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Abstract—We numerically analyze the possibility of turning
off post-smoothing (relaxation) in geometric multigrid when
used as a preconditioner in conjugate gradient linear and
eigenvalue solvers for the 3D Laplacian. The geometric Semi-
coarsening Multigrid (SMG) method is provided by the hypre
parallel software package. We solve linear systems using two
variants (standard and flexible) of the preconditioned conjugate
gradient (PCG) and preconditioned steepest descent (PSD)
methods. The eigenvalue problems are solved using the locally
optimal block preconditioned conjugate gradient (LOBPCG)
method available in hypre through BLOPEX software. We
observe that turning off the post-smoothing in SMG dramat-
ically slows down the standard PCG-SMG. For the flexible
PCG and LOBPCG, our numerical results show that post-
smoothing can be avoided, resulting in overall acceleration,
due to the high costs of smoothing and relatively insignificant
decrease in convergence speed. We numerically demonstrate
for linear systems that PSD-SMG converges nearly identical to
flexible PCG-SMG if SMG post-smoothing is off. A theoretical
justification is provided.

Keywords-linear equations; eigenvalue; iterative; multigrid;
smoothing; pre-smoothing; post-smoothing; preconditioner;
preconditioning; conjugate gradient; steepest descent; conver-
gence; parallel software; hypre; BLOPEX; LOBPCG.

I. INTRODUCTION

Smoothing (relaxation) and coarse-grid correction are the
two cornerstones of multigrid technique. In algebraic multi-
grid, where only the system matrix is (possibly implicitly)
available, smoothing is more fundamental since it is often
used to construct the coarse grid problem. In geometric
multigrid, the coarse grid is generated by taking into account
the geometry of the fine grid, in addition to the chosen
smoothing procedure. If full multigrid is used as a stand-
alone solver, proper smoothing is absolutely necessary for
convergence. If multigrid is used as a preconditioner in an
iterative method, one is tempted to check what happens if
smoothing is turned partially off.

For symmetric positive definite (SPD) linear systems, the
preconditioner is typically required to be also a fixed linear
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SPD operator, to preserve the symmetry of the precondi-
tioned system. In the multigrid context, the preconditioner
symmetry is achieved by using balanced pre- and post-
smoothing, and by properly choosing the restriction and
prolongation pair. In order to get a fixed linear precondi-
tioner, one avoids using nonlinear smoothing, restriction,
prolongation, or coarse solves. The positive definiteness
is obtained by performing enough (in practice, even one
may be enough), and an equal number of, pre- and post-
smoothing steps; see, e.g., [1].

If smoothing is unbalanced, e.g., there is one step of
pre-smoothing, but no post-smoothing, the multigrid pre-
conditioner becomes nonsymmetric. Traditional assumptions
of the standard convergence theory of iterative solvers are
no longer valid, and convergence behavior may be unpre-
dictable. The main goal of this paper is to describe our
numerical experience testing the influence of unbalanced
smoothing in practical geometric multigrid preconditioning,
specifically, the Semicoarsening Multigrid (SMG) method,
see [2], provided by the parallel software package hypre [3].

We numerically analyze the possibility of turning off
post-smoothing in geometric multigrid when used as a
preconditioner in iterative linear and eigenvalue solvers for
the 3D Laplacian in hypre. We solve linear systems using
two variants (standard and flexible, e.g., [4]) of the precondi-
tioned conjugate gradient (PCG) and preconditioned steepest
descent (PSD) methods. The standard PCG is already coded
in hypre. We have written the codes of flexible PCG and PSD
by modifying the hypre standard PCG function. The eigen-
value problems are solved using the locally optimal block
preconditioned conjugate gradient (LOBPCG) method, read-
ily available in hypre through BLOPEX [5] software.

We observe that turning off the post-smoothing in SMG
dramatically slows down the standard PCG-SMG. However,
for the flexible PCG and LOBPCG, our numerical tests
show that post-smoothing can be avoided. In the latter
case, turning off the post-smoothing in SMG results in
overall acceleration, due to the high costs of smoothing and
relatively insignificant decrease in convergence speed.

A different case of non-standard preconditioning, specifi-
cally, variable preconditioning, in PCG is considered in our
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earlier work [6]. There, we also find a dramatic difference in
convergence speed between the standard and flexible version
of PCG. The better convergence behavior of the flexible
PCG is explained in [6] by its local optimality, which
guarantees its convergence with at least the speed of PSD.
Our numerical tests there show that, in fact, the convergence
of PSD and the flexible PCG is practically very close. We
perform the same comparison here, and obtain a similar
result. We numerically demonstrate for linear systems that
PSD-SMG converges almost as fast as the flexible PCG-
SMG if SMG post-smoothing is off in both methods.

The rest of the paper is organized as follows. In section II,
we formally describe the PSD and PCG methods used here
for testing, and explain their differences. In section III,
we briefly discuss the SMG preconditioning in Aypre and
present our numerical results for linear systems. Section IV
is dedicated to eigenvalue problems. Our last section V
contains the relevant theory.

II. PSD AND PCG METHODS

For a general exposition of PSD and PCG, let SPD
matrices A and 7', and vectors b and z be given, and denote
ry = b — Axy. Algorithm 1 is described, e.g., in [6]

Algorithm 1: PSD and PCG methods
1 for k=0,1,... do

2 Sk = T?“;C
3 if £ = 0 then
4 ‘ Po = So
5 else
6 Pr = Sk + Brpr—1 (Where By is either (1)
or (2) for all iterations)
7 end
)
i (pr, Apr)
9 Tk4+1 = Tk + APk
10 T+l =Tk — akApk
11 end

Various methods are obtained by using different formulas
for the scalar 5. We set B = 0 for PSD,

Sk, T
R s ()
(Sk—1,Tk—1)
for the standard PCG, or
g = BT = Teo1) @)

(Sk—1,Tk-1)
for the flexible PCG.

We note that in using (2), we are merely subtracting one
term, (Sg,7k—1), in the numerator of (1), which appears
in the standard CG algorithm. If 7" is a fixed SPD matrix,
this term actually vanishes; see, e.g., [6]. By using (2) in a
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Figure 1. Timing of unpreconditioned CG using (1) and (2).

computer code, it is required that an extra vector be allocated
to either calculate rp — rp_1 or store —ay Apy, compared
to (1). The associated costs may be noticeable for large prob-
lems solved on parallel computers with distributed memory.
Next, we numerically evaluate the extra costs by comparing
the standard and flexible PCG with no preconditioning, i.e.,
T = 1, for a variety of problem sizes.

Our model problem used for all calculations in the present
paper is for the three-dimensional negative Laplacian in
a brick with homogeneous Dirichlet boundary conditions
approximated by the standard finite difference scheme using
the 7-point stencil with the grid size one in all three
directions. The initial approximation is (pseudo)random. We
simply call a code, called struct, which is provided in hypre
to test SMG, with different command-line options.

To generate the data to compare iterative methods, we
execute the following command,

mpiexec -np 16 ./struct -n $n $n $n -solver 19

where $n runs from 10 to 180, and determines the number
of grid points in each of the three directions per processor.
The size of the brick here is 16-times-$n-by-$n-by-$n, i.e.,
the brick gets longer in the first direction with the increase
in the number of cores. For example, using the largest value
$n=180, the maximum problem size we solve is 16x180-by-
180-by-180=93,312,000 unknowns. The option -solver 19
tells the driver struct to use no preconditioning. The MPI
option -np 16 means that we run on 16 cores. In fact, all
our tests in this paper are performed on 16 cores, so in the
rest of the paper we always omit the “mpiexec -np 16’” part
of the execution command for brevity.

In Figure 1, for the CG method without preconditioning
we see a 20-25% cost overhead incurred due to the extra
storage and calculation for the flexible variant, (2), relative
to the standard variant, (1). Note that in each instance of the
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Figure 2. Accuracy comparison of SD and CG using (1) and (2).

problem, the number of iterations of the CG method is the
same regardless if either (1) or (2) is used for [.

In Figure 2 we see, as expected without preconditioning,
that the relative final residuals for both CG algorithms are
identical, and that the SD algorithm of course performs much
worse than either. The number of iterative steps is capped
by 100, so most of Figure 2 shows the residual after 100
iterations, except for a small straight part of the CG line for
$n=10,20,30, where the iterations have converged.

III. PRECONDITIONING WITH SMG

In order to help overcome the slow convergence of the CG
method, as observed in Figure 2, it is customary to introduce
preconditioning. Here, we use the SMG solver as a precon-
ditioner, provided by hypre. The SMG solver/preconditioner
uses plane-relaxation as a smoother at each level in the V-
cycle [3]. The number of pre- and post-relaxation smoothing
steps is controlled by a command line parameter in the struct
test driver. The data in Figures 3 and 4 is obtained by

./struct —n $n $n $n -solver 10 —v 1 1

in which the -solver 10 option refers to the SMG pre-
conditioning, and the number of pre- and post-relaxation
smoothing steps is specified by the -v flag—one step each
of pre- and post-relaxation in this call.

Although using (2) introduces some extra overhead, in the
case of the SMG preconditioning, this is negligible as can
be seen in Figure 3, since the SMG preconditioning, first,
is relatively expensive computationally and, second, makes
the PCG converge much faster, see Figure 4, compared to
the non-preconditioned case displayed in Figure 2. As in
Figure 2, for each instance of the PCG method, the number
of iterations is equal as depicted in Figure 4. The PSD
method performs a bit worse (only 2-3 more iterations) than
either variant of PCG and not nearly as much worse as in
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Figure 3. Cost for storage and calculation in PCG-SMG with (1) or (2)
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Figure 4. Iteration count for PSD-SMG and PCG-SMG with (1) or (2)

Figure 2, which clearly indicates the high quality of the
SMG preconditioner for these problems.

Using the same number of pre- and post-relaxation steps
creates a symmetric preconditioner, in this test, an SPD
preconditioner. Thus both PCG-SMG, (1) and (2), are ex-
pected to generate identical (up to round-off errors) iterative
approximations. We indeed observe this effect in Figure 4,
where the data points for the PCG-SMG with (1) and (2)
are indistinguishable.

If no post-relaxation is performed within the SMG precon-
ditioner, the convergence of the standard PCG method, i.e.,
with (1), is significantly slowed down, almost to the level
where preconditioning is useless. The command to call the
hypre code used for this comparison is:

./struct —n 80 80 80 —solver 10 —v 1 0
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Figure 5. Iteration Error for PCG-SMG and PSD-SMG

in which the unbalanced relaxation is specified by the -v
flag and the grid is 1280x80x80. In Figure 5, we compare
convergence of the PCG-SMG using (1) and (2) and the
PSD-SMG, where the SMG preconditioner has no post-
relaxation. In PCG-SMG using (2) without post-relaxation
of the SMG preconditioner, we still achieve a very good
convergence rate, as well as for PSD-SMG.

The convergence behavior in Figure 5 is similar to that
observed in [6]. There, a variable SPD preconditioner makes
the standard PCG, i.e., using (1), almost stall, while the
convergence rates of the PSD and the flexible PCG, i.e.,
with (2), methods are good and close to each other.

However, the SMG preconditioner is fixed and linear,
according to its description in [2] and our numerical verifi-
cation, so the theoretical explanation of such a convergence
behavior in [6] is not directly applicable here. Moreover,
turning off the post-relaxation smoothing in a multigrid
preconditioner makes it nonsymmetric—the case not the-
oretically covered in [6], where the assumption is always
made that the preconditioner is SPD.

We add the data for the absence of post-relaxation (option
-v 1 0) in the SMG preconditioner to Figures 3 and 4 to
obtain Figures 6 and 7. The number of iterations of the
solver does increase a bit for both (2) and for the PSD
method with no post-relaxation in the SMG preconditioner,
but not enough to outweigh the cost savings of not using
the post-relaxation in the SMG preconditioner. The overall
improvement is 43% for all problems tested.

IV. PRECONDITIONING OF LOBPCG wWITH SMG

The LOBPCG method [7] computes the m smallest eigen-
values of a linear operator and is implemented within hypre
through BLOPEX; see [5]. We conclude our numerical tests
with a comparison of the use of balanced and unbalanced
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Figure 6. Cost comparison of relaxation in PCG-SMG using (1) or (2)
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Figure 7. Iteration count for PSD-SMG and PCG-SMG using (1) or (2)

relaxation in the SMG preconditioner for the LOBPCG
method with m = 1.

In these tests, the matrix remains the same as in the
previous section, i.e., corresponds to the three-dimensional
negative Laplacian in a brick with homogeneous Dirichlet
boundary conditions approximated by the standard finite
difference scheme using the 7-point stencil with the grid size
of one in all three directions. But in this section we compute
the smallest eigenvalue and the corresponding eigenvector,
rather than solve a linear system. The initial approximation
to the eigenvector is (pseudo)random.

We generate the data for Figures 8 and 9 with the
commands:

./struct —n $n $n $n -solver 10 -lobpcg -v 1 0
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./struct -n $n $n $n -solver 10 -lobpcg -v 1 1

where again $n runs from 10 to 180.

For this test, as seen in Figure 9, the number of LOBPCG
iterations for the non-balanced SMG preconditioner is
roughly double than that for the balanced SMG precon-
ditioner. The cost savings of not using the post-relaxation
in the SMG preconditioner slightly outweigh the nearly
doubled number of iterations, as shown in Figure 8, and thus
justify turning off the post-relaxation in this case. Finally, we
note that the existing LOBPCG convergence theory in [7],
[8] requires an SPD preconditioner 7', and does not explain
convergence if 7' is nonsymmetric.

V. THEORETICAL JUSTIFICATION OF THE OBSERVED
NUMERICAL BEHAVIOR

For linear systems with SPD coefficient matrices, the use
of nonsymmetric preconditioning has been justified, e.g., in

[9, Section 12.3], [10], [11], and [12, Section 10.2]. The
arguments used there are applicable for nonsymmetric and
variable preconditioning.

Specifically, it is shown in [12, Section 10.2] that the
flexible PCG, i.e., using (2), is locally optimal, i.e., on every
step it converges not slower than PSD. The convergence
rate bound for the PSD with nonsymmetric preconditioning
established in [12, Section 10.2] is

[re+illa-r < 6flrklla-r, 3)
under the assumption that the preconditioner 7" satisfies
[T —AT|[ 42 <0 <1, (4)

where || - ||4-1 denotes the operator norm induced by the
corresponding vector norm ||z||4-1 = V&’ A" lx.

The key identity for the PSD method, that easily leads to
bound (3), is presented in the following theorem.

Theorem 1: The identity holds,

Irksalla-r/lrella-r = sin (Za-1{re, ATre}),  (5)
where the right-hand side is defined via

|(re) Ty
il a1 | AT rg |l a1

CcOos (ZA—I {’I”k, ATT’k-}) =

Proof: Identity (5) is actually proved, although not
explicitly formulated, in the proof of [12, Theorem 10.2].
Alternatively, identity (5) is equivalent to

llex+1lla/llexl|a = sin (ZLa{er, T Aex}), (6)

where Aej, = i, which is the statement of [6, Lemma 4.1].
We note that [6] generally assumes that the preconditioner
T is SPD, but this assumption is not actually used in the
proof of [6, Lemma 4.1]. |

Assumption (4) is very simple, but has one significant
drawback—it does not allow arbitrary scaling of the precon-
ditioner 7', while the PCG and PSD methods are invariant
with respect to scaling of 7. The way around it is to scale
the preconditioner 1" before assumption (4) is verified. We
now illustrate such a scaling under an additional assumption
that 7' is SPD, following [6]. We start with a theorem,
connecting assumption (4) with its equivalent, and probably
more traditional form.

Theorem 2: Let the preconditioner 7' be SPD. Then as-
sumption (4) is equivalent to

I —TA|p- <6< 1. (7)

Proof: Since T' is SPD, on the one hand, the matrix
product AT is also SPD, but with respect to the A~! scalar
product. This implies that assumption (4) is equivalent to the
statement that A(AT') € [1—6,1+6] with § < 1, where A(+)
denotes the matrix spectrum. On the other hand, the matrix
product T'A is SPD as well, with respect to the T-1 scalar
product. Thus, assumption (7) is equivalent to the statement



that A(T'A) € [1 — d,1+ ¢]. This means the equivalence of
assumptions (4) and (7), since A(AT) = A(T'A). [ |

Let us now, without loss of generality, as in [13, p. 96] and
[6, pp. 1268-1269], always scale the SPD preconditioner 7'
in such a way that

max{A(TA)} + min{A(TA)} = 2.

Then we have 6 = (k(T'A)—1)/(k(T'A)+1) and, vice versa,
k(TA) = (14 6)/(1 — &), where x(-) denotes the matrix
spectral condition number. The convergence rate bound (3)
for the PSD with nonsymmetric preconditioning in this case
turns into the standard PSD convergence rate bound for the
case of SPD preconditioner T'; see. e.g., [6, Bound (1.3)].
Moreover, [6, Theorem 5.1] shows that this convergence rate
bound is sharp for PSD, and cannot be improved for flexible
PCQG, i.e., using (2), if the SPD preconditioner 1" changes
on every iteration. The latter result naturally extends to the
case of nonsymmetric preconditioning of [12, Section 10.2].

Compared to linear systems, eigenvalue problems are
significantly more complex. Sharp convergence rate bounds
for symmetric eigenvalue problems have been obtained in
the last decade, and only for the simplest preconditioned
method; see [8], [13] and references therein. A possibil-
ity of using nonsymmetric preconditioning for symmetric
eigenvalue problems has not been considered before, to our
knowledge. However, our check of arguments of [13] and
preceding works, where a PSD convergence rate bound is
proved assuming (4) and SPD preconditioning, reveals that
the latter assumption, SPD, is actually never significantly
used, and can be dropped without affecting the bound.

The arguments above lead us to a surprising determination
that whether or not the preconditioner is SPD is of no
importance for PSD convergence, given the same quality
of preconditioning, measured by (4) after preconditioner
prescaling. If the preconditioner is fixed SPD then the
standard PCG is the method of choice. The cases, where
the preconditioner is variable or nonsymmetric, are similar
to each other—the standard non-flexible PCG, i.e., using (1),
stalls, while the flexible PCG converges, due to its local
optimality, but may not be much faster compared to PSD.
This explains the numerical results using nonsymmetric
preconditioning reported in this work, as related to results
of [6] for variable SPD preconditioning.

VI. CONCLUSION

Although the flexible PCG linear solver does require a bit
more computational effort and storage as compared to the
standard PCG, within the scope of preconditioning the extra
effort can be worthwhile, if the preconditioner is not fixed
SPD. The use of geometric multigrid without post-relaxation
smoothing is demonstrated to be surprisingly efficient as a
preconditioner for locally optimal iterative methods, such
as the flexible PCG for linear systems and LOBPCG for
eigenvalue problems.
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