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Abstract

We show that a pairwise aggregation-based algebraic 2-grid method, applied to the linear system
Ax = b arising from a 1D model problem for Poisson’s equation with Dirichlet boundary conditions,
reduces the A-norm of the error at each step by at least the factor

√
5/8. We then generalize this

result to problems with the same eigenvectors but different eigenvalues from the model problem,and
also to problems with different eigenvectors that are especially well-suited to the method. Finally,
we discuss the reduction in the A-norm of the error when the 2-grid method is replaced by a
multigrid V-cycle and indicate that conjugate gradient acceleration is required in order to improve
the degraded performance of multigrid V-cycle.

1 Introduction

Recently aggregation-based algebraic multigrid methods with piecewise constant prolongation have
received considerable attention. See, for instance, [3, 4]. Although these methods may require extra
Krylov space iterations on coarse grids in order to perform well in a multigrid setting [2], their relative
simplicity compared to other algebraic multigrid methods makes them attractive for analysis.

In [3] it was shown that a 2-grid pairwise aggregation-based method applied to Poisson-type prob-
lems with periodic boundary conditions gave rise to an iteration matrix with spectral radius (and hence
asymptotic convergence rate) 0.5. In this paper we consider matrices related to the 1D model problem
for Poisson’s equation with Dirichlet boundary conditions, and instead of bounding the asymptotic
convergence rate, we derive an estimate of the amount by which the A-norm of the error is reduced at
each step. We show that for a 2-grid method the reduction in the A-norm of the error at each step is
at least

√
5/8. Numerical computations indicate that the actual worst-case reduction factor is

√
2/2,

and we indicate where the overestimate occurs in our proven result. An interesting point about meth-
ods with piecewise constant prolongation is that they may require more careful analysis than standard
multigrid methods with, say, piecewise linear prolongation. Even for model problems, the coarse grid
solve does not annihilate or nearly annihilate any eigencomponents of the error, and, inevitably, with
piecewise constant prolongation the fine grid approximation obtained after the coarse grid solve has
high frequency error that was not there previously.

2 Analysis of a 2-Grid Pairwise Aggregation Method

We first consider the linear system Ax = b arising from Poisson’s equation in one dimension with
Dirichlet boundary conditions. Thus A is an N ×N tridiagonal matrix with 2’s on the main diagonal
and -1’s on the first sub and super-diagonal. (We ignore the scale factor 1/h2 that would arise in an
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actual finite difference scheme with spacing h = 1/(N+1). Constant factors of this sort will not make a
difference in the scheme that we analyze). Assume that N is even, and define the N×N/2 prolongation
matrix P by P2l−1,l = P2l,l = 1, l = 1, ..., N/2, with all other entries of P being 0. When P is applied
to a vector v of length N/2, the result is a vector Pv of length N with each entry of v appearing twice.
This is the piecewise constant prolongation operator. Define an N/2×N/2 matrix AC by AC = PTAP .
This is the usual Galerkin definition of the “coarse grid matrix” in a geometric multigrid method. It is
easily seen that AC is also a tridiagonal matrix with 2’s on its main diagonal and -1’s on the first sub
and super-diagonal.

Starting with an approximate solution xj , we consider the effect of a “coarse grid” solve followed
by a damped Jacobi iteration with damping factor of 2. First the residual rj = b − Axj is computed.
Then the residual after the coarse grid correction and post-smoothing is

rj+1 = (I − 1

4
A)(I −APA−1

C PT )rj

Multiplying by A−1, we obtain the equation for the error ej+1 ≡ A−1b− xj+1 ≡ x− xj+1:

ej+1 = (I − 1

4
A)(I − PA−1

C PTA)ej(1)

The numerical computation exhibits that the spectral radius of the iteration matrix (I − 1
4A)(I −

PA−1
C PTA) in (1) is 0.5, suggesting that asymptotically the 2-norm of the error will be reduced by a

factor of 2 at each step. Because the iteration matrix is not symmetric, however, this does not imply
that the 2-norm of the error is reduced by this factor at every step. For N = 64, for example, the
2-norm of the matrix in (1) was computed to be 20.36 and for N = 128 it was computed to be 40.74.
This means that the 2-norm of the error may grow before eventually decreasing at the asymptotic rate
determined by the spectral radius of the iteration matrix. If, instead, one computes the A-norm of the
iteration matrix,

‖G‖A ≡ max
‖v‖A=1

‖Gv‖A = max
‖A1/2v‖A=1

‖A1/2Gv‖2(2)

= max
‖w‖2=1

‖A1/2GA−1/2w‖2

one finds that it is always less than
√

2/2 and seems to approach
√

2/2 as N → ∞ . This is the best
that one could hope to prove, and we will prove a slightly weaker result - that the A-norm of the error
is reduced by at least the factor

√
5/8 at each step. Multiplying the matrix in (1) by A1/2 on the left

and by A−1/2 on the right, we are interested in the quantity

σ ≡ ‖(I − 1

4
A)(I −A1/2PA−1

C PTA1/2)‖2(3)

which is an upper bound on the factor by which the A-norm of the error is reduced at each step. From
here on ‖ · ‖ without a subscript will always denote the 2-norm, while the A-norm will still be denoted
as ‖ · ‖A. From the approach in [1][pp. 183-187] and the discussion followed, and letting C = PA−1

C PT

, we can write

σ ≤ max
‖y‖=‖I−A1/2CA1/2‖
y∈R(I−A1/2CA1/2)

‖(I − 1

4
A1/2IA1/2)y‖(4)
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where R(·) denotes the range. It is shown in [1][Theorem 12.1.1] that ‖I − A1/2CA1/2‖ = 1 and that
A1/2 times the range of I −A1/2CA1/2 is the null space of PT . Thus

(5) σ ≤ max
‖y‖=1

A1/2y∈N (PT )

‖(I − 1

4
A1/2IA1/2)y‖ = max

‖y‖=1

A1/2y∈N (PT )

‖(I − 1

4
A)y‖

The eigenvalues λk and eigenvectors of A

(6) λk = 2− 2cos

(
kπ

N + 1

)
k = 1, . . . , N.

(7) q
(k)
j =

√
2

N + 1
sin

(
jkπ

N + 1

)
j, k = 1, . . . , N.

where q
(k)
j is the jth component of the kth eigenvector. Then we can write the eigendecomposition

of A as A = QΛQT , where Λ is the diagonal matrix of eigenvalues in (6) and Q is the orthogonal
matrix whose columns are the eigenvectors in (7). Furthermore, the eigenvalues of A have the following
property:

max
i=1,...,N/2

(1− 1

4
λi)

2 = (1− 1

4
λ1)2 =

(
1

2
+

1

2
cos

π

N + 1

)2

< 1(8)

max
i=N/2+1,...,N

(1− 1

4
λi)

2 = (1− 1

4
λN

2 +1)2 =

(
1

2
+

1

2
cos

(N/2 + 1)π

N + 1

)2

<
1

4

Using eigendecomposition of A the equation (19) can rewritten as

(9) σ ≤ max
‖QT y‖=1

QT y∈Λ−1/2QTN (PT )

‖(I − 1

4
Λ)QT y‖

Further, using inequalities (8), the square of the right hand side of the above equation can be written
as a sum of two half parts:

‖(I − 1

4
Λ)QT y‖2 =

N
2∑
i=1

(1− 1

4
λi)

2(QT y)2 +

N∑
i= N

2 +1

(1− 1

4
λi)

2(QT y)2(10)

≤
N
2∑
i=1

(QT y)2
i +

1

4

1−
N
2∑
i=1

(QT y)2
i

(11)

It hopes that the condition QT y ∈ Λ−1/2QTN (PT ), together with ‖QT y‖ = 1, ensures that, for any

N , the sum
∑N/2
i=1 (QT y)2

i is bounded above by some number r < 1, then σ2 ≤ 3
4r+ 1

4 , which is strictly
smaller than 1 and the bound is independent of N . In going from equality (10) to inequality (11),
however, one may lose something and be unable to recover the optimal bound for σ2. We will show
that r ≤ 1

2 , from which it follows that σ ≤
√

5/8.

Now, the null space of PT is the span of the set of vectors whose only two nonzero components are
a 1 in position 2l−1 and a −1 in position 2l, l = 1, ..., N/2. Since the matrix Q is symmetric, the space
Λ−1/2QT · N (PT ) in (9) can be written as the span of the vectors

(12) Λ−1/2(q(1) − q(2)) , Λ−1/2(q(3) − q(4)) , . . . , Λ−1/2(q(N−1) − q(N))
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Let K be the N by N/2 matrix whose columns are the vectors in (12). For any nonzero vector QT y in
the span of the columns of K,

(13) QT y = Kv =

(
K1v
K2v

)

If one can show that ‖K1v‖2 ≤ ‖K2v‖2 for any v, it will imply that
∑N/2
i=1 (QT y)2

i ≤
1

2
.

We first compute inner products of the vectors in (12) and for this the Lagrange trigonometric
identities

(14)

p∑
i=1

cos(iθ) = −1

2
+

sin((p+ 1
2 )θ)

2 sin( θ2 )

(15)

p∑
i=1

sin(iθ) =
1

2
cot(

θ

2
)−

cos((p+ 1
2 )θ)

2 sin( θ2 )

will be needed. The result of the computations gives the following lemma:

Lemma 1. Let K be the N by N/2 matrix whose columns are the vectors in (12). Let K1 consist of
the first N/2 rows of K and let K2 consist of the last N/2 rows of K. Then

KTK = KT
1 K1 +KT

2 K2 = I − 1

N + 1
eeT

where e is the (N/2)-vector of 1’s,

(KT
2 K2)l,m =

(−1)l+m

2(N + 1)
csc

(
(l +m− 1

2 )π

N + 1

)
, l 6= m

(KT
2 K2)l,l =

1

2
+

1

2(N + 1)
csc

(
(2l − 1

2 )π

N + 1

)
(KT

1 K1)l,m = − 1

N + 1
+

(−1)l+m+1

2(N + 1)
csc

(
(l +m− 1

2 )π

N + 1

)
, l 6= m

(KT
1 K1)l,l =

1

2
− 1

N + 1
− 1

2(N + 1)
csc

(
(2l − 1

2 )π

N + 1

)

The ratio of the two norms ‖K1v‖, ‖K2v‖ in equation (13)

vTKT
1 K1v

vTKT
2 K2v

is maximized by an eigenvector v corresponding to the largest eigenvalue of (KT
2 K2)−1(KT

1 K1). Thus
we wish to show that the spectral radius ρ((KT

2 K2)−1(KT
1 K1)) is less than 1. By the theory of P-regular

splitting [6] and result in Lemma 1, we have the desired result as in Lemma 2:

Lemma 2. With K, K1 and K2 defined as in Lemma 1, we have

ρ((KT
2 K2)−1(KT

1 K1)) < 1
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With Lemma 1 and Lemma 2, we have now proved that any vector QT y that has norm one and lies in
the span of the vectors in (12) will be such that the sum of squares of its first N/2 components is less
than 1/2, and this proves the following theorem:

Theorem 3. The 2-grid pairwise aggregation method corresponding to the iteration matrix in (1)
reduces the A-norm of the error at each step by at least the factor

√
5/8.

�

We have analyzed a method (1) that uses only post-smoothing, while the analysis in [3] used pre-
and post-smoothing. In this case, equation (1) for the error is replaced by

ej+1 = (I − 1

4
A)(I − PA−1

c PTA)(I − 1

4
A)ej(16)

Again, one can study this problem numerically by simply computing the eigenvalues and different norms
of the matrix in (16) for various values of N . Note, however, that the A-norm of this matrix is the
2-norm of the symmetric matrix

A1/2(I − 1

4
A)(I − PA−1

c PTA)(I − 1

4
A)A−1/2(17)

= (I − 1

4
A)(I −A1/2PA−1

c PTA1/2)(I − 1

4
A)

This matrix has the same eigenvalues as the one in (16), so its 2-norm will be the same as the spectral
radius of the matrix in (16). This spectral radius was again by numerical calculation to be less than
0.5 and approaching 0.5 as N increased, so in this case one can expect a reduction in the A-norm of
the error by at least a factor of 2 at each step. Using the derivation and arguments used in obtaining
Theorem 3, we can prove the following theorem:

Theorem 4. Let the error ej+1 at step j + 1 satisfy (16). Then

‖ej+1‖A ≤
√

17

32
‖ej‖A(18)

Proof : The spectral radius and hence the 2-norm of the symmetric matrix in (16) is the same as the
spectral radius of

(I − 1

4
A)2(I −A1/2PA−1

c PTA1/2)

By the same arguments used to obtain estimate (19) and (9), one can show that 2-norm, and hence the
spectral radius, of this matrix is bounded above by

(19) max
‖y‖=1

A1/2y∈N (PT )

‖(I − 1

4
A)2y‖ = max

‖QT y‖=1

QT y∈Λ−1/2QTN (PT )

‖(I − 1

4
Λ)2QT y‖

Arguing as in (10), we can write

‖(I − 1

4
Λ)2QT y‖2 =

N
2∑
i=1

(1− 1

4
λi)

2(QT y)2 +

N∑
i= N

2 +1

(1− 1

4
λi)

2(QT y)2

≤
N
2∑
i=1

(QT y)2
i +

1

16

1−
N
2∑
i=1

(QT y)2
i

(20)

Since it was shown that the conditions QT y ∈ Λ−1/2QTN (PT ) and ‖QT y‖ = 1 imply that the first sum
in (20) is bounded by 1/2, it follows that the quantity in (20) is bounded by 1/16+(15/16)·(1/2) = 17/32.

�
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One might also consider only pre-smoothing, and the equation for the error becomes

ej+1 = (I − 1

4
A)(I − PA−1

c PTA)ej(21)

In this case we again found numerically that the spectral radius of the iterartion matrix was about 0.5,
the A-norm of the matrix was about

√
2/2 for large N and the 2-norm of the matrix was only slightly

larger than with both pre- and post-smoothing. The proven and computed results of this section are
summarized in the table 1.

Table 1: Spectral radius and norms of the iteration matrix for a 2-grid aggregation method using damped Jacobi
smoothing with damping factor 2.

Multigrid Iteration Matrix for damped Jacobi smoothing with factor 2

spectral radius 2-norm A-norm

post-smoothing only 0.5 > 1

√
2

2
(proved ≤

√
5

8
)

pre-smoothing only 0.5 > 1

√
2

2

pre- and post-smoothing 0.5 > 1 0.5 (proved ≤
√

17

32
)

3 Generalization to Matrices with the Same Eigenvectors but
Different Eigenvalues

The analysis in the previous section holds when the 2-grid pairwise aggregation procedure is applied to
any symmetric positive definite linear system Ãx̃ = b̃. Inequality (10) holds provided the eigenvalues
λ̃i of Ã satisfy

0 < λ̄i < 8, i = 1, ...,
N

2
; and 2 < λ̄i < 6, i =

N

2
+ 1, ..., N(22)

This type of eigenvalue distribution, in which the ratio of the largest to the (N/2 + 1)st eigenvalues is
O(1) independent of N is critical to the performance of any 2-grid-type method, as the coarse grid solve
can, at most, reduce half of the eigencomponents and the relaxation scheme must effectively reduce the
others.

Suppose matrix Ã have the same eigenvectors as the matrix A of the previous section but different
eigenvalues satisfying (22). The property that allowed us to prove σ ≤

√
5/8 was that the matrix

H = KT
2 K2 −KT

1 K1 was positive definite, since this implied that after the coarse grid solve the error
vector would have less than half of its weight in the direction of eigenvectors corresponding to the
smaller eigenvalues λ1, ..., λN/2. Suppose Ã = QDΛQT , where Q and Λ are as before and D is a
diagonal matrix with positive diagonal entries. Then the matrix K in Lemma 1 is replaced by a matrix
K̃, whose columns are

(DΛ)−
1
2 (q(1) − q(2)), ..., (DΛ)−

1
2 (q(N−1) − q(N))

Let K̃1 denote the first N/2 rows of K̃ and let K̃2 denote the last N/2 rows of K̃. Also let D1 denote
the upper left N/2 by N/2 block of D and let D2 denote the lower right N/2 by N/2 block of D. Then

K̃1 = D
−1/2
1 K1 and K̃2 = D

−1/2
2 K2. Suppose the diagonal entries of D1 are all greater than or equal
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to 1 while the diagonal entries of D2 are all less than or equal to 1. Assume also that the eigenvalues
λ̃i = diλi satisfy 22. Then

K̃2
T
K̃2 − K̃1

T
K̃1 = KT

2 K2 −KT
1 K1 +KT

2 (D−1
2 − I)K2 +KT

1 (I −D−1
1 )K1

is positive definite because it is the sum of the positive definite matrix KT
2 K2−KT

1 K1 and two positive
semidefinite matrices KT

1 (I −D−1
1 )K1 and KT

2 (D−1
2 − I)K2. Therefore, Theorem 3 holds for Ã.

Figure 1 shows the magnitudes of entries in Ã, for N = 64. Note that Ã is no longer tridiagonal
(in fact, it is dense) and the off diagonal entries have different signs. The diagonal entries seem to be
the largest, but the matrix is not diagonal dominant.

Figure 1: Surface plot of the entries of Ã for N = 64, along with the nonzeros of the prolongation matrix P̃
chosen by an automatic aggregation procedure.

It seems interesting to see what a standard algorithm for choosing aggregates would do with such
a matrix. Applying the aggregation algorithm given in [4] on matrix Ã, one sees the algorithm mostly
aggregates successive unknowns with few exception near the end of the domain, as shown on the right
hand side in the figure 1.

The spectral radius of iteration matrix (with post smoothing only) with P̃ is somewhat larger :
0.6743 instead of 0.4954 for successive pairwise aggregation. The A-norm is 0.8035 instead of 0.6277.
Still, the automatic aggregation algorithm in [4] do a reasonable job on this dense matrix Ã.

4 Generalization to matrix with the different eigenvectors, same
eigenvalues

As noted previously, when the eigenvalues of A are distributed as in (22), inequality (10) implies that
the A-norm of the error is reduced at each step by a fixed amount independent of N , provided that
any vecotr QT y with norm 1 that lies in the space Λ−1/2QT · N (PT ), where the Q is the matrix of

orthonormal eigenvectors of A, satisfies
∑N/2
i=1 (QT y)2

i , for some r < 1 independent of N . An extreme
case would be one in which pairs of successive column of QT had the same first N/2 components. In this
case r would be 0 and the A-norm of the error would be reduced by at least a factor of 2 at each step.
This corresponds to a problem in which the “coarse grid solve” completely annihilates error components
in the direction of the first N/2 eigenvectors. If s(1), ..., s(N/2) are any N/2 orthogonal vectors of length
N/2, each with norm

√
2/2, then

QT =

(
s(1) s(1) · · · s(N/2) s(N/2)

s(1) −s(1) · · · s(N/2) −s(N/2)

)
(23)

is such a matrix.
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Numerical tests with matrices Ã whose eigenvectors were the rows of QT in (23), where s(1), ..., s(N/2)

were random orthogonal orthogonal N/2-vectors with norm
√

2/2, and whose eigenvalues were either
those given in (6) or those randomly chosen in the previous section to satisfy (22), showed that the
Ã-norm of the iteration matrix using post-smoothing only was less than 0.5 and close to this value for
large N . Again the matrices were dense, with the largest entries on the diagonal, but not diagonally
dominant.

Again, the automatic aggregation procedure described in [5] was tested on these problems. Inter-
estingly, as shown in figure, the aggregates are quite different from the successive pairs used in the
analysis, and the spectral radius and Ã are very close to 1: 0.9982 for this particular problem.

Figure 2: Nonzero entries of P̃2

5 Multigrid

When the 2-grid method of the previous section is replaced by a multigrid method, the bound (4) on
the reduction factor for the A-norm of the error is replaced by

σ ≤ max
‖y‖=‖I−A1/2C̃A1/2‖
y∈R(I−A1/2C̃A1/2)

‖(I − 1

4
A)y‖(24)

where C̃ = PÃ−1
C PT and Ã−1

C is an approximation to A−1
C resulting from work on coarse grids. As an

example we consider a 3-grid V-cycle method with Jacobi pre and post-smoothing at each grid level
with damping factor 2. We can derive the approximation Ã−1

C to A−1
C :

(25) Ã−1
C =

1

4
I +

1

4
(I − 1

4
AC) + (I − 1

4
AC)PCA

−1
CCP

T
C (I − 1

4
AC)

where PC denote prolongation from the coarsest grid to next finer level and ACC = PTCACPC . If more
levels are used, then A−1

CC in (25) can be replaced by a similar formula for Ã−1
CC , etc., until the coarsest

level is reached.

Unfortunately, as noted elsewhere [4, 2], performance of the aggregation method degrades as the
number of grids is increased. For a fixed number of grids, the spectral radius and A-norm of the
iteration matrix still appear to be bounded below 1 by an amount of that is independent of N , but
that amount decreases with the number of grid levels used. Table 2 shows computational observation
of these quantities for large N using 2, 3, 4, or 5 grid levels. The spectral radius of the iteration matrix
appears to be equal to 1− 1/2p−1, where p is the number of grid levels.

6 Conjugate gradient acceleration

The degradation of performance of aggregation multigrid V-cycle can be improved by using conjugate
gradient (CG) acceleration where multigrid method is used as a preconditioner. The convergence
improved significantly, but the number of CG iteration increases as the grid size (and number of grid
level) increases. A numerical result is shown in table 3.
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Table 2: Spectral radius and A-norms of the iteration matrix for a multigrid aggregation method using damped
Jacobi smoothing with damping factor 2.

Multigrid Iteration Matrix for damped Jacobi smoothing with factor 2

spectral radius A-norm
2-grid 0.5 = 1/2 0.7071
3-grid 0.75 = 3/4 0.7906
4-grid 0.875 = 7/8 0.8839
5-grid 0.9375=15/16 0.9395

Table 3: CG acceleration with multigrid V-cycle preconditioner

CG acceleration with multigrid V-cycle preconditioner

N No. of iteration κ = λmax

λmin

64 (2-grid) 7 1.99
128 (3-grid) 10 3.97
256 (4-grid) 15 7.92
512 (5-grid) 21 15.83
1024 (6-grid) 30 30.71
2048 (7-grid) 42 61.37

On the other hand, if multigrid W-cycle is used as a preconditioner of conjugate gradient method, a
preliminary numerical result shown in table 4 exhibits that the number of CG iterations hardly grows
for N being large. The operation count grows as O(N logN), which is much mild than the V-cycle CG
method.

Table 4: CG acceleration with multigrid W-cycle preconditioner

CG acceleration with multigrid V-cycle preconditioner

N No. of iteration
64 (2-grid) 6
128 (3-grid) 8
256 (4-grid) 9
512 (5-grid) 10
1024 (6-grid) 10
2048 (7-grid) 10
4096 (8-grid) 11

7 Conclusion

In this paper, we have derived the bounds for the reduction number for two grid method with pairwise
aggregation method and damped Jacobi smoothing with damping factor 2. The analysis can be extended
to a dense matrix Ã with same eigenvectors as A and eigenvalues distribution satisfying (22) and a dense
matrix Ã2 with the same eigenvalues as A and eigenvectors satisfying an extreme case in (23).

The performance of aggregation-based multigrid V-cycle method appear to be degraded as the num-
ber of grid levels increases. Conjugate gradient acceleration improves the performance of aggregation-
based multigrid, but the number of cycles increases significantly as the size of the problem increases. A
better remedy is to use W-cycle multigrid as a preconditioner for conjugate gradient iteration.
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