A SHARP BOUND ON THE CONVERGENCE RATE OF AN
AGGREGATION-BASED ALGEBRAIC MULTI-GRID METHOD
APPLIED TO A 1D MODEL PROBLEM

DAESHIK CHOI

ABsTrACT. We consider the linear system Az = b arising from one-dimensional
Poisson’s equation with Dirichlet boundary conditions, where A is the square
matrix having the stencil form [—1 2 —1]. Here we show, using some prop-
erties of centrosymmetric matrices, that a pairwise aggregation-based algebraic
2-grid method reduces the A-norm of the error at each step by at least the
factor 1/ V2.

1. INTRODUCTION

Notations. |||| denotes the 2-norm; For any positive definite symmetric matrix
A, the A-norms of a vector 2 and a matrix G are defined as ||z||4 = ||A'/2z|| and
|G||a = ||AY2GA~1/2||, respectively; (z,y) is the inner product Y x;y;.

A 1D Poisson’s problem with Dirichlet boundary conditions induces the linear
system Ax = b, where A is the the N by N matrix [—1 2 —1}. The authors in
[3] show that a pairwise aggregation-based algebraic 2-grid method reduces the A-
norm of the error at each step by at least the factor \/% Numerical computations,
however, show that the actual reduction factor is 1/v/2. In this paper, we will show
that the expected factor 1//2 is theoretically correct.

2. ANALYSIS OF THE A-NORM OF THE ERROR

Assuming that N is even, define the N by N/2 piecewise constant prolongation
matrix P by Poy_1; = Py = 1for l = 1,2,...,N/2 with all other entries of P
being 0 and an N/2 by N/2 coarse grid matrix Ac by Ac = PTAP (Galerkin
condition). After a coarse grid solve followed by a weighted Jacobi iteration, the
authors in [3] show the relation

(1) llej+1lla < oflejla
for the error e; = x — x;, where
1
0 = I(I = {A)(I - AV2PAZIPT A2

(I is the identity matrix). The procedure is as follows:
(a) Coarse grid solve: Acdc = PTr;, where r; = b— Ax; is the residual on the
fine grid.

Key words and phrases. algebraic multigrid method; Poisson’s problem; centrosymmetric
matrices.
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(b) Correction: 7, = z; + Pdc = z; + Crj, where C = PAZ'PT, and its
corresponding residual is 7 = b — Az, = (I — AC)r;.
(¢) Relaxation: With the weighted Jacobi iteration with damping factor of 2,

1

. -1

rjp = a;+ (2diag(A)) "l = o) + 17“;

1
7”]‘+1 = b — Al‘j+1 = (I — ZA)(I — AC)’I“j
1

g1 = ATl = (- DU = CAe;

(d) A-norm of the error: Since
1 1 _
(=74 =CAla = | AY2(1 — AU -CcAA V2|

1
= - ;AT - a2ca?))

we have the inequality (1).
Moreover, they also show an upper bound for ¢ as follows:
(a) Following the approach in [2, Ch 12],
1
o< max (- A,

llI=lI-AY2C A2
yeR(I—-AY2CAY/?)

where R(-) denotes the range. Theorem 12.1.1 in [2] shows that

I —AYV2CAYV?|| = 1
R(I — AYV2CAY?) = A7'V2N(PT),
where A/ (+) denotes the null space. Thus,
1
o< max I1--A
<m0 A

yeATI/ZN(PT)

(b) The eigenvalues and orthonormal eigenvectors of A are:

km
A 2—2 k=1,...,N
k COs N+ 1; ) )
O N L S T
QJ N—f—lblnN—’—]_, .]7 A
Let A = diag(A1,...,An) and Q = (¢ -+ ¢®™)). Since Q is a sym-
metric orthogonal matrix and A = QAQ,
1
o< max I—=-A):z
<m0 0]
2zeA"Y2QN(PT)
(c) N(PT) is spanned by the basis {e; —e2,e3 —ey,...,exy_1 —ey}, where e;

is the elementary unit vector with 1 in the jth entry. Therefore,

1
o< max ||(I — =A)z|,
—||z|\:1||( TRl
z€S
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where S is the space spanned by the vectors
ATY2 (g — @Y A2 — By AT 2 (VD (),

Therefore, to prove ||ej11||la < %H%HA: it is enough to show

DO | =

1
2 max [|(I — =A)z|]? <
) mas (7 = 7A)2]* <

zeS

We will use the following three lemmas to prove (2) in Theorem 4.
Lemma 1. Let z; = kx/(N +1).

(a) For any integer n,

N 0, if nis odd,
(3) Zcos(nxk) = (N, if nis a multiple of 2(N + 1),
k=1

—1, otherwise
(b) For any integers [ and m,

(sin(2l — 1)z, — sin(2lxy))(sin(2m — 1)z, — sin(2may,))
(4) = (1 —coszy)[cos((20 + 2m — 1)xy) 4 cos(2(l — m)xy)]

(c¢) For any integer n,

(BN —1)/2, ifn=0

N .
—-N+1 iftn=1
5 > (- 2 = ’
(5) k=1( cos xy )~ cos(nxy) (N —T)d ifn—2
2(—1)"*1,  otherwise

Proof. Since cos(nxnt1-k) = cos(nm — xp) = (—1)" cos(xy) for any k,

ZN: (na) = 1° if n is odd
cos(nxy) = :
Pt ¥ 2 ZkNﬁ cos(nxy) if n is even

If n is a multiple of 2(IN+1), then cos(nxy) = 1 for any k and thus ijzl cos(nxy) =
N. If n is an even integer, not being a multiple of 2(/N + 1), then using the known
formula
N . 1
-1 N+ 3)0
Z cos(kf) = -5 7t sin(V + 5)6
k=1

2sin %0 ’
we have
N/2 —1 sin(N 4+ 1)72(;\’,11) 1
E cos(nxy) = — + — S
1 2 2 S1n m 2

and thus 227:1 cos(nzxy) = —1.
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The remaining two results can be easily shown using the following basic trigono-
metric identities:

2sin Asin B = cos(A— B) — cos(A+ B)
A+ B A-B
cosA+cosB = 2cos —; cos —
2cos’z = 1+ cos(2z)
4cos®x = cos(3x)+ 3cosx
(I
Lemma 2. Forlym=1,...,N/2, we have
N -
(6) <A—1/2(q(2l—1) _ q(2l))’ A—1/2(q(2m—1) _ q(2m)>> — Ni-t,ila ’tfl =m,
SNES ifl £m
(See also [3]) and
6, ifl=m,
(1) (AV2(gP71 —qB0), AR (B — gy = S0, ifl—m = £,
0, otherwise
Proof. Let z, = 1\?11 Then,
<A—1/2(q(2l—1) . (](21))7 A—1/2(q(2m—1) o q(2m))>
N
—1/2, (2l-1 21 —1/2, (2m—1 2m
= Y@ =) NG - ™)
k=1
R —
= N11 Z cos((20 4+ 2m — Dxy) + NT1 Z cos(2(l — m)xy), by (4).
k=1 k=1
By (3), the first sum in the right hand side is 0 for any I, m; meanwhile,
N .
N, ifl=
Zcos@(l —m)zg) = . 77.1, :
P —1, otherwise
Thus the result (6) follows. Similarly, using (4),
<A1/2(q(2l71) o q(QZ)), A1/2(q(2m71) - q(2m))>
N
1/2, (20-1 2l 1/2, (2m—1 2
- S ) A — o)
k=1
4 N
= ¥o1 Z(l — cosxy,)? [cos((21 + 2m — 1)xp) + cos(2(1 — m)xy,))
k=1
and the result (7) follows from (5). O
Let L = N/2. To prove (2), it is enough to show that ||(I — $A)z[|? < 1 for any z

such that z is a unit vector of the form Zlel A2 (g1 — gD,
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Lemma 3. For z = ZlL:1 aA=12(gF 1) — D) the constraint ||z|| = 1 is equiv-
alent to

L
1 1
(8) ch_lJrﬁJrf Z CiCm
=1 1<i<m<L
and the inequality ||(I — $A)z|[* < & is equivalent to
- 1 & 4
2
9) ch ~z ch,lcl > 5
=1 1=2
Proof. Since
HZ||2 _ ZC[C 1/2 (2l71) _ q(2l))7A71/2(q(2m71) _ q(2m))>
L
2L , 2
= a1 oy 2 e
1=1 1<i<m<L
by (6), the constraint ||z|| = 1 is equivalent to (8). Meanwhile, since

L
Z AZ chc (2l 1) q(2l))7 (q(2m—1) _ q(2m))> — 22612
=1

Lm

by the orthonormal property of the vectors ¢(*) and

IAZ2 = Y e (A2(2 7D — g0), A/2(g2m 1) gz
l,m
L
- 0Ydr Y an
=1 l—m==1
by (7), we have
1o e 1 1 )
I =0 = 1= 2z, Az + olIAs]
5 1 &
= g2ty a-a
=1 1=2
and thus the inequality ||(I — $A)z||? < 1 is equivalent to (9). O

Theorem 4. The inequality (9) subject to the constraint (8) holds for any positive
integer L.

Proof. Define two functions f(c) and g(c) by

L 11
gle) = chflfﬁ—z Z CiCrm-

=1 1<l<m<L
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We will use the method of Lagrange multipliers to show that f(c) > % subject to
the condition g(c¢) = 0. The constrained minimum occurs at points ¢ such that

Vef +AV,eg = 0 for some A. The equation can be expressed by
1 1
(21 — 5R+ A2 - ZS))C =0

or equivalently

1 A
(5R+ LS)C— 2(1+ N,
where
0 1 0 1 1
r=|t © ands= |1 © L
0 1 T |
1 0 1 - 1 0

A matrix X is called centrosymmetric if XJ = JX, where J is the square matrix
with 1 on the counterdiagonal and O elsewhere. Since two matrices R and J are
symmetric and centrosymmetric, the equation (%R-l—%S)C = 2(14+M\)cimplies that ¢
is an eigenvector of the symmetric centrosymmetric matrix %R—i— %S . According to
[1], such a vector c is either symmetric (that is, c41-r = ¢, forall k =1,...,L/2)
or skew symmetric (that is, cp 41, = —¢i for all k =1,...,L/2).

Case 1: Assume that L is a power of 2. In the ensuing computations, we will
use the following results (explicitly or implicitly): for any even integer M,

M2 . .
Z - l:/l ct, when c is skew symmetric
CiCm M/2 o . .
L <im<M =1 G T4 1<cm<nrj2 GCm, When c is symmetric
: : . . . L/2
When c is skew symmetric, the constraint g(c) = 0 is equivalent to ), -/ =1

and the inequality f(c) > % is equivalent to 2 ZZLZ/QQ 10 — C%/Q < 1. Since

L/2 L/2—1 L/2

2 2 2 2
2ch_1cl—cL/2§c1 +2 Z q §2ch,
1=2 1=2 =1

the inequality f(c) > % is true for any c¢ such that g(c) = 0. Meanwhile, when c is
symmetric, the constraint g(¢) = 0 is equivalent to

L/2
1 s 2L+1
(10) (L - 5) E G =g +2 E ClCm.-
1=1 1<l<m<L/2

Using the identity Zlez c_1c = 02L/2 + 2Zf:/§ c—1c;, we can show that the in-
equality f(c) > % is expressed by

L/2 ] L/2 4
220?—5 ci/2+2ch,1cl 23.
1=1 1=2
Moreover, since
L/2 L/2 L/2 L/2 L/2

22612—% c%/2+2261_1cl 222612—%26%:%20127
1=1 1=2 1=1 1=1 =1
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it is enough to show that ), /12 ¢? > 1 subject to the constraint (10). Now we have
another minimization problem with constralnts. Using the method of Lagrange
multipliers and the results in [1] again, the vector ¢ of size L/2 is either symmetric
or skew symmetric. When c¢ is skew symmetric, the constraint (10) is equivalent to
ZlL/lQ ¢? = % and the inequality /7 ¢2 > 1 is just ZlL/f ¢ > 5. Thus, the
inequality subJect to the constralnt is clear. In the case that c is symmetric, we

need to show Zz 1 cl >4 5z when ¢ satisfies that

L/2?
g Z 2L+1 e Z e

1<I<m<L/22
We can repeat this process. That is, assume that we want to show the inequality

L/Qn

(11) Z &> o

subject to the constraint

L/2’IL
on 1 , 2L+1
(12) (L — B) ) Z c = W + 2" Z CiCm-
=1 1<l<m<L/2n
n+1
For a skew symmetrlc ¢, the constraint is 2 ¢? = 54— and thus the inequality
l 1 = onF
lL:/ 12 ¢} > 5 is clear. For a symmetric c, the constraint above is equivalent to
L/2n+1
gntl _ ] , 2L+1 )
(L="—5—) >, d="gn +2" >, acm
1=1 1<i<m<L/2n+1
n n+1
and the inequality Zle/lz > 2” is just ZL/Q > 2% Consequently, by

induction on n, it is enough to find a positive integer n such that the inequality
(11) holds for all ¢ satisfying (12). Let L = 2P. Then, when n = p, the inequality
(11) is equivalent to 2Pc? > 1 and the constraint (12) is expressed by

»_1 , 1

P _ —
(2 5 )cl—l—|—2p+1.

The inequality subject to the constraint 2P¢? > 1 is clear by the following argument;:

-1

1
A4lt——>1

D2
2er = op+1 =

Case 2: Assuming that L is an odd integer, we will show that f(c) > %
subject to the condition g(¢) = 0, where f,g are defined in the beginning of
this proof. Let L = 2u + 1. In the case that ¢ is skew symmetric, we have
> i<iem<r ClCm = — > 1 ¢; and thus the constraint g(c) = 0 is equivalent to
>oy ¢ = 1. Moreover, since ZIL:Q c—1c =2y, c—1¢, the inequality f(c) > %
is expressed by 222;2 ¢i—1¢; < 1, which is clear on the constraint. Now consider
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the symmetric case. In this case, using the following identities

u u
Soaem = Y od+4 D acm+2un Y a,
=1

1<l<m<L 1<li<m<u =1
L u+1
E c-1cp = 2 E c—1c,
=2 =2

we can show that the inequality f(c) > % is equivalent to

u 2 u+1 4
22012 "‘rCZJrl - chl,lcl > g
=1 =2

Moreover, by the following argument
u+1

u
2
220124—03“ - 3ch_1cl
=1 =2
- 2, 2 Lo oo - 2
2201 +Cuy1 — g(cu+1 +2201)
=1 =1

8 4
= 5 ZC% + 5934—17
=1
it is enough to show that

l 1 1
(13) Zc% + §c§+1 >3
=1

Y

subject to the constraint g(c) = 0 which is equivalent to

Loy o 1 4 2 -
(14) (2_f)l_zlcl+cu+1:1+ﬁ+f Z clcm+zcu+1l_zlcl.

1<i<m<u
Let s =Y., ¢ and r = ;" ¢?. Then, the constraint (14) can be expressed by
21 —2pcyt1+q =0, where p = %s and g = %(r—i— %) — %52. Since p++/p? — ¢
are the roots of the quadratic equation above, we have cfH_l =2p% —q+2/p? — q.
Therefore, the inequality (13) is equivalent to

1 1
r+pt - gaEpVr —a> g,

where p? — ¢ > 0. Plugging p = %s and q = %(r + %) — %82, the inequality
above is expressed by

2 2
(1+21L)52+;L+i;22\/(1+21L)s2 ;—L+ifg.
Since the inequality is true by the relationship between arithmetic mean and geo-
metric mean, the case that L is odd is solved.
Case 3: Finally, we consider the case L = 2Pq, where ¢ > 1 is odd. Substituting
n =p in (11) and (12), it is enough to show that

q
1

15 2 >
(15) ?:1 a =5
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when

2P — 1
(16) (2Pq — ZCZQ = 2p+1 + 2P Z ClCm.-

=1 1<l<m<q

Let ¢ = 2r + 1. When c is skew symmetric, (15) is 23>°,_; ¢} > 55 and (16) is

Z;Zl clz = 2p+1 Thus the inequality is clear. Meanwhile, if ¢ is symmetric, then
(15) is

T

1, 1
(17) ch + = 9 T‘+1 2 2p+1
=1
and (16) is
Ptlg —2p 41
(2PF1g — 27+t 4 1) Z —q e,
1 T
(18) = aF op+1 + 27 +? Z citm + 2p+1cr+1 ch'
1<l<m<r =1

Let £ = Y, and ¢ = >_,_,¢}. Then, the constraint can be expressed by
Ciyq — 2ac, 41 + B =0, where

2rt1
Y S TN
5 = 4L +2 o 2L +1 s e
2L —2041° 22(2L—2041) 2L -2 417

Plugging ¢?,, = 2a? — 8 & 2ay/a? — 3, we can show that the inequality (17) is
expressed by

22 H1e2 4 oPtl(of 4+ 1)¢2 4 2P(2L — 2P + 1)(2p+1 —()

— Q)+ (2L — 27 + 1)

> 2\/22p+1§2 [2p+1(2L +1)62 +2P(2L — 27 + 1)(2”1 2p1+1 —<)
Let X = 2212y = 2PF1(20+1)¢2+2P(2L—2P+1) (55 —(), and Z = (2L—2P+
1)2(52 — (). Then the above inequality is expressed by X +Y > 2/X (Y + Z). If

¢ > 557, then the inequality (17) is clear. Thus, we may assume that 5t —¢ > 0.

In this case, all of X, Y, and Z are nonnegative. The following argument shows

that the desired inequality X +Y > 2,/ X (Y + Z) holds:

X+Y>2X(Y +2)
—= (X-Y)?>4XZ
2
= 284G -0| 28 (-0

1
op+1

= (26 —Q)P =0
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case, the error satisfies ;1 = (I — A)(I — CA)e;, where C = PA;'PT. Consid-
ering post-smoothing only, the equation for the error becomes e; 11 = (I —CA)(I —
1A)e;. Since

We have shown that ||e;j41]|a < %HejHA using post-smoothing only. In that

(= CAYT— Al = [JAY2(I — CAYT — 3 A) A7)

= |- APeA) (I - L)

1

= = AT - AZCA)T|
1

= =AU - AVZCA?)|

= (- (AT - CA)La,

we have the same relation ||e;11||a < %H%‘HA for post-smoothing only. Mean-

while, in the case of pre- and post-smoothing, the error satisfies e;11 = (I —
1A)(I — CA)Y(I — +A)e; and thus ||ej1]|a < ollej|[a, where o = [|(I — LA)(I —
AY2CAY?)(I—1A)||. The authors in [3, Theorem 4] proved o < \/g, but numer-
ical computations suggest the bound o < % The following simple argument shows
o< % for pre- and post-smoothing (rather than showing the sharp bound o < 1):

Since the matrix (I — +A4)(I — AY/2CAY?)(I — 1 A) is symmetric, its 2-norm is the
spectral radius of the matrix. Thus,

o = (I~ AT~ APV — L A))
=PI AP APOA)
< T - AP - AP0A)|
< AU — AT — A7)
Furthermore, since ||I — A[| = p(I — $A) = maxi<p<n 5(1 + cos 397) < 1,

o < |I(T— JANI — AY2CAY2)| <

S-
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