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A stochastic multi-scale based approach is presented in this work to detect signatures of micro-
anomaliesfrom macro-level response variables. In this work, we particularly consider polycrys-
talline materials, e.g., Aluminium. Thus, by micro-anomalies, we refer to micro-cracks of size10–
100 µm, while macro-level response variables imply, e.g., strains, strain energy density of macro-
level structures of typical size often varying at the order of 10–100 m (e.g., an aircraft wing). For
different material and systems (e.g., sand and geo-mechanical systems), the sizes of micro- and
macro- level scales may, of course, be significantly different. The micro-anomalies in the context of
present work are not discernible by the naked eye. Nevertheless, they can cause catastrophic fail-
ures of structural systems due to fatigue cyclic loading that results in initiation of fatigue cracks.
Analysis of such precursory state of internal damage evolution, before a macro-crack visibly ap-
pears (say, size of a few cms), is beyond the scope of conventional crack propagation analysis, e.g.,
fracture mechanics. The present work is proposed to addressthis specific concern, and is an ex-
tension of an earlier work by Das2,3. In the earlier work, macro-level (continuum) constitutive
properties (e.g., constitutive elasticity tensors) of heterogeneous materials were constructed within
a probabilistic formalism based on random matrix theory, maximum entropy principle, and prin-
ciples of minimum complementary energy and minimum potential energy. The effects of micro-
cracks are now incorporated into the present formulation byextending the previous work. Distinct
differences are observed in the macro-level response characteristics depending on presence or ab-
sence of micro-cracks. Such stochastic information is usedin the framework of optimization to
detect the damaged region, consisting of microcracks, fromexperimentally obtained macroscale
strain observations. Several schemes based on both heuristic and traditional optimization tech-
niques are proposed and tested to detect damage due to microcracks depending on the availability
of information. The proposed work is likely to be useful in health monitoring of structural systems
in, but not limited to, aerospace, mechanical, and civil engineering applications.

I. Introduction

Analysis of structural systems characterized by multiple scales is a challenging task. Purely determinis-
tic models or purely stochastic models dealing with such problems have their own drawbacks. The former
results in point-estimates of model predictions that lack the capability of rigorously predicting scatters typi-
cally observed in experimental measurements, while the latter could violate certain governing physical laws
that may be regarded as fundamental principles by the scientific community. A better approach would,
therefore, be to adopt a physics-based stochastic approachthat duly respects the fundamental principles of
general deterministic formalism while accounting for the effects of scatters in predictions. The current work
fits this niche.

In this work, a structural system of interest is conceptually envisaged as characterized by two distinct
length scales: amicro-scale regime (0.001 mm to 1 mm) which refers to the microstructure of polycrys-
talline materials (e.g., Aluminium) characterized by grain morphology, inclusions or cracks (∼ 0.1 mm),
and amacro-scale regime (>> 1mm) which alludes to the original structural system (e.g, anaircraft wing)
that must be modeled by incorporating the effects of micro-structural information for the purpose of reli-
able prognosis. The micro-structural information is additionally presumed to be high-fidelity deterministic
information which is available only in limited amount. Thisis practically consistent since it often takes
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several weeks or months to experimentally obtain a micro-structural image as shown, e.g., in Figure2a. The
macroscopic (continuum) material properties (in particular, constitutive elasticity tensors) are treated here as
stochastic material properties to account for the effects of underlying micro-structural fluctuations since it is
impractical and intractable to incorporate such effects deterministically for the entire structural system. The
link between micro- and macro- scales are two matrix-valuedbounds of the macroscopic constitutive elas-
ticity tensor6,7. Let the matrix representation of the fourth-order macroscopic constitutive random elasticity
tensor be denoted byC(M), and its upper and lower bounds, respectively, byC(M)

u andC(M)

l . These bounds
can be calculated from deterministic micro-mechanical analyses of a small microscopic heterogeneous ma-
terial volume element,V (m). Here, the superscripts,(M) and (m), imply association, respectively, with
macro-scale and micro-scale. In the ensuing discussion, these superscripts, however, may be suppressed for
the sake of simplified notations if no ambiguity exists. It will be evident from the context whether a variable
under discussion is associated with the micro-scale or macro-scale. It can be shown thatC ≡ C(M), in
general (regardless of the fact whetherV (m) contains any micro-cracks or not), satisfies the following6,7,

Cl ≤ C ≤ Cu a.s. (1)

Here,Cl ≡ C(M)

l ∈ M
+
N(R) andCu ≡ C(M)

u ∈ M
+
N(R) are matrix-valued bounds, andM+

N(R) represents
the space of allN × N real symmetric and positive-definite matrices. Specific value of N depends on
the problem of interest. In eq. (1), the inequalities should be interpreted in the positive-definite sense (for
instance,Cl < C implies that(C − Cl) is a positive-definite matrix a.s.), and a.s. (almost surely, i.e., with
probability one) should be measured with respect to (w.r.t.) the joint probability measure of all the associated
random variate(s) characterizing the uncertainties that,in the present work, model the effects of underlying
micro-structural features.

It should be noted that ifV ≡ V (m) contains any micro-cracks, then the resulting matrix-valued bounds,
C

(d)
l ≡ C(M,d)

l andC(d)
u ≡ C(M,d)

u , are certainly different from the corresponding bounds,C
(h)
l ≡ C(M,h)

l

andC(h)
u ≡ C(M,h)

u , obtained fromV without any micro-cracks. Under very general conditions (e.g., traction
acting on the inner surface of micro-cracks is zero), it can be further shown that7,

C
(d)
l < C

(h)
l , andC(d)

u < C(h)
u , (2)

where the inequalities must again be interpreted in the positive-definite sense. Eq. (2) shows remarkably
strong theoretical results that clearly reflect the weakening effects of material stiffness because of the pres-
ence of micro-cracks. Finally, it should be noted that eq. (1) implies S = C−1 is similarly bounded by
Sl = (Cu)

−1 andSu = (Cl)
−1, i.e.,Sl ≤ S ≤ Su a.s.5. Similar argument holds for eq. (2), i.e.,S(h)

l < S
(d)
l

andS(h)
u < S

(d)
u .

By having recourse to the principle of maximum entropy (MaxEnt), the probability density function
(pdf) of the matrix-variate random constitutive elasticity matrix, C, is subsequently estimated2,3. While
the pdf based on a healthy microscopic material volume element is supported over the set{C ∈ M

+
N(R) :

C
(h)
l ≤ C ≤ C

(h)
u }, the pdf associated with a damaged microscopic material volume element containing

micro-cracks is supported over{C ∈ M
+
N(R) : C

(d)
l ≤ C ≤ C

(d)
u }. Use of these pdfs produces significantly

different probabilistic and statistical features for certain energy-based macroscopic response variables, thus
reflecting the signatures of micro-anomalies in the underlying microstructures. The current work utilizes
such apriori calibrated deterministic and heuristic information along with experimentally obtained informa-
tion, within the scope of an optimization module, to detect the region of damage. To demonstrate this claim,
an example problem to identify the signature of micro-cracks is presented in the current work. The relevant
theory, numerical schemes, and results are presented in thefollowing sections.

II. Micro-mechanical analysis

The upper bound,Cu, is evaluated from the results of finite element (FE) analysis of V subjected to
kinematic uniform boundary condition (KUBC) given byu(m)(x) = εo x,∀x ∈ ∂V (m), where∂V (m)

represents the boundary ofV andu(m)(x) represents the prescribed displacement vector determinedby
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the values of a constant symmetric second-order strain tensor εo. By abusing notation (for the sake of
simplification of notation), we would, however, denote the vector-valued representation (Voigt notation) of
εo also byεo in the following discussion. It will be clear from the context whether we are referring to the
second-order strain tensorεo or its Voigt representation. It can be then derived that6,

〈σ(m)〉V = Cu εo, (3)

in whichσ(m)(x) is the Voigt representation of the second-order tensor-valued stress field overV , and〈·〉V ,
in the absence of micro-cracks, represents the volume average overV , for example,

〈σ(m)〉V :=
1

V

∫

V
σ
(m)(x) dx

It can be further shown that6,

〈φ(m)〉V :=
1

V

∫

V

1

2

{

σ
(m)(x)

}T
ε
(m)(x) dx

=
1

2
〈σ(m)〉TV εo =

1

2
ε
T
o Cu εo =

1

2
〈σ(m)〉TV Sl 〈σ(m)〉V (4)

whereε(m)(x) is the Voigt representation of the second-order tensor-valued strain field overV .
The lower bound,Cl, is similarly evaluated from analysis ofV subjected to static uniform boundary

condition (SUBC) such that the applied traction vector surface density,t(m)(x), takes the following form,
t(m)(x) = σo n(x),∀x ∈ ∂V . Here,σo is a constant symmetric stress matrix andn(x) denotes the unit
vector normal to∂V ≡ ∂V (m) at x. In the following discussion, we would also useσo to denote the
second-order stress tensor and its Voigt representation for notational simplicity. It can be then shown that6,

〈ε(m)〉V = Su σo, Su = (Cl)
−1 (5)

〈φ(m)〉V =
1

2
〈ε(m)〉TV σo =

1

2
σ
T
o Su σo =

1

2
〈ε(m)〉TV Cl 〈ε(m)〉V (6)

In the presence of micro-cracks, the above discussion stillholds theoretically provided the volume aver-
age stress and strain variables,〈σ(m)〉V and〈ε(m)〉V , are appropriately re-defined7.

The bounds,C(h)
l , C(h)

u , C(d)
l , C(d)

u , now can be calculated using the stress, strain and energy averages
by solving four convex optimization problems in terms of their inverses (for better numerical conditioning)
as shown below,

min
S∈M+

N

‖(S〈σ(m)〉)− 〈ε(m)〉‖F

‖〈ε(m)〉‖F

(7)

s.t.

∣

∣

∣

∣

∣

0.5〈σ(m)〉T S 〈σ(m)〉 − 〈φ(m)〉
〈φ(m)〉

∣

∣

∣

∣

∣

< ǫ

and suitable additional constraints (if any; see Table1),

and then computingC(h)
l , C(h)

u , C(d)
l , C(d)

u per last row of Table1. Here,ǫ should be chosen a suitable small
number (say,1× 10−6). In the above formulation, the volume average notation is simplified by suppressing
the subscript in〈·〉V .

Table 1. Additional constraints, and determination of bounds from their inverses.

Case S ≡ S
(h)
l S ≡ S

(h)
u S ≡ S

(d)
l S ≡ S

(d)
u

Additional constraints None S − S
(h)
l ∈ M

+
N S − S

(h)
l ∈ M

+
N S − S

(d)
l ∈ M

+
N

S − S
(h)
u ∈ M

+
N

Output C
(h)
u = (S

(h)
l )−1 C

(h)
l = (S

(h)
u )−1 C

(d)
u = (S

(d)
l )−1 C

(d)
l = (S

(d)
u )−1
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III. Analysis of the macro-scale systems

In the absence of sufficient micro-structural information,it will be assumed here that the pdf,pC(C), of
C is uniformly distributed over C = {C ∈ M

+
N(R) : Cl < C < Cu}.

0’s

0’s0’s







tii =
√
yi,

yi ∼ G(α − (i− 1)/2), 0.5),
i = 1, . . . , N

{

tij ∼ N(0, 1),
1 ≤ j < i ≤ N

T =

S = TTT ∼ GN (α,
1
2I)

Input: N , Cl, Cu

Step 1: S1,S2 ∼ GN(
1
2(N + 1), 12I): statistically independent

Step 2: U = (S1 + S2)
− 1

2 S1 ((S1 + S2)
− 1

2 )T ∼ UN(0, I)

Step 3: C = Cl + (Cu − Cl)
1/2 U (Cu − Cl)

1/2 ∼ UN(Cl, Cu)

Figure 1. Sampling fromUN(Cl, Cu)

This is consistent with propo-
sition of the MaxEnt principle,
and will be practically useful if
the ‘gap’ betweenCl and Cu is
small. It is earlier shown that
such matrix-variate uniform distri-
bution is a special case of general-
ized matrix-variate Beta type I dis-
tribution3. Let us denote the gen-
eralized matrix-variate Beta type I
distribution parameterized bya, b,
Cu, andCl asGBI

N
(a, b;Cu, Cl).

If a = b = 1
2(N + 1), then

GBI
N
(a, b;Cu, Cl) turns out to be

the matrix-variate uniform distri-
bution supported overC and will
be denoted byUN(Cl, Cu). The
sampling scheme to generate real-
izations of C ∼ UN(Cl, Cu) is
sketched in Figure12. Analysis of
a macroscopic system can now be

carried out in a Monte Carlo fashion by samplingC from UN(C
(h)
l , C

(h)
u ) andUN(C

(d)
l , C

(d)
u ) following

certain damage initiation criteria as explained in Table2. Although in this case the exceeding of a threshold
Von Mises stress is assumed to be the criterion for initiation of damage, one may use any other general
criteria of the formF(σ, ε, C,x) ≥ Fmax, whereF may be some functional which when exceeds some
prescribed threshold valueFmax damage initiation occurs at positionx.

Table 2. Algorithm for macromechanical analysis using Monte Carlo simulation

(1) Two populations of sizeNs generated for random matricesC(h) andC(d).
(2) Initialize realization counter:j = 1.

(3) For thej-th pair of realizations,C(h)
j , C

(d)
j :

(i) Initialize iteration counterk = 1, si = 0 for each FE nodei of given meshMn,e

(ii) If si = 1 thenC(i) = C(d), or elseC(i) = C(h).
(iii) For any pointx, C(x) is linearly interpolated from the nodalC(i)’s of the element containingx.
(iv) FE problem,[K][U] = [F], is solved, where[K] is the global stiffness matrix,[U] is the nodal
displacement vector and[F] is the nodal force vector.
(v) Von Mises stressσvon(i) evaluated at the nodes.
(vi) If σvon

(i) ≥ σo
von, then setsi = 1. Setnk = number of 0 to 1 transitions in set{si}.

(vii) If nk = 0 ⇒ damage nucleation converges. Doj = j + 1 and go to (4).
Or else: Do k=k+1 and continue from (3-ii).

(4) If j <= Ns then continue from (3), or else go to (5).
(5) Postprocess to calculate and plot relevant statistics.
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IV. Detection of damage

The suggested numerical scheme to determine the region of damage are all based on an optimization
problem where the objective is to minimize the difference between the observed strainε(obsv) and the mod-
eled strainε(modl), with the decision variables being either the material points where the damage and healthy
material properties are to be allocated, or the material properties themselves, or both. The degree of avail-
ability of information will determine which scheme among those suggested will give the best performance.
For the purpose of optimization a fixed finite element (FE) meshM(nm,em) with nm nodes andem elements
is chosen. The current discussion will use the definitions given in Table3.

Table 3. Terminology used in the damage detection scheme(s)
(

C(h,x), C(d,x)
)

Material properties used to create the actual observation(x = true) and pre-
dicted by the optimization module(x = modl), respectively.

ε
(obsv,i) Observed strain field of thei-th node of meshMnm,em which is determined by

first simulating the damage evolution scheme usingC(h,true), C(d,true) on a very
fine mesh(Mno,eo : no >> nm, eo >> em), followed by interpolation of the
observed field, strain in this case, to the nodes of meshMnm,em.

P (i) Probability of damage at the i-th node. This is determined from the Monte
Carlo simulation withNs randomly generated material samples(C(h),C(d))
each of which is used to emulate the damage evolution on a relatively finer mesh
(Mnp,ep : no > np > nm, eo > ep > em). The fieldP is evaluated onMnp,ep

and then interpolated to the nodes ofMnm,em. Unless otherwise specified, both
the C(h,true), C(d,true) and random matrix samples(C(h),C(d)) (used to cali-
brateP (i)) correspond to the same microstructure, implying that theyboth have
the same stiffness matrix bounds{C(h)

l , C
(h)
u , C

(h)
l , C

(d)
u }.

φ(x,i) Energy density at nodei of M(nm,em) defined in Equation(8). In this definition
constitutive matrix,C, and the strain vector,ε, are expressed in Voigt notation.

e
(i)
I , e

(i)
II Relative and absolute errors in modeling nodal energy density at nodei of

M(nm,em) defined in Equations (9) and (10).
U (h), U (d), U (i) These are matrices that lie between0 andI in the positive definite sense and are

used to determine{C(h,modl), C(d,modl)} and{C(h,modl,i), C(d,modl,i)}, respec-
tively, based on the Equations (11), (12), (13) and (14).

si Damage flag at nodei of M(nm,em) which takes value0 when the node is allo-
cated healthy material propertyC(i) = C(h) and1 when the node is allocated
damaged material propertyC(i) = C(d).

N0,N1,Nk,Nl,Nf Prospective search spaces for optimization which are defined in Equations (15),
(16), (19) and (20). RegionNf is created using algorithm given in Table4. In
these definitions, the termθk andθl are fractions used to set thresholds for creat-
ing the subspacesNk andNl, respectively, the termLmax is the maximum edge
length of the smallest rectangle enclosing the geometry andthe termθP is a user-
defined fraction to prescribe the nodal space to search. ThusLmaxθP can be used
to define a neighborhood around the region corresponding to nonzero probabil-
ity of damage. The setNf is the region that includes the nodes comprising the
boundary of the damaged region andNlmax number of node layers away from
these boundary nodes going into the healthy region.

fn→e(·) Function that takes in a set of FE node labels as argument and returns the set of el-
ement labels each of which has atleast one node that is commonto the prescribed
node set.

fe→n(·) Function that takes in a set of finite element labels as argument and returns the
set of node labels connected to all these elements.
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φ(x,i) = 0.5
[

ε
(x,i)

]T
C(i)

[

ε
(x,i)

]

: x ∈ {obsv,modl} (8)

e
(i)
I = ((φ(modl,i) − φ(obsv,i))/φ(obsv,i))2 (9)

e
(i)
II = (φ(modl,i) − φ(obsv,i))2 (10)

C(h,modl) = C
(h)
l + (C(h)

u − C
(h)
l )1/2U (h)(C(h)

u −C
(h)
l )1/2 (11)

C(d,modl) = C
(d)
l + (C(d)

u − C
(d)
l )1/2U (d)(C(d)

u − C
(d)
l )1/2 (12)

C(h,modl,i) = C
(h)
l + (C(h)

u − C
(h)
l )1/2U (i)(C(h)

u −C
(h)
l )1/2 (13)

C(d,modl,i) = C
(d)
l + (C(d)

u − C
(d)
l )1/2U (i)(C(d)

u − C
(d)
l )1/2 (14)

N0 = {1, · · · , nm} (15)

N1 =
{

i : ‖x(i) − x(j)‖ 1
2 < LmaxθP∀i ∈ N0, j ∈ NP

}

(16)

NP =
{

k : P (k) 6= 0∀k ∈ N0

}

(17)

N0 ⇒ N =
{

i1, · · · , inm : e
(ij)
I ≥ e

(ij+1)
I ∀j ∈ {1, · · · , (nm − 1)}

}

(18)

Nk = {i1, · · · , ik} :
∑

k∈Nk

e
(k)
I = θk

nm
∑

i=1

e
(i)
I (19)

Nl = {ik+1, · · · , il} :
∑

l∈Nl

e
(l)
I = θl

nm
∑

i=1

e
(i)
I (20)

Table 4. Algorithm for determination of region Nf

Initialization:

{

Nd = {k : sk = 1∀k ∈ N0} ;Nh = N0 −Nd; Ed = fn→e(Nd); Eh = fn→e(Nh); Edh = Eh ∩ Ed;
N (1)

l = fe→n(Edh);N (1)
l = N (1)

l ∩ Nd; E(1)
l = fn→e(N (1)

l );N (1)
all = N (1)

l ∪Nd;Nf = N (1)
l ;

Iteration: forj = (2 to 1 +Nlmax) do:


































N (j)
l = fe→n(E(j−1)

l );

N (j)
l =

(

N (j)
l ∪ N (j−1)

all

)

−N (j−1)
all ;

E(j)
l = fn→e(N (j)

l );

N (j)
all = N (j)

l ∪ N (j−1)
all ;

Nf = Nf ∪ N (j)
l ;

Three different scenarios of increasing challenge and the corresponding optimization schemes are sug-
gested in Table5. The optimization problem(s) are posed in Table6. The primary goal is to determine the
optimum damage flag vectorS =

[

s(i)
]

such that the corresponding modeled strain matches the observed
strain as best as possible. In scenario 2 and 3, a secondary goal is adopted which is to determine the optimum
material parametersC =

[

C(i)
]

, the constitutive matrices allocated to FE nodes, so as to complement the
primary goal. The material parameters are determined from the decision variableU using Equations (11),
(12), (13) and (14). It is important to note that in the multistage optimization schemes, between any two
successive optimization stages, the optimal solution fromthe previous stage is passed on as one of the initial
guesses for the following stage, thus with each stage the quality of solution improves. The multistage region
optimization scheme,O1, is an integer optimization problem for which the solution procedure adopted is
a simple Binary encoded Genetic Algorithm (BGA). The multistage material parameter optimization,O2,
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is solved using a Real encoded Genetic Algorithm (RGA). By virtue of its strengths as a global optimizer
and no requirement on gradient based information, Genetic Algorithm4 is deemed suitable forO1 andO2,
both of which work on search spaces of high dimension. The single stage material parameter optimization
scheme,O3, is solved using a traditional gradient based optimizationtechnique, e.g. Interior point method1,
but with multiple initial guesses such that the best among these independently derived prospective optima is
chosen as the desired optimum. In all these scenarios it willbe implied that the meshMnm,em, boundary
conditions and external loading (known apriori) will be used, in conjunction with each set of prospective
optimal parameters from the optimization problem and otherknown information, to solve a FE problem and
subsequently evaluate the objective function.

Table 5. Different scenarios classified based on the availability of information

# Known information Unknown Scheme
1 {ε(obsv,i), C(h,true), C(d,true), P (i)}. {S} : si = 0 ⇒ C(i) = C(h,true); si =

1 ⇒ C(i) = C(d,true).
O1

2 {ε(obsv,i), C(h)
l , C

(h)
u , C

(d)
l , C

(d)
u , P (i)}. {S, U (h), U (d)} : si = 0 ⇒ C(i) =

C(h,modl); si = 1 ⇒ C(i) = C(d,modl).
O1 → O3 → O1

3 {ε(obsv,i), C(h)
l , C

(h)
u , C

(d)
l , C

(d)
u , P (i)}.

Here the material bounds may not always
correspond to the actual microstructure
for which the observation is evaluated.

{S, U (h,i), U (d,i)} : si = 0 ⇒
C(i) = C(h,modl,i); si = 1 ⇒ C(i) =
C(d,modl,i).

O1 → O2 → O1

Table 6. Single and multi-stage schemes for region and material parameter optimization

Stage # Multistage region optimizationO1 Stage # Multistage parameter optimizationO2

1 min
S∈{0,1}|N1|,S⊆S

e(S) =
∑

i∈{N1}

e
(i)
I 1 min

U={U(j) :0≤U(j)≤I∀j∈N0}
e(U) =

∑

i∈{N1}

e
(i)
I

2 min
S∈{0,1}|Nk|,S⊂S

e(S) =
∑

i∈{Nk}

e
(i)
I 2 min

U={U(j) :0≤U(j)≤I∀j∈Nk}
e(U) =

∑

i∈{Nk}

e
(i)
I

3 min
S∈{0,1}|Nl|,S⊂S

e(S) =
∑

i∈{Nl}

e
(i)
I 3 min

U={U(j) :0≤U(j)≤I∀j∈Nl}
e(U) =

∑

i∈{Nl}

e
(i)
I

4 min
S∈{0,1}|Nf |

,S⊂S
e(S) =

∑

i∈{Nf}

e
(i)
I 4 min

U={U(j) :0≤U(j)≤I∀j∈Nf}
e(U) =

∑

i∈{Nf}

e
(i)
I

5 min
S∈{0,1}|Nf |

,S⊂S
e(S) =

∑

i∈{Nf}

e
(i)
II 5 min

U={U(j) :0≤U(j)≤I∀j∈Nf}
e(U) =

∑

i∈{Nf}

e
(i)
II

Single stage parameter optimizationO3

min
U={U(h) ,U(d):0≤U(h),U(d)≤I}

e(U) =
∑

i∈{N1}

e
(i)
I

V. Numerical Implementation

The proposed approach will be illustrated by considering computer simulated micro-structures of Alu-
minium based material (see Figure2) and a macroscopic model of an aircraft wing subjected to body force,
bF . The following numerical results are based on the micro-structures shown in Figure2c. Plane stress
formulation of adaptive FE scheme with 3-noded constant stress triangular elements is adopted to carry out
both the micro-mechanical and macroscopic analyses.BasedonN = 1000 realizations of the aircraft wing,
the probability of presence of micro-cracks is reported in Figure 3. Finally, pdfs of certain energy-based
macroscopic response variables,φ at (x, y) = (6, 3.5) m are also shown in Figure4 that clearly displays
distinct probabilistic features for healthy microstructures (Figure2a) and that of damaged microstructures
(Figure2c). This finding can be readily used to capture the signaturesof micro-cracks with high probability.
A new realization ofφ, that was not used in the Monte Carlo analysis to estimate theprobability plots (Fig-
ure3) and pdfs (Figure4), is also in shown Figure4. The new realization is found to belong to the support
of pdf pφ, which provides some evidence of numerical cross-validation in support of the proposed approach.

7 of 10



(a) (b) (c) (d) (e) (f)

Figure 2. Illustrations of micro-structural images with in creasing damage levels (starting with no micro-cracks at the left
most image); different colors indicate different materialproperties of grains; white color represents openings due to micro-
cracks.

(a) (b)

Figure 3. (a) Probability of presence of micro-cracks, (b) zoomed view.

 

 

φ

p
φ
(φ
)
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1000
(x, y) = (6, 3.5) m

damaged
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New observation

Figure 4. pdf of energy-based macroscopic re-
sponse variable show distinct features for healthy
and damaged microstructures.

Next we demonstrate the capability of detection of micro-
cracks in the macrostructure based on a limited selection
of available information for the different scenarios described
above. The algorithms are encoded inMATLAB(R2012a)
and executed on a parallel computing cluster. For the FEA
evaluation, required both in the calibration and the optimiza-
tion phases, Matlab’sPDE Toolbox is found to be useful.
For the optimization Matlab’sGlobal Optimization
Toolbox is used for genetic algorithm based and gradient-
based traditional optimization. Matlab’s inbuilt parallel and
distributed computing capability has been utilized in the cur-
rent study. A coarse meshM(nm = 2147, em = 4060) com-
prising of plane stress triangular elements is created apriori for
the purpose of optimization. The coarse mesh used in opti-
mization makes the detection process faster. The important

optimization parameters that need to be specified are: population size(npop) in GA, maximum number of
generations for GA(genmax), probability of crossover for GA(Pc), probability of mutation for GA(Pm),
number of elite chromosomes to be preserved across generations in GA(nelite), function tolerance for con-
vergence(ǫF ), tolerance on nonlinear constraints(ǫcon) to check constraint feasibility, tolerance on decision
variable for convergence(ǫX) and minimum change for decision variable for finite difference calculation
(δXmin). The number of processors used for distributed computing(nproc) is also prescribed.

In Figure 5 we illustrate the performance of the optimization algorithm for Scenario 1. The results
presented in the figure correspond to the final optimal solution after stage 5 inO1 has converged (see Table
5 and6). In Figure5(a) the probability contour obtained from much smaller sample size (Ns = 25) is
used to generate the initial guess resulting in faster calibration. It is observed in the current study that
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Figure 5. Scenario 1: Initial guess forS is generated based (a)P (i) (b) ε(obsv) (c) neither P (i) nor ε(obsv). Green patches
depict the actual damaged region while the red dots refer to the FE nodes which are deemed damaged. BGA parameters
for O1: npop = 150, ǫF = 10−8, genmax = 500, Pc = 0.9, Pm = 0.05, nelite,= 1, θP = 0.1, θk = 0.9, θl = 0.99, Nlmax =
1, nproc = 12. Cputime: (a) 0.51 hours (includes calibration overhead of0.27 hours basedNs = 25 samples) (b) 0.61 hours
(c) 0.58 hours.

.
probability contour obtainedNs = 25 samples differs from that obtained fromNs = 1000 samples by
less than1%, hence deemed acceptable. A node with a higher value ofP (i) has a higher chance of being
damaged⇒ si = 1. In Figure5(b) the observed nodal strain is used to generate the initialguess. A node
with a higher value of‖ǫ11, ǫ22, 2ǫ12‖2 has a higher probability of being damaged⇒ si = 1. In Figure5(c)
neither of the above two schemes are used and initial guess isgenerated randomly, thus each node has an
equal chance of being either damaged or healthy. It can be noted that the final result is sensitive to the initial
guess, and the informationP (i) provides a marked advantage over the other two schemes in terms of cputime
and quality of final solution using identical computationalresources. This emphasizes the importance of the
Monte Carlo simulation that results in the probability contour.

For scenario 2, a similar result is shown in Figure6. In case of scenarios 2 and 3, the predicted damaged
region presented in the results correspond to the final optimal solutions after stage 5, in the second instance
of O1, has converged (see Table5 and6) in the respective cases. The optimal material parameters resulting
after the single stage optimizationO3 converges is given in Equation (21) and (22).
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Figure 6. Green patch depicts the actual damaged region while the red dots refer to the damaged FE nodes. BGA
parameters for O1: npop = 150, ǫF = 10−8, genmax = 500, Pc = 0.9, Pm = 0.05, nelite,= 1, θP = 0.1, θk = 0.9, θl =
0.99, Nlmax = 1, nproc = 12. Interior point algorithm parameters for O3: 25 initial guesses,ǫF = 10−6, ǫcon = 10−6, ǫX =
10−6, δXmin = 10−7,Maximum function evaluation = 10000, Maximum iterations = 3000, θP = 0.1, nproc = 12,.
cputime: 2.04 hours (includes calibration overhead)

C(h,true) =





80.0875 26.3163 0.0076
26.3163 79.7559 −0.0485
0.0076 −0.0485 26.7568



GPa;C(h,modl) =





79.9909 26.3664 0.0085
26.3664 79.8234 −0.0294
0.0085 −0.0294 26.7900



GPa (21)

C(d,true) =





37.1816 8.9989 0.6823
8.9989 45.7229 0.1638
0.6823 0.1638 15.5409



GPa;C(d,modl) =





36.4222 10.2879 0.5209
10.2879 46.6090 0.3231
0.5209 0.3231 15.8933



GPa (22)

Finally, in Figure7, we present the results for Scenario 3 for two cases: (a) whenthe observation is from
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a material with the same microstructure corresponding to Figure 2c (hence, identical constitutive matrix
bounds) as that used in the calibration and optimization (the same holds true for Scenario 1 and 2), and (b)
when the observation is from a material with a different microstructure (Figure2b, void fraction=3.2%) w.r.t.
that used in the calibration and optimization (Figure2c, void fraction=8.8%); the latter case is a more real-
istic situation. It can be noted that even for a different microstructure which has microcracks that make up
a void volume fraction which is as low as∼ 3% in a1mm×1mm square area, the algorithm is able to detect
the region of damage based on its macrolevel strain response.
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Figure 7. Green patch depicts the actual damaged region while the red dots re-
fer to the FE nodes which are deemed damaged by the detection module. (a)
ε
(obsv) corresponds to the microstructure shown in Figure2c (b) ε(obsv) cor-

responds to the microstructure shown in Figure2b. BGA parameters for O1:
npop = 150, ǫF = 10−8, genmax = 500, Pc = 0.9, Pm = 0.05, nelite = 1, Pc =
0.9, Pm = 0.05, nelite,= 1, θP = 0.1, θk = 0.9, θl = 0.99, Nlmax = 1, nproc =
12. RGA parameters for O1: npop = 150, ǫF = 10−8, ǫcon = 10−8, genmax =
500, Pc = 0.9, Pm = 0.05, nelite,= 1, θP = 0.1, θk = 0.9, θl = 0.99, Nlmax =
1, nproc = 12. CPU time: (a) 1.57 hours (b) 1.65 hours (Calibration overhead
included for both cases)

VI. Conclusion

In this current study we have
presented and validated a generic
methodology to detect microcrack
from macrolevel responses. The
generic nature of the suggested
techniques adds to their robustness,
thus they can be extended to detect
any other kind of microanomaly.
The detection methodology is pri-
marily an optimization module
which attempts to match the pre-
dicted model to the observed real-
ity. It is also observed that the op-
timization module is quite sensitive
to the quality of its initial condition,
and to gain in efficiency in terms
of both speed of computation and

quality of results, a physics based initial guess provides the required means. With the argument in favor
of such a preprocessing, one may appreciate the significanceof microscale analysis in determining the
constitutive matrix bounds and the macroscale analysis, based on random matrix theory and Monte Carlo
simulation, in calibrating the probability contour which is consequently used in generation of initial guess
for optimization. The current research work, which is a result of a confluence of mechanics, probability the-
ory and optimization, may provide an efficient and robust tool in structural health monitoring and damage
detection.
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