymmetric, the equation ( 1

5R+ λ
LS)c = 2(1+λ)c implies that c

is an eigenvector of the symmetric centrosymmetric matrix 1
5R+ λ

LS. According to
[1], such a vector c is either symmetric (that is, cL+1−k = ck for all k = 1, . . . , L/2)
or skew symmetric (that is, cL+1−k = −ck for all k = 1, . . . , L/2).

Case 1: Assume that L is a power of 2. In the ensuing computations, we will
use the following results (explicitly or implicitly): for any even integer M ,∑

1≤l<m≤M

clcm =

{
−
∑M/2
l=1 c2l , when c is skew symmetric∑M/2

l=1 c2l + 4
∑

1≤l<m≤M/2 clcm, when c is symmetric

When c is skew symmetric, the constraint g(c) = 0 is equivalent to
∑L/2
l=1 c

2
l = 1

2

and the inequality f(c) ≥ 4
5 is equivalent to 2

∑L/2
l=2 cl−1cl − c2L/2 ≤ 1. Since

2

L/2∑
l=2

cl−1cl − c2L/2 ≤ c
2
1 + 2

L/2−1∑
l=2

c2l ≤ 2

L/2∑
l=1

c2l ,

the inequality f(c) ≥ 4
5 is true for any c such that g(c) = 0. Meanwhile, when c is

symmetric, the constraint g(c) = 0 is equivalent to

(10) (L− 1

2
)

L/2∑
l=1

c2l =
2L+ 1

22
+ 2

∑
1≤l<m≤L/2

clcm.

Using the identity
∑L
l=2 cl−1cl = c2L/2 + 2

∑L/2
l=2 cl−1cl, we can show that the in-

equality f(c) ≥ 4
5 is expressed by

2

L/2∑
l=1

c2l −
1

5

c2L/2 + 2

L/2∑
l=2

cl−1cl

 ≥ 4

5
.

Moreover, since

2

L/2∑
l=1

c2l −
1

5

c2L/2 + 2

L/2∑
l=2

cl−1cl

 ≥ 2

L/2∑
l=1

c2l −
2

5

L/2∑
l=1

c2l =
8

5

L/2∑
l=1

c2l ,
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it is enough to show that
∑L/2
l=1 c

2
l ≥ 1

2 subject to the constraint (10). Now we have
another minimization problem with constraints. Using the method of Lagrange
multipliers and the results in [1] again, the vector c of size L/2 is either symmetric
or skew symmetric. When c is skew symmetric, the constraint (10) is equivalent to∑L/22

l=1 c2l = 1
22 and the inequality

∑L/2
l=1 c

2
l ≥ 1

2 is just
∑L/22

l=1 c2l ≥ 1
22 . Thus, the

inequality subject to the constraint is clear. In the case that c is symmetric, we

need to show
∑L/22

l=1 c2l ≥ 1
22 when c satis�es that

(L− 3

2
)

L/22∑
l=1

c2l =
2L+ 1

23
+ 22

∑
1≤l<m≤L/22

clcm.

We can repeat this process. That is, assume that we want to show the inequality

(11)

L/2n∑
l=1

c2l ≥
1

2n

subject to the constraint

(12) (L− 2n − 1

2
)

L/2n∑
l=1

c2l =
2L+ 1

2n+1
+ 2n

∑
1≤l<m≤L/2n

clcm.

For a skew symmetric c, the constraint is
∑L/2n+1

l=1 c2l = 1
2n+1 and thus the inequality∑L/2n

l=1 c2l ≥ 1
2n is clear. For a symmetric c, the constraint above is equivalent to

(L− 2n+1 − 1

2
)

L/2n+1∑
l=1

c2l =
2L+ 1

2n+2
+ 2n+1

∑
1≤l<m≤L/2n+1

clcm

and the inequality
∑L/2n

l=1 c2l ≥ 1
2n is just

∑L/2n+1

l=1 c2l ≥ 1
2n+1 . Consequently, by

induction on n, it is enough to �nd a positive integer n such that the inequality
(11) holds for all c satisfying (12). Let L = 2p. Then, when n = p, the inequality
(11) is equivalent to 2pc21 ≥ 1 and the constraint (12) is expressed by

(2p − 2p − 1

2
)c21 = 1 +

1

2p+1
.

The inequality subject to the constraint 2pc21 ≥ 1 is clear by the following argument:

2pc21 =
2p − 1

2
c21 + 1 +

1

2p+1
≥ 1.

Case 2: Assuming that L is an odd integer, we will show that f(c) ≥ 4
5

subject to the condition g(c) = 0, where f, g are de�ned in the beginning of
this proof. Let L = 2u + 1. In the case that c is skew symmetric, we have∑

1≤l<m≤L clcm = −
∑u
l=1 c

2
l and thus the constraint g(c) = 0 is equivalent to∑u

l=1 c
2
l = 1

2 . Moreover, since
∑L
l=2 cl−1cl = 2

∑u
l=2 cl−1cl, the inequality f(c) ≥ 4

5

is expressed by 2
∑u
l=2 cl−1cl ≤ 1, which is clear on the constraint. Now consider
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the symmetric case. In this case, using the following identities∑
1≤l<m≤L

clcm =

u∑
l=1

c2l + 4
∑

1≤l<m≤u

clcm + 2cu+1

u∑
l=1

cl,

L∑
l=2

cl−1cl = 2

u+1∑
l=2

cl−1cl,

we can show that the inequality f(c) ≥ 4
5 is equivalent to

2

u∑
l=1

c2l + c2u+1 −
2

5

u+1∑
l=2

cl−1cl ≥
4

5
.

Moreover, by the following argument

2

u∑
l=1

c2l + c2u+1 −
2

5

u+1∑
l=2

cl−1cl

≥ 2

u∑
l=1

c2l + c2u+1 −
1

5
(c2u+1 + 2

u∑
l=1

c2l )

=
8

5

u∑
l=1

c2l +
4

5
c2u+1,

it is enough to show that

(13)

u∑
l=1

c2l +
1

2
c2u+1 ≥

1

2

subject to the constraint g(c) = 0 which is equivalent to

(14) (2− 1

L
)

u∑
l=1

c2l + c2u+1 = 1 +
1

2L
+

4

L

∑
1≤l<m≤u

clcm +
2

L
cu+1

u∑
l=1

cl.

Let s =
∑u
l=1 cl and r =

∑u
l=1 c

2
l . Then, the constraint (14) can be expressed by

c2u+1−2pcu+1 +q = 0, where p = 1
Ls and q = 2L+1

L (r+ 1
2 )− 2

Ls
2. Since p±

√
p2 − q

are the roots of the quadratic equation above, we have c2u+1 = 2p2−q±2p
√
p2 − q.

Therefore, the inequality (13) is equivalent to

r + p2 − 1

2
q ± p

√
p2 − q ≥ 1

2
,

where p2 − q ≥ 0. Plugging p = 1
Ls and q = 2L+1

L (r + 1
2 ) − 2

Ls
2, the inequality

above is expressed by

(1 +
1

2L
)s2 +

s2

2L
+

1

4
− r

2
≥ 2

√
(1 +

1

2L
)s2

√
s2

2L
+

1

4
− r

2
.

Since the inequality is true by the relationship between arithmetic mean and geo-
metric mean, the case that L is odd is solved.

Case 3: Finally, we consider the case L = 2pq, where q > 1 is odd. Substituting
n = p in (11) and (12), it is enough to show that

(15)

q∑
l=1

c2l ≥
1

2p
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when

(16) (2pq − 2p − 1

2
)

q∑
l=1

c2l = q +
1

2p+1
+ 2p

∑
1≤l<m≤q

clcm.

Let q = 2r + 1. When c is skew symmetric, (15) is 2
∑r
l=1 c

2
l ≥ 1

2p and (16) is∑r
l=1 c

2
l = 1

2p+1 . Thus the inequality is clear. Meanwhile, if c is symmetric, then
(15) is

(17)

r∑
l=1

c2l +
1

2
c2r+1 ≥

1

2p+1

and (16) is

(2p+1q − 2p+1 + 1)

r∑
l=1

c2l +
2p+1q − 2p + 1

2
c2r+1

= q +
1

2p+1
+ 2p+2

∑
1≤l<m≤r

clcm + 2p+1cr+1

r∑
l=1

cl.(18)

Let ξ =
∑r
l=1 cl and ζ =

∑r
l=1 c

2
l . Then, the constraint can be expressed by

c2r+1 − 2αcr+1 + β = 0, where

α =
2p+1

2L− 2p + 1
ξ,

β =
4L+ 2

2L− 2p + 1
ζ − 2L+ 1

2p(2L− 2p + 1)
− 2p+2

2L− 2p + 1
ξ2.

Plugging c2r+1 = 2α2 − β ± 2α
√
α2 − β, we can show that the inequality (17) is

expressed by

22p+1ξ2 + 2p+1(2L+ 1)ξ2 + 2p(2L− 2p + 1)(
1

2p+1
− ζ)

≥ 2

√
22p+1ξ2

[
2p+1(2L+ 1)ξ2 + 2p(2L− 2p + 1)(

1

2p+1
− ζ) + (2L− 2p + 1)2(

1

2p+1
− ζ)

]
LetX = 22p+1ξ2, Y = 2p+1(2L+1)ξ2+2p(2L−2p+1)( 1

2p+1−ζ), and Z = (2L−2p+

1)2( 1
2p+1 −ζ). Then the above inequality is expressed by X+Y ≥ 2

√
X(Y + Z). If

ζ ≥ 1
2p+1 , then the inequality (17) is clear. Thus, we may assume that 1

2p+1 −ζ > 0.
In this case, all of X, Y , and Z are nonnegative. The following argument shows
that the desired inequality X + Y ≥ 2

√
X(Y + Z) holds:

X + Y ≥ 2
√
X(Y + Z)

⇐⇒ (X − Y )2 ≥ 4XZ

⇐⇒
[
2ξ2 + (

1

2p+1
− ζ)

]2

≥ 8ξ2 · ( 1

2p+1
− ζ)

⇐⇒ (2ξ2 − (
1

2p+1
− ζ))2 ≥ 0.

�
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We have shown that ||ej+1||A ≤ 1√
2
||ej ||A using post-smoothing only. In that

case, the error satis�es ej+1 = (I − 1
4A)(I − CA)ej , where C = PA−1

C PT . Consid-
ering post-smoothing only, the equation for the error becomes ej+1 = (I−CA)(I−
1
4A)ej . Since

||(I − CA)(I − 1

4
A)||A = ||A1/2(I − CA)(I − 1

4
A)A−1/2||

= ||(I −A1/2CA1/2)(I − 1

4
A)||

= ||(I − 1

4
A)T (I −A1/2CA1/2)T ||

= ||(I − 1

4
A)(I −A1/2CA1/2)||

= ||(I − 1

4
A)(I − CA)||A,

we have the same relation ||ej+1||A ≤ 1√
2
||ej ||A for post-smoothing only. Mean-

while, in the case of pre- and post-smoothing, the error satis�es ej+1 = (I −
1
4A)(I − CA)(I − 1

4A)ej and thus ||ej+1||A ≤ σ||ej ||A, where σ = ||(I − 1
4A)(I −

A1/2CA1/2)(I− 1
4A)||. The authors in [3, Theorem 4] proved σ ≤

√
17
32 , but numer-

ical computations suggest the bound σ ≤ 1
2 . The following simple argument shows

σ ≤ 1√
2
for pre- and post-smoothing (rather than showing the sharp bound σ ≤ 1

2 ):

Since the matrix (I − 1
4A)(I −A1/2CA1/2)(I − 1

4A) is symmetric, its 2-norm is the
spectral radius of the matrix. Thus,

σ = ρ((I − 1

4
A)(I −A1/2CA1/2)(I − 1

4
A))

= ρ((I − 1

4
A)2(I −A1/2CA1/2))

≤ ||(I − 1

4
A)2(I −A1/2CA1/2)||

≤ ||I − 1

4
A|| · ||(I − 1

4
A)(I −A1/2CA1/2)||.

Furthermore, since ||I − 1
4A|| = ρ(I − 1

4A) = max1≤k≤N
1
2 (1 + cos kπ

N+1 ) ≤ 1,

σ ≤ ||(I − 1

4
A)(I −A1/2CA1/2)|| ≤ 1√

2
.
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