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Abstract

Roughed aggregation is a new AMG method which uses a rougher rather than
a smoother to construct the restriction operator. In this case, the rougher
used is conjugate gradient. With this simple modification there is a significant
performance gain in some problems over smoothed aggregation.

1. Introduction

Aggregation methods represent a large class of coarseners. Using aggregation
methods for AMG was first introduced by Vaněk in 1992 [5, 6, 9, 7].

In the years since its introduction many variants have evolved. Notable
among these are the Adaptive Smoothed Aggregation (αSA) [1, 2], and the
smooth error method [4]. In this paper, the roughed aggregation method is
introduced as an alternative to the standard smoothed aggregation methods.
Roughed aggregation was first introduced in my Ph.D. dissertation [3] and is
under continuous improvement.

Roughed aggregation is a new AMG method which uses a rougher rather
than a smoother to construct the restriction operator. In this case, the rougher
used is conjugate gradient. With this simple modification there is a significant
performance gain in some problems over smoothed aggregation.

2. Roughed Aggregation

Roughed aggregation works in three main phases: the selection of the aggre-
gates, construction of the prolongation operator, and filtering the prolongation
operator.

2.1. Definitions

This section introduces the notation used throughout the paper. As is com-
mon practice, let A = (aij) be a n× n SPD matrix stiffness matrix.
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Definition 1. An aggregate is a collection of elements of Ω. The jth aggregate
is denoted Cj.

Definition 2. For a fixed ε, 0 ≤ ε < 1, define the strongly-coupled neighborhood
of the point i as

Ni(ε) =
{
i : |aij | ≥ ε

√
aiiajj

}
. (1)

Definition 3. The matrix D is defined to be the diagonal of the matrix A. The
filtered matrix AF =

(
aFij
)

is defined as,

aFij =


{
aij if j ∈ Ni(ε)
0 otherwise

}
if i 6= j

aii −
n∑

j=1,j 6=i

(
aij − aFij

)
otherwise.

(2)

2.2. Selecting the Aggregates

Aggregation methods all use a common idea of grouping neighborhoods of
points into aggregates. Each aggregate will become a coarse point on the coarse
mesh. There are many variations of how this is done depending on the details of
the problem being studied. The method presented here is based on the method
in [5].

The aggregation works in three phases plus an initialization phase. In the
initialization phase a set R ⊂ Ω is constructed to track which nodes have been
placed into aggregates as well as filter out any isolated nodes. That is, define
the set

R = {i : i ∈ Ω,Ni(ε) 6= {i}} , (3)

which is the set of all nodes in Ω that are not isolated.
Phase one creates an approximation of the aggregates. The first node i ∈ R

for which Ni(ε) is disjoint from all other aggregates is called the jth aggregate.
When a point is added to an aggregate, it is removed from R. This phase
continues until no more aggregates can be created in this way or when R is
empty.

Phase two expands the aggregates to include points that were missed in phase
one based on strong connections. Each i ∈ R is checked for strong connections
to an aggregate. If such an aggregate exists, then i is added to that aggregate
and removed from R. If i is connected to multiple aggregates, it should be
added to the one with the most strong connections. In the case of a tie, the
choice is arbitrary, but should be consistent.

Phase three handles any remaining nodes that may have been ignored in the
first two passes. In most cases, this phase will not need to be run. Any re-
maining points i ∈ R should be placed into aggregates based on partial strongly
connected neighborhoods.

Once all the points have been aggregated, a prolongation operator is con-
structed.

2



2.3. Constructing the Prolongation Operator

The first step of constructing the prolongation operator is constructing a
tentative operator P̃. This operator will then use a single pass of a rougher for
refinement. The rougher used here is conjugate gradient.

The tentative prolongation matrix P̃ is defined entrywise for each of the
aggregates Ci. (

P̃
)
ij

=

{
1 if i ∈ Cj
0 otherwise.

(4)

The conjugate gradient step requires both the filtered matrix AF from Def-
inition 3, and the tentative prolongation matrix P̃ from (4).

In this method, the prolongation operator is constructed columnwise. The
ith column of P is the result of applying the CG method to AF and the ith col-
umn of of the tentative prolongation operator. That is, using iterative conjugate
gradient, solve for each i = 1, . . . , n

AFPi = P̃i. (5)

2.4. Filtering the Prolongation Operator

Once the prolongation operator is constructed it must be filtered to maintain
sparsity of the system matrix on the coarse level [8]. There are many forms of
filtering that can be used. The one presented in this section is a modification
of the method in [9]. This form of filtering requires access to the null space of
the matrix. Some alternate filtering methods are found in [1, 2, 4].

The method works by using the prolongation operator found in Section 2.3
and modifying it so that the algebraically rough elements are mapped to zero
on the coarse grid.

Definition 4. Let A be a n × n SPD matrix, and let α be a fixed positive
number. The near null space of A is the span of the eigenvectors associated
with the eigenvalues bounded below by α.

Selecting the correct value for α is something of a challenge, as there does
not seem to be any clear method for how this should be done. If α is too
large, then not enough is being filtered in the coarsening step and the method
will lose effectiveness. However, if α is too small, then extra computations are
required that will slow the setup phase. In general an α which is too large is
less detrimental then one which is too small.

Once α has been selected, the associated eigenvectors form the columns of
the matrix B. Then a matrix U is constructed. This matrix constitutes the
update to the prolongation operator. U is initialized as

U = D−1AFP, (6)

where A is the fine system matrix, D is the diagonal of A, and P is the prolon-
gation matrix in Section 2.3.
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The matrix U is modified so that

UTB = 0. (7)

To this end, a Gram–Schmidt process is employed on the columns of U using
the columns of B as a basis. Then the prolongation operator is modified by the
update matrix

P∗ = P−U. (8)

The final step to the algorithm is to impose the sparsity pattern of P̃ from
(4) on P∗ and call this operator P.

3. Numerical Results

This example is the 2D Laplace equation on a unit square domain with
Dirichlet boundary conditions. A uniform square mesh is used with 1225 un-
knowns. AMGLab running in Matlab 7.9.2.529 on Windows 7 (64-bit) is used
for the computations.

A three level V-cycle is employed, using 10 Gauss-Seidel smoothing steps at
each level, and a direct solve on the coarsest level. At the end of each cycle, the
residual is computed and recorded.

Cycle RoughedAggregation
1 5.298e+ 000
2 6.921e− 001
3 3.108e− 002
4 9.979e− 004
5 6.817e− 005
6 2.365e− 006
7 1.087e− 007
8 6.089e− 009
9 2.344e− 010
10 1.092e− 011
11 7.806e− 013

While there is no proof yet, on all sample problems run to date, roughed
aggregation consistently converged quicker than smoothed aggregation.

4. Conclusion

This paper introduced roughed aggregations, a new AMG method for coars-
ening. The method differs from existing aggregation methods by using a rougher
rather than a smoother for the construction of the prolongation method. This
new method has shown a performance increase over existing smoothed aggrega-
tion methods in sample problems.
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