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Abstract. Magnetohydrodynamic models are used to model a wide range of plasma physics applications.
The system of partial differential equations that characterizes these models is nonlinear and strongly cou-

ples fluid interactions with electromagnetic interactions. As a result, the linear systems that arise from
discretization and linearization of the nonlinear problem can be difficult to solve. In this paper, we consider

a multigrid preconditioner for GMRES as a solver for these systems. We compare three potential smoothers

for this system, two of which are motivated by well-known smoothers for the incompressible fluids system and
the other is a new smoother that splits the physics into a magnetics-velocity operator and a Navier-Stokes

operator. Results for a two-dimensional, steady-state test problem are shown.

1. Introduction

Magnetohydrodynamics (MHD) is a model of plasma physics that treats the plasma as a charged fluid in
the presence of electromagnetic fields. These models have applications in the study of solar flares, spacecraft
propulsion, and simulations of fusion energy (e.g. tokamak reactors) [7]. Mathematically, this model is a
coupling of the equations of motion of a fluid (the Navier-Stokes equations) and the equations governing
electromagnetic fields (Maxwell’s equations). In general, the resulting system of partial differential equations
(PDEs) is challenging to solve because it is nonlinear and time-dependent, and models strongly coupled
physical interactions [2, 11]. In this paper, we focus on solving the linear systems that arise from the
linearization step of a nonlinear solver, such as Newton’s Method. Specifically, we are concerned with finding
effective multigrid relaxation schemes for this system. We present results for three different smoothers in
the context of geometric multigrid, though they can be extended to schemes for algebraic multigrid.

1.1. The Physical Model. The MHD model that we consider is the one-fluid visco-resistive MHD system
[7]. We are concerned with a formulation in the incompressible limit (constant fluid density, ρ). The B-field
formulation of the strong form of the partial differential equations written as residuals is:

Ru = ρ
∂u

∂t
+ ρ(u · ∇u)−∇ · (T + TM ),(1)

Rp̄ = ρ∇ · u,(2)

RB =
∂B

∂t
−∇× (u×B) +∇× (

η

µ0
∇×B),(3)

where the viscous and magnetic stress tensors are

T = −p̄I + µ
[
∇u +∇uT

]
,(4)

and

TM =
1

µ0
B⊗B− 1

2µ0
‖B‖2 I,(5)

respectively. Here, ⊗ defines a tensor product. The constants in the above equations are density (ρ), dynamic
viscosity (µ), magnetic resistivity (η), and magnetic permeability of free space (µ0). The dependent variables
– velocity (u), hydrodynamic pressure (p̄), and the magnetic field (B) – satisfy the momentum equation (1),
the continuity equation (2), and the magnetics evolution equation (3) when Ru = 0, RB = 0, and Rp̄ = 0.

Much of this work was conducted at Sandia National Labs, Livermore, CA, using the software package MueMat. The remainder
of the numerical experiments were conducted using the Tufts High-Performance Computing Research Cluster. This work was
partially supported by NSF grant DMS-1216972.
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In the two-dimensional setting, it is known that the magnetic field can be written as the curl of the vector
potential A = (0, 0, Az),

B = ∇×A.

Thus, Equation (3) reduces to the following scalar equation, written in residual form:

RA =
∂Az

∂t
+ u · ∇Az −

η

µ0
∇ 2Az + E 0

z ,(6)

where E 0
z is some applied external electric field. The magnetic stress tensor (5) can also be rewritten in

terms of Az:

(7) TM =
3

2µ0

[
∂Az

∂y

]2

(êx ⊗ êx)− 1

µ0

[
∂Az

∂y

∂Az

∂x

]
(êx ⊗ êy)

− 1

µ0

[
∂Az

∂y

∂Az

∂x

]
(êy ⊗ êx) +

3

2µ0

[
∂Az

∂x

]2

(êy ⊗ êy),

where êx and êy are the unit vectors in the x and y directions, respectively. The final problem then is
Equations (1), (2), and (6), with viscous and magnetic stress tensors defined by Equations (4) and (7),
respectively.

1.2. Discretization. To discretize the problem, we use the finite-element method. We use a Q2 − Q1

(Taylor-Hood) discretization for the fluid velocity and pressure and a Q2 discretization for the magnetic
vector potential. This choice affords two advantages. First, Q2 − Q1 elements satisfy the Ladyzhenskaya-
Babuska-Brezzi (LBB) condition for the Navier-Stokes part of this system. Second, discretization software
was readily available for these elements [4]. We choose Q2 elements to discretize Az because the curl of this
space a subset of a Raviart-Thomas space, a good space for B as we need its divergence to be bounded. When
considering the components of the system separately, these appear to be acceptable choices for finite-element
spaces. However, it is unclear whether these are the “best” elements to use for the combined MHD system,
and further study is needed. The focus here, though, is on the solver for the resulting linear systems. After
discretization and linearization from some nonlinear solver (e.g. Newton’s Method), we obtain the linear
system: F BT Z

B 0 0
Y 0 D

up
a

 =

fufp
fa

 ,(8)

where u, p, and a are the Newton corrections for u, p̄, and Az, respectively, and fu, fp, and fa are nonlinear
residuals. We will refer to the whole system matrix as A.

2. Solving the linear system

Solution algorithms for the linear systems arising from magnetohydrodynamics models are very dependent
upon the discretization as the linear systems that arise from different discretizations have very different
properties. Nonlinear multigrid solvers have been used in the context of finite difference discretizations [1].
In [5], a “physics-based” preconditioner is used in this context as well, with a Krylov method (GMRES) to
solve the linear systems in the implicit nonlinear solver. Nested iteration and AMG have been used with a
first-order system least squares (FOSLS) approach [2]. Also, discontinuous Galerkin discretizations and their
resulting solvers have been investigated [8]. Here, we investigate a finite-element discretization similar to
that of [11], in which fully-coupled algebraic multilevel preconditioners are used to solve the linear systems
generated by Newton linearization.

We investigate geometric multigrid preconditioners for the system (8), specifically developing effective
multigrid smoothers. While we are testing these schemes as smoothers for geometric multigrid, we envision
these approaches as also being applicable in an AMG context, and further study is needed. Thus, we fix
everything in the multigrid method except for the smoother. First, we use geometric multigrid, coarsening by
a factor of two in each direction. Second, for the grid transfers, we use the natural finite-element interpolation
and its transpose for restriction. Third, we use Galerkin coarsening, defining the coarse grid operator as
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A2h = RAhP . Finally, we use direct solves on the coarsest grid, which has 8 × 8 elements (948 degrees of
freedom).

With the other multigrid components chosen, we turn to smoothers and consider three possibilities. The
first two options can be thought of as extensions of smoothers for the incompressible fluid system to the
MHD system. These are a Vanka-type smoother and a Braess-Sarazin-type smoother (see [12, 13] and [3],
respectively, for their introduction as smoothers for the Navier-Stokes and Stokes equations). The other
option that we consider is a split preconditioner [6], where the system is “split” via an approximate block
factorization into two subsystems, a fluids-magnetics system and an incompressible fluids system. The
application of this smoother requires solving these two systems in sequence, to some satisfactory degree of
accuracy.

3. Smoothers

3.1. Vanka-Type Smoothers. A general description of Vanka smoothing for incompressible fluids can
be found in [10, 12]. The idea of the smoother is to enforce the incompressibility constraint locally at each
pressure degree of freedom (dof), updating in a Gauß-Seidel fashion. It is relatively straightforward to extend
this idea to the MHD system. We index the Vanka blocks by the pressure degrees of freedom, essentially
considering one row of the incompressibility constraint at each step. In effect, this means restricting the
Vanka blocks to be based on overlapping 2×2 element patches. The resulting Vanka matrices are substantially
smaller matrices of the same form as the system matrix A. Although each Vanka matrix defines a saddle-point
problem, the construction guarantees that each is always invertible.

The Vanka smoother then iterates over all pressure degrees of freedom in a Gauß-Seidel manner and
updates the degrees of freedom in the Vanka block corresponding to a pressure degree of freedom, p`, byup

a


`

=

up
a


`

+

ωuI
ωpI

ωaI

F BT Z
B 0 0
Y 0 D

−1

`

rurp
ra


`

,(9)

where r denotes the “current” residual in each component (taking into account all updates corresponding to
blocks already processed, for pl, l < `) and the ω are (optional) underrelaxation parameters. Note that this
is an overlapping, multiplicative Schwarz method. As such, a degree of freedom may be updated up to four
times per iteration and the order in which the updates occur is significant.

To form one of the Vanka matrices A`, we proceed analogously to the incompressible fluids case. We begin
with a pressure degree of freedom and select those velocity degrees of freedom corresponding to columns
with nonzero entries in the row of the incompressibility equation that corresponds to the pressure degree of
freedom. This completely defines the Vanka blocks to be used for the incompressible fluids case, and the
corresponding Vanka matrix would then be formed by taking the submatrix of A that is the intersection of
the rows and columns corresponding to the collected degrees of freedom.

This is then extended to include the vector potential (VP) degrees of freedom. Upon inspection of the
incompressibility equation, notice the lack of connections to the vector potential variable. This means that
there is no implicit way to choose the VP degrees of freedom to be included in the Vanka blocks. To remedy
this problem, we use those VP degrees of freedom that are collocated with those velocity degrees of freedom
in which we are interested. The Vanka matrix for this pressure degree of freedom is then the submatrix of
A that is the intersection of the rows and columns corresponding to the collected degrees of freedom.

Remark. It is important to note that the collocation of the velocity and VP degrees of freedom is a feature
of the discretization choice. A generalization would be to choose those VP (or magnetic field, if discretized
directly) degrees of freedom associated with those elements with which the pressure degree of freedom is
associated.

We can also consider alternatives to the method given above for choosing the Vanka matrices in a way that
leads to cheaper iterations. One possibility is the literal extension of the “diagonal Vanka” smoother [9, 10]
to the MHD case, where the Vanka matrices have the form:

A` =

diag(F`) BT
` 0

B` 0 0
0 0 diag(D`)

 .
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This is easy to invert; however, all coupling between the velocity and vector potential degrees of freedom is
entirely ignored. To avoid losing this coupling entirely, we develop an “economy Vanka” method that is still
cheap but slightly more inclusive. Begin by defining the matrix H`:

H` =

[
F` Z`

Y` D`

]
.(10)

Now define

H̃` =

[
F̃` Z̃`

Ỹ` D̃`

]
(11)

to be a new version of the matrix H` that, in each row, only contains connections to degrees of freedom
located at the mesh point at which the diagonal degree of freedom is located. Thus, each row will have a
maximum of three nonzeros (1 ux dof, 1 uy dof, and 1 Az dof). Note that this is specific to the Q2−Q1−Q2

discretization. Then we can define:

A` =

F̃` BT
` Z̃`

B` 0 0

Ỹ` 0 D̃`

 .(12)

This gives a Vanka matrix that is easier to invert than the full Vanka matrix but still includes the coupling
of the velocity to the vector potential.

3.2. Braess-Sarazin Smoother. Whereas the Vanka smoother enforces the incompressibility constraint
locally, Braess-Sarazin smoothers treat this constraint globally. Braess-Sarazin smoothers were introduced
for the Stokes problem in [3]. Here, we extend and apply this smoother to the MHD case. To begin, we
make the following definitions:

F̂ =

[
F Z
Y D

]
, B̂ =

[
B 0

]
, û =

[
u
a

]
, f̂u =

[
fu
fa

]
.(13)

We then permute rows and columns of the MHD system (8) and perform the following factorization:F Z BT

Y D 0
B 0 0

 =

[
F̂ B̂T

B̂ 0

]
=

[
F̂ 0

B̂ −B̂F̂−1B̂T

] [
I F̂−1B̂T

0 I

]
.(14)

From this factorization of the system matrix, the Braess-Sarazin method follows by choosing an appro-
priate preconditioner F̄ for F̂ that is easy to invert and then applying the iteration[

û
p

](k+1)

=

[
û
p

](k)

+

[
I 1

ω F̄
−1B̂T

0 I

]−1 [
ωF̄ 0

B̂ − 1
ω B̂F̄

−1B̂T

]−1

r̂(k),

where r̂(k) is the (appropriately permuted) residual at step k and ω is some damping parameter. For the

incompressible fluid case, common choices for F̄ are F̄ = I [3] and F̄ = diag(F̂ ) [10]. As when we considered
economy Vanka above, we want to include the important coupling between the velocity and the vector
potential equations (the matrices Y and Z). Thus, we follow an approach similar to (10)-(11) for economy

Vanka. We define F̄ to be the matrix F̂ , but each row now only contains those entries corresponding to
degrees of freedom that are collocated with the diagonal degree of freedom. This again ensures that there
are no more than three entries in each row and is specific to the Q2 −Q1 −Q2 discretization.

3.3. SplitPrec as a Smoother. In [6], a split preconditioner, called SplitPrec, was proposed for the system,
(8), that splits the operator into a Navier-Stokes operator and a magnetics-velocity operator, each a 2 × 2
block operator. SplitPrec is based on the following approximate block factorization:F BT Z

B 0 0

Y Y F−1BT D

 =

F Z
I

Y D

F−1

I
I

F BT

B 0
I

 .(15)

The highlighted term is the error that is introduced by making this approximate factorization.
The application of this method as a smoother is an approximate solve with the fluid-magnetics system

(hereafter, we will refer to this as the “magnetics system” as the other system involves no magnetics coupling)
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followed by an approximate solve with the fluids-only system (hereafter, we will refer to this as the “fluids
system”):

r(k) = b−Ax(k)

r̂ =

F 0 Z
0 I 0
Y 0 D

−1

r(k)

r∗ =

F BT 0
B 0 0
0 0 I

−1

(r −Ar̂)

x(k+1) = x(k) + r̂ + r∗

We then use previously developed and well-known techniques for the incompressible fluids system (Braess-
Sarazin, Vanka, or even V-Cycles with either of these as the smoother). We also need to approximately solve
the magnetics system. Based on preliminary numerical experiments (summarized below), it seems that point
Gauß-Seidel and block Gauß-Seidel with relatively simple blocks are easy and effective options.

4. Test Problem and Results

4.1. The Hartmann Problem. For numerical experiments, we study a modified Hartmann flow vector
potential problem [11, §5.1.2]. This is a steady-state problem posed over a square box (x, y) ∈ [−1, 1]2

with a pressure gradient that drives the flow ∂p̄
∂x = −G0. The velocity and magnetic fields have solutions

u = (ux, 0, 0) and B = (Bx, B0, 0), where B0 is an applied external magnetic field. The other components
are

ux = −ρG0Ha

µ0B2
0

[
cosh(Ha)− cosh(yHa/L)

sinh(Ha)

]
Bx = −B0Rem

Ha

[
sinh(yHa/L)− (y/L) sinh(Ha)

cosh(Ha)− 1

]
.

In terms of the vector potential Az, this solution becomes

Az = −B0x−
B0Rem
Ha

[
cosh(yHa)/Ha− [y2/(2L)] sinh(Ha)

cosh(Ha)− 1

]
.

An external electric field is needed to sustain this solution and is given by

E0
z =

G0

B0
[Ha coth(Ha)− 1].

Here, the Reynolds and Lundquist numbers are defined by Re = 2U/ν, Rem = 2µ0U/η, respectively,
where U is the maximum x-direction velocity. The Hartmann number, Ha, is defined as Ha = 2B0/

√
ρνη.

For our purposes here, we have taken ρ = ν = η = µ0 = 1 and selected different values for G0 and B0 to
produce the desired Reynolds, Lundquist, and Hartmann numbers.

4.2. Numerical Experiments. For each smoother described above, we test a variety of parameters. Phys-
ically, we vary the Hartmann number, testing values Ha = 1, 5, 20. In effect, this tests applied magnetic
fields of different strengths and, by extension, different velocity profiles. Numerically, we vary both grid
sizes and the properties of the linear systems using a series of reference linearizations, generated by applying
Newton’s method with an unrelated solver. This ensures that we are comparing the effectiveness of these
solvers on a consistent set of linear systems; further study is needed on the effects of these linear solvers on
nonlinear convergence.

In the following plots, the various colors indicate the reference Newton linearization, as shown in the
legend. The type of line indicates grid size: solid lines (−) for 32 × 32 elements, dashed lines (−−) for
64×64 elements, and dash-dotted lines (−·) for 128×128 elements. In general, the behavior across Hartmann
numbers did not differ significantly, and, therefore, we only show results for one Hartmann number, namely
Ha = 5. In such cases that there was significant variation, multiple values of Ha are shown. As described
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above, the solver that we apply in each case is multigrid-preconditioned GMRES. Specifically, we use a
V(1,1) cycle as the preconditioner and choose the multigrid smoother to be one of the three described above.

4.2.1. Vanka Results. We apply the solver using full Vanka smoothing for the multigrid smoother. For the
underrelaxation parameters, we choose ωu = 0.8, ωp = 0.6, and ωa = 0.6. These values are based on a
numerical study to determine, in steps of 0.1, the best combination of underrelaxation parameters. This
combination is used here because it yields good results across all test problems used in that study. Further
study of this choice is, of course, needed. The results for this experiment are shown on the left in Figure 1.
The figure shows that this smoother leads to consistently good performance across all grid sizes and reference
linearizations.

Figure 1. Convergence of MG-preconditioned GMRES on the Ha = 5 test problem using
full Vanka smoothing on the left and economy Vanka smoothing on the right with underre-
laxation parameters ωu = 0.8, ωp = 0.6, and ωa = 0.6.

We also apply the solver using economy Vanka smoothing for the multigrid smoother. The underrelaxation
parameters here are taken to be the same as for the full Vanka smoothing. The results for this experiment are
shown on the right in Figure 1. Again, we see that this method yields scalable performance for all reference
linearizations.

4.2.2. Braess-Sarazin Results. Next, we apply the solver using Braess-Sarazin for the multigrid smoother.
The smoothing parameter ω is taken in each case to be the spectral radius of F̄−1F̂ , as suggested by [10].
This is computed using MATLAB’s eigs function. To solve the approximate Schur complement equation
required in this iteration, we use three sweeps of symmetric Gauß-Seidel. The results are shown in Figure 2.
We see that this method also shows scalable performance across all reference linearizations.

4.2.3. SplitPrec Results. Finally, we apply the solver using SplitPrec as the multigrid smoother, with several
combinations of solvers for the fluids and magnetics systems. We need to determine if the method is viable
at all, and thus we begin by testing SplitPrec using direct solves for both systems. The results are shown
in Figure 3. These results show that SplitPrec is generally an effective smoother, although some lack of
scalability is seen.

Having determined that SplitPrec can, in fact, be used effectively in this context using direct solves, it
remains to be seen if this approach is viable if we do not use direct solves on both of the subsystem solves.
First, we remove the direct solve on the magnetics subsystem and replace it with three sweeps of symmetric
Gauß-Seidel. The results are shown in Figure 4. While this variant generally performs well, it is unable to
effectively solve the first reference linearization at higher Hartmann numbers on the coarsest mesh.

Next, we switch to approximate solves for both systems. Thus, we use three sweeps of symmetric Gauß-
Seidel for the magnetics system and two iterations of Braess-Sarazin for the fluids system. The results are
shown in Figure 5. We use two V(2,2) cycles with symmetric Gauß-Seidel as the smoother to solve the
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Figure 2. Convergence of MG-preconditioned GMRES on the Ha = 5 test problem using
Braess-Sarazin smoothing.

Figure 3. Convergence of MG-preconditioned GMRES on all test problems using SplitPrec
as the multigrid smoother, with direct solves for both the magnetics and the fluids system
solves.
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Figure 4. Convergence of MG-preconditioned GMRES on all test problems using SplitPrec
as the multigrid smoother, with three sweeps of symmetric Gauß-Seidel to approximately
solve the magnetics system and a direct solve for fluids system solve.

approximate Schur complement system in the Braess-Sarazin iteration. In this case, we generally see good
performance for the smaller grid sizes, but lack convergence on the 128×128 grid (a second V(2,2) is required
to get those problems to converge at all in fewer than 50 iterations).

Since Braess-Sarazin did not seem to be effective, we then tried two sweeps of Vanka smoothing. The
results are shown in Figure 6. We used ωu = ωp = 0.7 for the underrelaxation parameters. These results
show that this version of the smoother is highly effective and scalable across all reference linearizations, with
the notable exception, again, of the first reference linearization for the problem Ha = 20. Thus it is clear that
effective smoothers for the incompressible fluids system do not necessarily lead to effective MHD smoothers
within SplitPrec.

5. Conclusions and Future Directions

We have presented three potential smoothers for a vector-potential incompressible resistive MHD for-
mulation. The Vanka and Braess-Sarazin smoothers come from extensions to smoothers for incompressible
fluids systems, while the SplitPrec smoother attempts to split the physics into two simpler systems that are
then solved independently. For the test problem that we consider, we see that the Vanka and Braess-Sarazin
methods consistently perform and scale well. We also observed that the SplitPrec smoother could perform
well, but it was difficult to find combinations of solvers for the subsystems that yield as good of performance.
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Figure 5. Convergence of MG-preconditioned GMRES on all test problems using Split-
Prec as the multigrid smoother, with three sweeps of symmetric Gauß-Seidel to solve the
magnetics system and two iterations of Braess-Sarazin for the fluids system solve.

Figure 6. Convergence of MG-preconditioned GMRES on the Ha = 5 (left) and Ha = 20
(right) test problems using SplitPrec as the multigrid smoother. We used three sweeps
of symmetric Gauß-Seidel to solve the magnetics system and a two iterations of Vanka
smoothing for the fluids system solve.
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Up to this point, all of the numerical experiments have been run in MATLAB and we have been unable
to effectively compare these smoothers in terms of computation time. Thus, we are moving to a C++ im-
plementation using the Trilinos framework from Sandia National Laboratories in order to gather meaningful
timing results. This will allow us to determine which of the above smoothers are the most efficient.

Finally, it is unclear that the Q2 − Q1 − Q2 discretization is the optimal choice for the combined MHD
problem. Thus, we will test these smoothers on other problems using other discretizations such as those that
preserve the physical quantities involved. We will also consider directly discretizing the magnetic field, B,
rather than considering the vector potential formulation. This requires considering methods that preserve
the solenoidal constraint, ∇ · B = 0. Finally, we would like to study the various smoothers in the context
of the full nonlinear solver and investigate how to improve the cost of solving the full nonlinear system
efficiently.
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