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A stochastic multi-scale based approach is presented in thivork to detect signatures of micro-
anomaliesfrom macro-level response variables. In this work, we particuldy consider polycrys-
talline materials, e.g., Aluminium. Thus, by micro-anomales, we refer to micro-cracks of sizel 0—
100 pum, while macro-level response variables imply, e.g., strag) strain energy density of macro-
level structures of typical size often varying at the order & 10-100 m (e.qg., an aircraft wing). For
different material and systems (e.g., sand and geo-mechaai systems), the sizes of micro- and
macro- level scales may, of course, be significantly diffené. The micro-anomalies in the context of
present work are not discernible by the naked eye. Nevertheks, they can cause catastrophic fail-
ures of structural systems due to fatigue cyclic loading tharesults in initiation of fatigue cracks.
Analysis of such precursory state of internal damage evolitn, before a macro-crack visibly ap-
pears (say, size of a few cms), is beyond the scope of convendl crack propagation analysis, e.g.,
fracture mechanics. The present work is proposed to addresthis specific concern, and is an ex-
tension of an earlier work by Das*3. In the earlier work, macro-level (continuum) constitutive
properties (e.g., constitutive elasticity tensors) of herogeneous materials were constructed within
a probabilistic formalism based on random matrix theory, maximum entropy principle, and prin-
ciples of minimum complementary energy and minimum potental energy. The effects of micro-
cracks are now incorporated into the present formulation byextending the previous work. Distinct
differences are observed in the macro-level response charristics depending on presence or ab-
sence of micro-cracks. Such stochastic information is useid the framework of optimization to
detect the damaged region, consisting of microcracks, frorexperimentally obtained macroscale
strain observations. Several schemes based on both heuitseind traditional optimization tech-
nigues are proposed and tested to detect damage due to micracks depending on the availability
of information. The proposed work is likely to be useful in health monitoring of structural systems
in, but not limited to, aerospace, mechanical, and civil enigeering applications.

. Introduction

Analysis of structural systems characterized by multiples is a challenging task. Purely determinis-
tic models or purely stochastic models dealing with suclbl@ms have their own drawbacks. The former
results in point-estimates of model predictions that ldekdapability of rigorously predicting scatters typi-
cally observed in experimental measurements, while therlabuld violate certain governing physical laws
that may be regarded as fundamental principles by the ga@ecommunity. A better approach would,
therefore, be to adopt a physics-based stochastic apptibactuly respects the fundamental principles of
general deterministic formalism while accounting for tffe@s of scatters in predictions. The current work
fits this niche.

In this work, a structural system of interest is concepyualivisaged as characterized by two distinct
length scales: anicro-scale regime ().001 mm to 1 mm) which refers to the microstructure of polycrys-
talline materials (e.g., Aluminium) characterized by graiorphology, inclusions or cracks-(0.1 mm),
and amacro-scale regime (>> 1mm) which alludes to the original structural system (e.gaiacraft wing)
that must be modeled by incorporating the effects of mitroesural information for the purpose of reli-
able prognosis. The micro-structural information is addglly presumed to be high-fidelity deterministic
information which is available only in limited amount. Thgs practically consistent since it often takes
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several weeks or months to experimentally obtain a miangegiral image as shown, e.g., in Fig@a The
macroscopic (continuum) material properties (in paréicutonstitutive elasticity tensors) are treated here as
stochastic material properties to account for the effettmderlying micro-structural fluctuations since it is
impractical and intractable to incorporate such effecterainistically for the entire structural system. The
link between micro- and macro- scales are two matrix-valb@ahds of the macroscopic constitutive elas-
ticity tensof’. Let the matrix representation of the fourth-order maappszconstitutive random elasticity
tensor be denoted bg™", and its upper and lower bounds, respectively(hy’ andC/"*". These bounds
can be calculated from deterministic micro-mechanicalyses of a small microscopic heterogeneous ma-
terial volume element) (™). Here, the superscript§) and (™), imply association, respectively, with
macro-scale and micro-scale. In the ensuing discussiesetbuperscripts, however, may be suppressed for
the sake of simplified notations if no ambiguity exists. IiWwe evident from the context whether a variable
under discussion is associated with the micro-scale or orsaale. It can be shown th@t = C®), in
general (regardless of the fact wheth&f™ contains any micro-cracks or not), satisfies the followihg

c<c<(c, as. )

Here,C; = C™ € M (R) andC,, = C3" € M (R) are matrix-valued bounds, afd}; (R) represents
the space of allvV x N real symmetric and positive-definite matrices. Specifiu@adf N depends on
the problem of interest. In eql), the inequalities should be interpreted in the positieérite sense (for
instance(; < C implies that(C — () is a positive-definite matrix a.s.), and a.s. (almost suiay, with
probability one) should be measured with respect to (Whe joint probability measure of all the associated
random variate(s) characterizing the uncertainties thdhe present work, model the effects of underlying
micro-structural features.

It should be noted that i = V(™) contains any micro-cracks, then the resulting matrix-edlbounds,
P = ¢ and i = ¢, are certainly different from the corresponding bour@f? = ¢
andoM = ¢ obtained froni” without any micro-cracks. Under very general conditiong.(graction
acting on the inner surface of micro-cracks is zero), it cafusther shown thét

cl <™ andc® < ¢, @)

where the inequalities must again be interpreted in thetipediefinite sense. Eq2) shows remarkably
strong theoretical results that clearly reflect the wealgeiffects of material stiffness because of the pres-
ence of micro-cracks. Finally, it should be noted that dgj.iroiplies S = C~! is similarly bounded by
S = (C,)~'andS, = (€)1, i.e.,8 < S < S, a.s5. Similar argument holds for ec) i.e., s < 5%
andS&h) < S&d).

By having recourse to the principle of maximum entropy (MaREthe probability density function
(pdf) of the matrix-variate random constitutive elastiaihatrix, C, is subsequently estimatedl While
the pdf based on a healthy microscopic material volume eléisesupported over the sé€ € M (R) :
Cl(h) <C< C&h)}, the pdf associated with a damaged microscopic materiahvelelement containing
micro-cracks is supported ové€' € M (R) : Cl(d) <C< Cﬁd)}. Use of these pdfs produces significantly
different probabilistic and statistical features for egrtenergy-based macroscopic response variables, thus
reflecting the signatures of micro-anomalies in the undmwglynicrostructures. The current work utilizes
such apriori calibrated deterministic and heuristic infation along with experimentally obtained informa-
tion, within the scope of an optimization module, to deteetriegion of damage. To demonstrate this claim,
an example problem to identify the signature of micro-csaiskpresented in the current work. The relevant
theory, numerical schemes, and results are presented falliwsing sections.

[I.  Micro-mechanical analysis

The upper bound(,,, is evaluated from the results of finite element (FE) analgdil” subjected to
kinematic uniform boundary condition (KUBC) given ™ (x) = ¢,x,¥x € 9V (™, wheredV (™
represents the boundary &f andu(" (x) represents the prescribed displacement vector deterntined
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the values of a constant symmetric second-order strairoteps By abusing notation (for the sake of
simplification of notation), we would, however, denote tleetor-valued representation (Voigt notation) of
g, also bye, in the following discussion. It will be clear from the contexhether we are referring to the
second-order strain tensey or its Voigt representation. It can be then derived that

(™) =Cy e, @3)

in which o (™) (x) is the Voigt representation of the second-order tensareghbtress field over, and(-)y,,
in the absence of micro-cracks, represents the volume gengerV/, for example,

)V::%/‘/U()de

It can be further shown th&t

<¢(m)>v — _/ e(m)(x)dx
= 2< ™Y e = %ETC & = §< ) S (e ™)y @)

wheree(™) (x) is the Voigt representation of the second-order tensareehbtrain field ovel.

The lower bound(, is similarly evaluated from analysis &f subjected to static uniform boundary
condition (SUBC) such that the applied traction vector acefdensityt (™ (x), takes the following form,
t(™)(x) = g, n(x),¥x € OV. Here,q, is a constant symmetric stress matrix anck) denotes the unit
vector normal todV = 9V ("™ atx. In the following discussion, we would also usg to denote the
second-order stress tensor and its Voigt representatiamotational simplicity. It can be then shown that

€™y = Suo, Su=(C)" 5)
1 1 1
Wy = €™M a = 5ol Sua = S CiEe™)y (6)

In the presence of micro—cracks, the above discussiorhstils theoretically provided the volume aver-
age stress and strain variablés(™),, and(e(™)y,, are appropriately re-definéd

The boundsC(h Cﬁh) O( ), Oﬁd), now can be calculated using the stress, strain and eneeggiges
by solving four convex opt|m|zation problems in terms ofithieverses (for better numerical conditioning)
as shown below,

(S(a ™)) — (e,
st ()]
oo 080T S (g — (9|

(p(m)

and suitable additional constraints (if any; see Tdble

(7)

and then computlng? , L(Lh), Ol(d), Cﬁd) per last row of Tabld. Here,e should be chosen a suitable small
number (say] x 10~ 6) In the above formulation, the volume average notatiomipkfied by suppressing
the subscript if-)y .

Table 1. Additional constraints, and determination of bourds from their inverses.

Case s=5" s =5M =59 S =89
Additional constraints None S—sMemy | s—Memy | -5 emy
s — 5 ey,
Output Cq(Lh) — (Sl(h))—l Cl(h) — (S&h))_l Cq(Ld) — (Sl(d))—l Cl(d) — (S&d))_l
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[ll. Analysis of the macro-scale systems

In the absence of sufficient micro-structural informatibmyill be assumed here that the pgt: (C), of
C is uniformly distributed over¢ = {C € M{[R) : C < C < Cyu}
This is consistent with propo-
sition of the MaxEnt principle,
and will be practically useful if
the ‘gap’ betweenC; and C, is
small. It is earlier shown that
such matrix-variate uniform distri-
bution is a special case of general-
S = TT? ~ Gy (o, 1) ized matrix-variate Beta type | dis-

T —

I 2 tribution®. Let us denote the gen-
tij ~ N(0,1), " v eralized matrix-variate Beta type |
- yi ~ Gl — (i —1)/2),0.5), B :
I1<j<i<N i1 N distribution parameterized hy, b,

Cy, and C; as GBL (a,b; Cy, C)).
If a« = b = L(N + 1), then
Step 1:S;,Sy ~ Gy(L(N + 1), 11): statistically independent ~ GBx(a:b:Cu, C) turns out to be
X ) the matrix-variate uniform distri-
Step 2: U =(S;+S2) 251 ((S1 +S2) 2)T ~Ux(0,1) bution supported ove€ and will
be denoted by/y(C;,C,). The
sampling scheme to generate real-
izations of C ~ Ux(Cy,Cy) is
Figure 1. Sampling from 4y (C1, C.,) sketched in Figurd?. Analysis of
a macroscopic system can now be
carried out in a Monte Carlo fashion by sampli@gfrom L{N(Cl(h), C&h)) anduN(Cl(d), Cﬁd)) following
certain damage initiation criteria as explained in Tablélthough in this case the exceeding of a threshold
Von Mises stress is assumed to be the criterion for initiatib damage, one may use any other general
criteria of the formF (o, e, C,x) > Fq2, WhereF may be some functional which when exceeds some
prescribed threshold valug,,,,, damage initiation occurs at positien

| nput: N, Cj, C,

Step 3:C=C)+ (Cy — CHYV2U (C, — C)NV2 ~ Uy (Cy, Cy)

Table 2. Algorithm for macromechanical analysis using Moné Carlo simulation

(1) Two populations of siz&/, generated for random matric€™ andC(@,
(2) Initialize realization counterj = 1.
(3) For thej-th pair of realizationscj(h), Cj(d):
(i) Initialize iteration countek = 1, s; = 0 for each FE node of given meshM,, .
(i) If s; =1thenC® = @, orelsec®) =",
(ii) For any pointx, C'(x) is linearly interpolated from the nodal(®’s of the element containing.
(iv) FE problem,[K][U] = [F], is solved, wher¢K] is the global stiffness matriU] is the nodal
displacement vector arj#i'] is the nodal force vector.
(v) Von Mises stress,,,, (") evaluated at the nodes.
(Vi) If opon® > 00, then set; = 1. Setn, = number of 0 to 1 transitions in sé; }.
(vii) If n;, = 0 = damage nucleation converges. Pe- j + 1 and go to (4).
Or else: Do k=k+1 and continue from (3-ii).
(4) If j <= N, then continue from (3), or else go to (5).
(5) Postprocess to calculate and plot relevant statistics.
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SAMPLE_RANDMAT_3.ps

IV. Detection of damage

The suggested numerical scheme to determine the regionnudigtaare all based on an optimization
problem where the objective is to minimize the differencaveen the observed straif®®s*) and the mod-
eled straire("d) | with the decision variables being either the material {oivhere the damage and healthy
material properties are to be allocated, or the materiglgntees themselves, or both. The degree of avail-
ability of information will determine which scheme amongsle suggested will give the best performance.
For the purpose of optimization a fixed finite element (FE)mes,, , .,.) with n,;, nodes and,,, elements
is chosen. The current discussion will use the definitiomsrgin Table3.

Table 3. Terminology used in the damage detection scheme(s)

) odx)
GRS

E(obsv,i)

¢(r,i)

.

Si

N0>N1>Nk>M7Nf

fn—)e(')

fe—>n(')

Material properties used to create the actual observatios- true) and pre-
dicted by the optimization module: = modl), respectively.

Observed strain field of theth node of mesh\1,, , ... which is determined by
first simulating the damage evolution scheme ugitity’"#¢) C(d:true) on a very
fine mesh(M,,, ¢, : no >> np,,e, >> e,,), followed by interpolation of the
observed field, strain in this case, to the nodes of ries)), ...
Probability of damage at the i-th node. This is determinamnfithe Monte
Carlo simulation withN, randomly generated material samplgg(®), C(@)
each of which is used to emulate the damage evolution on tivedlafiner mesh
(Mape, 1 00 > Ny > N, €0 > €5 > e,). The field P is evaluated ooM,,, .,
and then interpolated to the nodes/ef,, ... Unless otherwise specified, bo
the C(mtrue) C(dtrue) and random matrix samplg€®), C(@) (used to cali-
brate P(Y)) correspond to the same microstructure, implying that that have
the same stiffness matrix boun@l@l(h), C&h), Cl(h), Cq(fl)}.

Energy density at nodeof M, . ..., defined in Equatior). In this definition
constitutive matrix(C', and the strain vectog, are expressed in Voigt notation.
Relative and absolute errors in modeling nodal energy terdi nodei of
M, e defined in Equationsgf and 0).

These are matrices that lie betwe®andl in the positive definite sense and 3
used to determingC (mod) C(dmod)y gnd {C(hmedi) c(dmedli))  respec-
tively, based on the Equation$l), (12), (13) and (4).

Damage flag at nodeof M, ..y which takes valu® when the node is allor

cated healthy material property) = C(") and1 when the node is allocate
damaged material propery() = C'(@),

Prospective search spaces for optimization which are adkfim&quations 15),
(16), (19) and @0). RegionN\; is created using algorithm given in Talde In
these definitions, the terf, andd; are fractions used to set thresholds for cre

ing the subspace§’;, and\V;, respectively, the terni,,,, is the maximum edge

length of the smallest rectangle enclosing the geometnttatermép is a user-
defined fraction to prescribe the nodal space to search. T » can be used
to define a neighborhood around the region correspondingri@aaro probabil-
ity of damage. The seV/; is the region that includes the nodes comprising
boundary of the damaged region aig,,.. humber of node layers away fro
these boundary nodes going into the healthy region.

Function that takes in a set of FE node labels as argumenttunas the set of elt

ement labels each of which has atleast one node that is conmtios prescribed
node set.

Function that takes in a set of finite element labels as arguanad returns the

set of node labels connected to all these elements.

th

o

rat-

the

1%
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@) = 0.5 {g(zvi)]TC(i) [s(rvi)] : € {obsv, modl} (8)

egz) — (((b(modl,i) o ¢(obsv,i))/¢(obsv,i))2 (9)
65121) — (¢(modl,i) - ¢(obsv,i))2 (10)
C(h,modl) — C( ) (C(h )1/2U (Cq(Lh C(h))1/2 (11)
¢ (d:modl) _ C( ) (C(d C(d )1/2U(d (Cud d))1/2 (12)
C(h,modl,i) _ C[(h) + ( )I/QU(Z (Cq(Lh C(h))1/2 (13)
C(d,modl,i) _ C( ) (C(d C(d )1/2U(2 (Cud ))1/2 (14)
No=A{1,--+ ,nn} (15)
M= {z xD = xD||7 < LyaxfpVi € N, j € Np} (16)
Np = {k: P 2 0vk € Np | (17)
No= N = {il, v i, e > e e (1 (- 1)}} (18)
Nk:{il,”' ,ik}: Z €§k):9k26§i) (19)

keN i=1
Ny = {ikg1, - i} Z 69) =0, Zeﬁ“ (20)

leEN, i=1

Table 4. Algorithm for determination of region N}

Na={k:sp=1Vk € No} ;N = No = Na;Eq = frnseWNa); En = fnoeWNn); Ean = En N Ea;
N'(l) Foosn(Ean); N‘(l) N'l(l) NNy & e _ fnﬂe(j\/l(l))h/\/:illl) :N'l(l) UNg NG :A/l(l)
Iteration: forj = (2t01 4 Nypas) do:

A/I(J) _ fean(c‘:l@ 1))

M = (NP O ) = NG

E(J) fn e( ))7

Néljl) = N o UNélJl_l);

Ny =Ny UNz(J);

Initialization: {

Three different scenarios of increasing challenge and éhesponding optimization schemes are sug-
gested in Tabl®&. The optimization problem(s) are posed in TaBleThe primary goal is to determine the
optimum damage flag vectdt = [s(")] such that the corresponding modeled strain matches thevellse
strain as best as possible. In scenario 2 and 3, a secondalrig gdopted which is to determine the optimum
material parameteré = [C?)], the constitutive matrices allocated to FE nodes, so asrtgptaament the
primary goal. The material parameters are determined frendécision variablé/ using Equationsi(l),
(12), (13) and (4). It is important to note that in the multistage optimizatischemes, between any two
successive optimization stages, the optimal solution fifegrprevious stage is passed on as one of the initial
guesses for the following stage, thus with each stage thigygabsolution improves. The multistage region
optimization scheme(y, is an integer optimization problem for which the soluticmgedure adopted is
a simple Binary encoded Genetic Algorithm (BGA). The mtdtige material parameter optimizatiafy,
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is solved using a Real encoded Genetic Algorithm (RGA). Biuei of its strengths as a global optimizer
and no requirement on gradient based information, Gendtjorahm#* is deemed suitable fa®; and©,,
both of which work on search spaces of high dimension. Thglesistage material parameter optimization
scheme(s, is solved using a traditional gradient based optimizat&mhnique, e.g. Interior point methbd
but with multiple initial guesses such that the best amoegehndependently derived prospective optima is
chosen as the desired optimum. In all these scenarios ibwilinplied that the mesi,,,, ..., boundary
conditions and external loading (known apriori) will be ds& conjunction with each set of prospective
optimal parameters from the optimization problem and okinerwvn information, to solve a FE problem and
subsequently evaluate the objective function.

Table 5. Different scenarios classified based on the availdity of information

# Known information Unknown Scheme
1 {E(obsv,i)’ C(h,true)7C(d,true)’P(i)}' {S} is =0 = C(z) —_ C(h,true); si=| O

1= C(z) _ C(d,true)'
2 | {eletsvi) ¢ oM oD o poy | {S,UM UDY s =0 = CD =] 0] - 05— O
C(h,modl); si=1= C(z) _ C(d,modl).
3 | {elrsvi) o™ ) P ciP POy, | (S, UMD U} s = 0 = | O 5 02— Oy
Here the material bounds may not alway§' (V) = C(medhi). g — 1 = C0) =
correspond to the actual microstructyre(@.modli),

for which the observation is evaluated.

Table 6. Single and multi-stage schemes for region and matet parameter optimization

Stage # Multistage region optimizatid?y Stage # Multistage parameter optimizati©n
1 min e(S) = BO) 1 min e(U) = BO)
Se{0,1}IM1l scs ( ) ie%\:/l} ! U={U@:0<U ) <IVjENL} ( ) ie%\:/l} !
2 min e(S) = el 2 min e(U) = el
Se{0,1}Vil,scs ( ) ie{zj\:fk} 1 U={U@):0<U ) <IVjeN}} ie{zj\:/k} !
3 min e(S)= > e(;) 3 min e(U) = e
Se{0,1}Ml scs ic (N1} U={U):0<UW) <IVjeN } ie{N}
4 min e(S) = el 4 min e(U) = el
se{0,1}V#! scs ) ie{zj\:ff} ! U={U:0<U@ <IVjeN;} © ie{zj\:ff} !
5 min e(S) = el 5 min e(U) = el
5e{0,1}Wr! scs (5) iE{XJ\:ff} " U={U@:0<UW <IVjeN;} ( ie{zjxjff} "
Single stage parameter optimizati®y
: _ (0]
U:{U<h>7U<d§]:%lgU<h>yU<d)§I} )= ie%\:/l} N

V. Numerical Implementation

The proposed approach will be illustrated by consideringmater simulated micro-structures of Alu-
minium based material (see Fig2pand a macroscopic model of an aircraft wing subjected tqy lhoite,
br. The following numerical results are based on the microestires shown in Figur@c. Plane stress
formulation of adaptive FE scheme with 3-noded constaesstiriangular elements is adopted to carry out
both the micro-mechanical and macroscopic analyses.Basad= 1000 realizations of the aircraft wing,
the probability of presence of micro-cracks is reported iguFe 3. Finally, pdfs of certain energy-based
macroscopic response variablésat (x,y) = (6,3.5) m are also shown in Figur¢that clearly displays
distinct probabilistic features for healthy microstruetsi (Figure2a) and that of damaged microstructures
(Figure2c). This finding can be readily used to capture the signatfrascro-cracks with high probability.

A new realization ofp, that was not used in the Monte Carlo analysis to estimatgribigability plots (Fig-
ure 3) and pdfs (Figurel), is also in shown Figurd. The new realization is found to belong to the support
of pdf pg, which provides some evidence of numerical cross-vabdati support of the proposed approach.
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Figure 2. lllustrations of micro-structural images with in creasing damage levels (starting with no micro-cracks at ta left
most image); different colors indicate different material properties of grains; white color represents openings dueat micro-
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Figure 3. (a) Probability of presence of micro-cracks, (b) aomed view.
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Figure 4. pdf of energy-based macroscopic re-
sponse variable show distinct features for healthy
and damaged microstructures.

Next we demonstrate the capability of detection of micro-
cracks in the macrostructure based on a limited selection
of available information for the different scenarios dézenl
above. The algorithms are encodedMATLAB( R2012a)

and executed on a parallel computing cluster. For the FEA
evaluation, required both in the calibration and the optani
tion phases, Matlab'®DE Tool box is found to be useful.
For the optimization Matlab’sd obal Optim zati on
Tool box is used for genetic algorithm based and gradient-
based traditional optimization. Matlab’s inbuilt paraleEnd
distributed computing capability has been utilized in the c
rent study. A coarse mesW(n,, = 2147, e,, = 4060) com-
prising of plane stress triangular elements is createdajoir

the purpose of optimization. The coarse mesh used in opti-
mization makes the detection process faster. The important

optimization parameters that need to be specified are: atpulsize(n,,,) in GA, maximum number of
generations for GAgenmq. ), probability of crossover for GAP,), probability of mutation for GAP,,,),
number of elite chromosomes to be preserved across gemerati GA(n.;:. ), function tolerance for con-
vergenceer ), tolerance on nonlinear constraints,,, ) to check constraint feasibility, tolerance on decision
variable for convergencé x) and minimum change for decision variable for finite diffevercalculation
(0Xmin). The number of processors used for distributed computing,.) is also prescribed.

In Figure 5 we illustrate the performance of the optimization algaritfor Scenario 1. The results
presented in the figure correspond to the final optimal swiwiter stage 5 iD; has converged (see Table
5 and6). In Figure5(a) the probability contour obtained from much smaller siengize (V; = 25) is
used to generate the initial guess resulting in faster redidn. It is observed in the current study that
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GRAINCRACK_Scale0x_seed3750.eps
GRAINCRACK_Scale2x_seed3750.eps
GRAINCRACK_Scale3x_seed3750.eps
GRAINCRACK_Scale5x_seed3750.eps
GRAINCRACK_Scale6x_seed3750.eps
GRAINCRACK_Scale35x_seed3750.eps
Contour_Probability_Scale3x.eps
Contour_Probability_Scale3x_Zoom.eps
pdf_ABQ_ENERDENSEMOD_Scale3x_nodenum_4.eps

(@) (b)

(obsv)

Figure 5. Scenario 1: Initial guess forS is generated based (a)?” (b) e°***) (c) neither P nor e . Green patches
depict the actual damaged region while the red dots refer tohe FE nodes which are deemed damaged. BGA parameters
for O1: npop = 150, er = 1078, genmar = 500, Pe = 0.9, P, = 0.05, nerite, = 1,0p = 0.1,05 = 0.9, 0, = 0.99, Njyax =

1, nproc = 12. Cputime: (a) 0.51 hours (includes calibration overhead 00.27 hours basedV, = 25 samples) (b) 0.61 hours
(c) 0.58 hours.

iorobability contour obtainedv, = 25 samples differs from that obtained froii, = 1000 samples by
less thanl %, hence deemed acceptable. A node with a higher value@thas a higher chance of being
damaged= s; = 1. In Figure5(b) the observed nodal strain is used to generate the igitiess. A node
with a higher value ofje11, €22, 2¢12||2 has a higher probability of being damageds; = 1. In Figure5(c)
neither of the above two schemes are used and initial guegnierated randomly, thus each node has an
equal chance of being either damaged or healthy. It can leel loat the final result is sensitive to the initial
guess, and the informatiadA(®) provides a marked advantage over the other two schemesria tércputime
and quality of final solution using identical computatioregources. This emphasizes the importance of the

Monte Carlo simulation that results in the probability anunt

For scenario 2, a similar result is shown in Figueln case of scenarios 2 and 3, the predicted damaged
region presented in the results correspond to the final @bswlutions after stage 5, in the second instance
of Oy, has converged (see Tatl@nd6) in the respective cases. The optimal material parametsrsting
after the single stage optimizati@y converges is given in Equatio21) and @2).

Figure 6. Green patch depicts the actual damaged region wtelthe red dots refer to the damaged FE nodes. BGA
parameters for O1: npop = 150, ep = 1078, genmar = 500, P. = 0.9, Py, = 0.05, neiite, = 1,0p = 0.1,0;, = 0.9,6;, =
0.99, Nimaz = 1, nproe = 12. Interior point algorithm parameters for O3: 25 initial guessesgr = 107%, con = 107%, ex =
1075, 6 X min = 1077, Maximum function evaluation = 10000, Maximum iterations = 3000,0p = 0.1, nproc = 12,.
cputime: 2.04 hours (includes calibration overhead)

80.0875 26.3163  0.0076 79.9909 26.3664  0.0085

ctrue) — 1963163 79.7559 —0.0485| GPaC'»™od) = |96.3664 79.8234 —0.0294| GPa (21)
0.0076  —0.0485  26.7568 0.0085 —0.0294  26.7900
37.1816  8.9989  0.6823 36.4222  10.2879  0.5209

C(dtree) — | 89989  45.7229  0.1638 | GPa ¢ ™) = 10.2879 46.6090 0.3231 | GPa (22)
0.6823  0.1638  15.5409 0.5209  0.3231  15.8933

Finally, in Figure7, we present the results for Scenario 3 for two cases: (a) wenbservation is from
90f10


MESH10p_GADamagedRegime_Example1_GA150_Obsv3p_Mesh10p_3A_N25P5pTO10p_zoom.eps
MESH10p_GADamagedRegime_Example1_GA150_Obsv3p_Mesh10p_3C_StrainProb.eps
MESH10p_GADamagedRegime_Example1_GA150_Obsv3p_Mesh10p_3B_NoProb.eps
MESH10p_GADamagedRegime_Example2_GA150M25_Obsv3p_Mesh10p_3A_N25P5pTO10p_zoom.eps

a material with the same microstructure corresponding gurei2c (hence, identical constitutive matrix
bounds) as that used in the calibration and optimizatiom gdme holds true for Scenario 1 and 2), and (b)
when the observation is from a material with a different mstructure (Figur@b, void fraction=3.2%) w.r.t.

that used in the calibration and optimization (Figlee void fraction=8.8%); the latter case is a more real-
istic situation. It can be noted that even for a differentnostructure which has microcracks that make up
a void volume fraction which is as low as 3% in almm x 1mm square area, the algorithm is able to detect
the region of damage based on its macrolevel strain response

VI. Conclusion

In this current study we have
presented and validated a generic
methodology to detect microcrack
from macrolevel responses. The
generic nature of the suggested
techniques adds to their robustness,
(b) thus they can be extended to detect
any other kind of microanomaly.

Figure 7. Green patch depicts the actual damaged region wteélthe red dots re- ; ; ;
fe?to the FE noé)es WhiCE are deemed damagged by%he detectionadule. (a) The. detection r_ne_thoc_jology 'S pri-
e(°*¥) corresponds to the microstructure shown in Figure2c (b) e°***) cor- marily an optimization module
responds to the microstructure shown in Figure2b. BGA parameters for ©;:  Which attempts to match the pre-
Npop = 150, €x = 107%, genmas = 500, P. = 0.9, P, = 0.05, neiite = 1, P. = dicted model to the observed real-
0.9, P = 0.05, netite; = 1,0p = 0.1,0r = 0.9,01 = 0.99, Nimas = 1,mroc = jty |t is also observed that the op-
12. RGA parameters for O1: npep = 150, ep = 1075, ccon = 1075, geNmaz = .o .- dule i . .
500, P = 0.9, Py = 0.05, netite, = 1,0p = 0.1,0, = 09,0 = 0.99, Npmap = I1T1281ION MOAUIE IS quite sensitive
1, nproc = 12. CPU time: (a) 1.57 hours (b) 1.65 hours (Calibration overhad  t0 the quality of its initial condition,
included for both cases) and to gain in efficiency in terms
of both speed of computation and
quality of results, a physics based initial guess provitesrequired means. With the argument in favor
of such a preprocessing, one may appreciate the significaiho@croscale analysis in determining the
constitutive matrix bounds and the macroscale analysisgedan random matrix theory and Monte Carlo
simulation, in calibrating the probability contour whichdonsequently used in generation of initial guess
for optimization. The current research work, which is a lesiua confluence of mechanics, probability the-
ory and optimization, may provide an efficient and robust tostructural health monitoring and damage

detection.
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