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Abstract. In this paper we present a new highly efficient calculation method for the far field amplitude patterns
that arise from scattering problems governed by the d-dimensional Helmholtz equation. The method is based upon a
reformulation of the standard real-valued Green’s function integral expression for the far field amplitude on a complex
contour. On this complex contour the scattered wave can be calculated very efficiently using the iterative multigrid
method, resulting in a fast and scalable calculation of the far field mapping. The full complex contour approach is
successfully validated on model problems in two and three spatial dimensions.
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1. Introduction. Scattering problems are of key importance in many areas of science and
engineering since they carry information about an object of interest over large distances, remote
from the given target. Consequently, ever since their original statement a variety of applications of
scattering problems have arisen in many different scientific subdomains. In chemistry and quantum
physics, for example, virtually all knowledge about the inner workings of a molecule has been
obtained through scattering experiments [31]. Similarly, in many real-life electromagnetic or acoustic
scattering problems information about a far away object is obtained through radar or sonar [15],
intrinsically requiring the solution of 2D or 3D wave equation.

Preconditioned Krylov subspace methods are currently among the most efficient numerical al-
gorithms for the solution of high-dimensional equations, as they exploit the sparsity structure of the
discretized system of equations and allow for reasonably good scaling with respect to the number of
unknowns. Indeed, preconditioned Krylov subspace methods are able to solve some symmetric posi-
tive definite systems in only O(n) iterations, where n is the number of unknowns in the system [44].
However, scattering problem are often described by Helmholtz equations, which after discretization
lead to highly indefinite linear systems that are notoriously hard to solve using the current genera-
tion of iterative methods. Moreover, the highly efficient iterative multigrid method [9, 11, 12, 42, 43]
is known to break down when applied to these type of problems [17, 23].

Over the past decade significant research has been performed on the construction of good pre-
conditioners for Helmholtz problems. Recent work includes the wave-ray approach [10], the idea of
separation of variables [33], algebraic multilevel methods [8], multigrid deflation [40] and a trans-
formation of the Helmholtz equation into an advection-diffusion-reaction problem [24]. In 2004 the
Complex Shifted Laplacian (CSL) preconditioner was proposed by Erlangga, Vuik and Oosterlee
[20, 21, 22] as an effective Krylov subspace method preconditioner for Helmholtz problems. The
key idea behind this preconditioner is to formulate a perturbed Helmholtz problem that includes a
complex valued wave number. Given a sufficiently large complex shift, this implies a damping in
the problem, thus making it solvable using multigrid in contrast to the Helmholtz problem with real
valued wave numbers. By introducing the complex shifted problem as a preconditioner, the resulting
Krylov method has advantageous spectral properties, leading to a reasonable convergence rate. The
concept of CSL has been further generalized in a variety of papers among which [2, 18, 19, 32].

Recently a variation on the Complex Shifted Laplacian scheme by the name of Complex Stretched
Grid (CSG) was proposed in [36, 37], introducing a complex valued grid distance instead of a
complex valued wave number in the preconditioning system. It was furthermore shown in [35] that
the resulting Krylov subspace method has very similar convergence properties. Indeed, the CSG
preconditioner can be shown to be generally equivalent to the CSL scheme, and can thus be solved
equally efficiently using multigrid.

The choice of a sufficiently large complex shift parameter, denoted in the literature by β, is vital
to the stability of the multigrid solution method. The general rule of the thumb for the choice of
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the complex shift suggested in the literature is to take β = 0.5 [21, 35]. This experimental guideline
was recently confirmed through a rigorous LFA analysis in [16], proving multigrid to be generally
stable for shifts β larger than 0.5.

However, despite its overall qualitative performance the CSL/CSG preconditioned Krylov sub-
space solution method suffers from a significant wave number dependency of the convergence rate
[35]. Additionally, the convergence rate quickly deteriorates in the presence of evanescent waves in
the Helmholtz equation.

This paper focuses on calculating the far field mapping resulting from a Helmholtz scattering
problem. Typically, the calculation of the far field map is a two step process. First a Helmholtz
problem with absorbing boundary conditions is solved on a finite numerical box covering the object
of interest. In the second step a volume integral calculates the angular dependency of the far field
amplitude with an integral over the Green’s function and the numerical solution. This strategy
was successfully applied to calculate impact ionization in hydrogen [38] and double photo-ionization
in molecules [46, 47] described by the Schrödinger equation, which in this case translates into a
6-dimensional Helmholtz problem.

The absorbing boundary conditions used in this paper are based on the principle of Exterior
Complex Scaling (ECS) that was introduced in the 1970’s [1, 4, 41] and is frequently used in appli-
cations. This method is equivalent to a complex stretching implementation of PML [14].

In this paper we propose a new method for the calculation of the far field map. The method
reformulates the integral over the Green’s function on a complex contour. This modified approach
requires the solution on the Helmholtz equation on a complex contour. It is shown that the latter
problem is equivalent to a Complex Shifted Laplacian problem that can be solved very efficiently by
using a multigrid method. To validate our approach, the method is successfully illustrated on both
2D and 3D Helmholtz and Schrödinger equations for a variety of discretization levels.

The outline of the article is the following. In Section 2 we briefly define the notation and
terminology used throughout the text, and we demonstrate the standard calculation of the far field
map for Helmholtz type scattering problems. In the second part of this section we introduce an
alternative way of calculating the far field mapping based upon a reformulation of the integral
over a complex contour, for which the corresponding Helmholtz system is very efficiently solved
iteratively. The new technique is validated on a variety of model scattering problems in both 2D
and 3D in Section 3, where it is found to yield a very fast and scalable far field map calculation
method. Finally, conclusions are drawn in Section 4.

2. The Helmholtz equation and the far field map. In this section we introduce the
general notation used throughout this text and we illustrate the derivation of the far field solution
and calculation of its amplitude from a Helmholtz-type scattering problem.

2.1. Derivation of the far field mapping. The Helmholtz equation is a simple mathematical
representation of the physics behind a wave scattering at an object defined on a compact support
area O located within a domain Ω ⊂ Rd. The equation is given by(

−∆− k2(x)
)
u(x) = f(x) on Ω ⊂ Rd (2.1)

with dimension d ≥ 1, where ∆ is the Laplace operator, f designates the right hand side or source
term, and k is the (spatially dependent) wave number, representing the material properties inside
the object of interest. Indeed, the wave number function k is defined as

k(x) =

{
k(x), for x ∈ O,
k0, for x ∈ Ω \O, (2.2)

where k0 ∈ R is a scalar constant denoting the wave number outside the object of interest. The
scattered wave solution is given by the unknown function u. Throughout the text we will use the
following convenient notation

χ(x) :=
k2(x)− k2

0

k2
0

, (2.3)
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such that k2(x) = k2
0 (1 + χ(x)). Note that the function χ is trivially zero outside the object of

interest O where the space-dependent wave number k2(x) is reduced to k0. Defining the incoming
wave as uin(x) = eik0η·x, where η is the unit vector that defines the direction of the incoming wave,
the right-hand side f(x) is typically given by k2

0χ(x)uin(x). Reformulating (2.1), we obtain(
−∆− k2(x)

)
u(x) = k2

0χ(x)uin(x) for x ∈ Ω. (2.4)

This equation is typically formulated on the domain Ω with outgoing wave boundary conditions on
∂Ω. The above equation can in principle be solved in a numerical box (i.e. a discretized subset of Ω)
covering the support of χ, with absorbing boundary conditions along all boundaries. Let us assume
that the numerical solution satisfying (2.4) on this box has been calculated and is denoted by uN .

In order to calculate the far field scattered wave pattern the above equation is reorganized as(
−∆− k2

0

)
u(x) = k2

0χ(x) (uin(x) + u(x)) . (2.5)

Note that we can replace the function u(x) in the right hand side of this equation with the nu-
merical solution uN (x) obtained from equation (2.4). In doing so, the above equation becomes an
inhomogeneous Helmholtz equation with constant wave number(

−∆− k2
0

)
u(x) = g(x) for x ∈ Rd, (2.6)

where the short notation g(x) = k2
0χ(x)(uin(x)+uN (x)) is introduced for readability and notational

convenience. The above equation can easily be solved analytically using Green’s function G(x,x′),
i.e.

u(x) =

∫
Rd
G(x,x′) g(x′) dx′. (2.7)

Since the function g is only non-zero inside the numerical box that was used to solve equation (2.4),
the above integral over Rd can be replaced by a finite integral over Ω

u(x) =

∫
Ω

G(x,x′)k2
0χ(x′)

(
uin(x′) + uN (x′)

)
dx′ for x ∈ Rd. (2.8)

This expression allows us to calculate the scattered wave solution u in any point x ∈ Rd outside the
numerical box, using only the information inside the numerical box.

Given the integral expression (2.8), the asymptotic form of the Green’s function can be used to
compute the far field mapping of the scattered wave u. In the following this will be illustrated for a
2D model example where the Green’s function is given explicitly by

G(x,x′) =
i

4
H

(1)
0 (k0|x− x′|), (2.9)

where i represents the imaginary unit and H
(1)
0 is the 0-th order Hankel function of the first kind.

Note that an analogous derivation can be performed in 3D, where we mention for completeness that
the Green’s function is given by

G(x,x′) =
eik0|x−x

′|

4π|x− x′| . (2.10)

To calculate the angular dependence of the far field map, the direction of the unit vector α
is introduced that is in 2D defined by a single angle α with the positive horizontal axis, i.e. α =
(cosα, sinα)T . Rewriting the spatial coordinates x in polar coordinates as x = (ρ cosα, ρ sinα)

T

the asymptotic form of the Green’s function for |x| � 1 (ρ→∞) is given by

i

4
H

(1)
0 (k0|x− x′|) =

i

4

√
2

π
e−iπ/4

1√
k0ρ

eik0ρe−ik0x
′ cosα−ik0y′ sinα

=
i

4

√
2

π
e−iπ/4

1√
k0ρ

eik0ρe−ik0x
′·α (2.11)

3



where we have used the fact that the Hankel function H
(1)
0 is asymptotically given by

H
(1)
0 (r) =

√
2

πr
exp

(
i(r − π

4
)
)
, r ∈ R, r � 1. (2.12)

This leads to the following asymptotic form of the 2D scattered wave solution

u(ρ, α) =
i

4

√
2

π
e−iπ/4

eik0ρ√
k0ρ

∫
Ω

e−ik0x
′·αg(x′) dx′, (2.13)

for ρ→∞. The above expression is called the 2D far field wave pattern of u, with the integral being
denoted as the far field (amplitude) map

F (α) =

∫
Ω

e−ik0x
′·αg(x′) dx′. (2.14)

Note that the value of the integral only depends on the direction α (or, in 2D, on the angle α) and
the wave number k0. Expression (2.13) readily extends to the d-dimensional case, where it holds
more generally that

lim
ρ→∞

u(ρ,α) = D(ρ)F (α), α ∈ Rd, (2.15)

for a function D(ρ) which is known explicitly and a far field mapping F (α) given by (2.14). This
far field mapping is in fact a Fourier integral of the function g.

Summarizing, we conclude that the calculation of the far field wave pattern of the scattered
wave u consists of two main steps. First, one has to solve a Helmholtz equation with a spatially
dependent wave number on a numerical box with absorbing boundary conditions as in (2.4). Once
the numerical solution is obtained, it is followed by the calculation of a Fourier integral (2.14)
over the aforementioned numerical domain. The main computational bottleneck of this calculation
generally lies within the first step, since one requires a suitable (iterative) method for the solution
of a high dimensional indefinite Helmholtz system with absorbing boundary conditions.

Note that the statement of the far field mapping presented in this section relies on the fact that
the object of interest function χ is compactly supported. In particular, this is used when computing
the numerical solution uN to equation (2.4) on a bounded numerical box that covers the support
of χ. The above reasoning can however be readily extended to the more general class of analytical
object functions χ that vanish at infinity, i.e. χ ∈ V where V = {f : Rd → R analytical | ∀ε >
0, ∃K ⊂ Rd compact, ∀x ∈ Rd \ K : |f(x)| < ε}. Indeed, due to the existence of smooth bump
functions [27, 30], functions with compact support can be shown to be dense within the space of
functions that vanish at infinity. Consequently, every analytical function χ that vanishes at infinity
can be arbitrarily closely approximated by a series of compactly supported functions {χn}n. This
in turn implies that the corresponding solutions {uNn }n on a limited computational box can be
arbitrarily close to the solution of the Helmholtz equation generated with the analytical object of
interest χ ∈ V . Intuitively, this means that if χ is analytical but sufficiently small everywhere
outside O, the computational domain may be retricted to a numerical box covering O as though χ
was compactly supported. Hence, the far field mapping (2.14) is well-defined for analytical functions
χ that vanish at infinity. This observation will prove particularly useful in the next section.

2.2. Calculation on a complex contour. In this paragraph we will illustrate how the integral
(2.14) can be reformulated on a complex contour and why this is useful in terms of numerical
computation. First, we note that the integral can be split into a sum of two contributions F (α) =
I1 + I2 with

I1 =

∫
Ω

e−ik0x·αχ(x)uin(x)dx and I2 =

∫
Ω

e−ik0x·αχ(x)uN (x)dx. (2.16)

Calculation of first integral I1 is generally easy, since it only requires the expression for the incoming
wave, which is known analytically. The second integral however requires the solution of the Helmholtz
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Fig. 2.1. Schematic representation of the complex contour for the far field integral calculation illustrated in 1D.
The full line represents the real domain Ω, the dotted and dashed lines represent the subareas Z1 = {xeiγ : x ∈ Ω}
and Z2 = {beiθ : b ∈ ∂Ω, θ ∈ [0, γ]} of the complex contour respectively.

equation on the numerical box, which is known to be notoriously hard to obtain using iterative
methods. In particular, the highly efficient multigrid solution method is unable to solve these type
of indefinite Helmholtz equations due to instability in both the coarse grid correction and relaxation
scheme. This divergence is due to close-to-zero eigenvalues of the discretized operator on some
intermediate multigrid levels [17].

However, if both u and χ are analytical functions the integral can be calculated over a complex
contour rather than the real axis as follows. Let us define a complex contour along the rotated real
domain Z1 = {z ∈ C | z = xeiγ : x ∈ Ω}, where γ is a fixed rotation angle, followed by the curved
segment Z2 = {z ∈ C | z = beiθ : b ∈ ∂Ω, 0 ≤ θ ≤ γ}, as presented schematically on Figure 2.1.
The integral I2 can then be written as

I2 =

∫
Z1

e−ik0z·αχ(z)uN (z)dz +

∫
Z2

e−ik0z·αχ(z)uN (z)dz. (2.17)

The second term in the above expression however vanishes, as the function χ is per definition zero
everywhere outside the object of interest O, thus notably in all points z ∈ Z2. Hence one ultimately
obtains

I2 =

∫
Z1

e−ik0z·αχ(z)uN (z)dz =

∫
Ω

e−ik0e
iγx·αχ(xeiγ)uN (xeiγ)eiγ dx. (2.18)

Note that for 0 < γ < π/2 the exponential of xeiγ is increasing in all directions. At the same
time the scattered wave solution uN , which consists of outgoing waves on the complex domain Z1,
is decaying in all directions. Additionally, the function χ is presumed to have a bounded support
making the above integral calculable on a limited numerical domain.

Expression (2.18) for the integral I2 indicates that the far field map can (at least partially) be
computed over the full complex contour Z1, i.e. a rotation of the original real domain Ω over an
angle γ in all spatial dimensions. The advantage of this approach is that we only need the value of
uN evaluated along this complex contour; thus we now have to solve the Helmholtz equation (2.4)
on a complex contour. On this contour it is a damped equation which is much easier to solve that
the Helmholtz equation along the real axis. Indeed, given a sufficiently large value of γ, it has been
shown in the literature [22, 36] that the multigrid scheme is a very effective solution method for the
Helmholtz equation on a complex domain.

2.3. Solving the Helmholtz equation on a complex contour. We now show that the
Helmholtz problem on the complex domain Z1 is similar to a complex shifted Laplacian system [20],
and can thus be solved very efficiently using a multigrid solver. Consider the Helmholtz problem
with a complex shifted wave number(

−∆− (1 + iβ)k2(x)
)
u(x) = f(x) (2.19)

with Dirichlet boundary conditions u(x|∂Ω) = 0 and a complex shift parameter β ∈ R. After finite
difference discretization on a d-dimensional Cartesian grid with fixed grid distance h in every spatial
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Fig. 2.2. Real grid with ECS boundaries vs. full complex grid.

dimension, one typically obtains a linear system

−
(

1

h2
L+ (1 + iβ)k2

)
uh = bh (2.20)

where L is the matrix operator expressing the stencil structure of the Laplacian. In 2D, for example
L = kron(I, diag(−1, 2,−1) + kron(diag(−1, 2,−1), I), where the size of L intrinsically depends on
h. After dividing both sides in linear system (2.20) by (1+iβ), we immediately obtain the equivalent
system

−
(

1

(1 + iβ)h2
L+ k2

)
uh =

bh
1 + iβ

, (2.21)

which is identical to the discretization of the original Laplacian with grid distance h̃ =
√

1 + iβ h.
This scheme is known as Complex Stretched Grid, and it was shown in [36] to yield exactly the same
Krylov convergence compared to Complex Shifted Laplacian when both are used as a preconditioner
for a general Krylov method.

It is known from the literature [16, 20] that problem (2.20), or equivalently (2.21), can be solved
efficiently with multigrid for values of the complex shift β > 0.5. Note that this requirement is based
on a multigrid cycle with standard weighted Jacobi or Gauss-Seidel smoothing. This rule of thumb
can easily be translated into an angle γ for the complex scaling. Writing (1 + iβ) = ρ exp(iϕ) with

ρ =
√

1 + β2 and ϕ = arctanβ, one readily obtains

h̃ =
√

1 + iβ h =
√
ρ exp(iϕ/2)h (2.22)

Consequently, as the shift β is required to be larger than 0.5, the grid rotation angle γ = ϕ/2 must
satisfy

γ >
arctan(0.5)

2
= 0.2318 ≈ 13.28◦ (2.23)

Note that when substituting the standard multigrid relaxation schemes like ω-Jacobi or Gauss-Seidel
by a more robust iterative scheme like e.g. GMRES(m), the rotation angle γ may be chosen even
smaller, up to a minimum of approximately 9.5◦ (see [34]).

In this paper we have chosen to link the grid rotation angle γ to the standard ECS absorbing
layer angle θ, see Figure 2.2. This is in no way imperious for the functionality of the method, but it
appears quite naturally from the fact that both angles perturb (part of) the grid into the complex
plane. Suppose the ECS boundary layer measures one quarter of the length of the entire real domain
in every spatial dimension, which is a common choice, we readily derive that the relation between
the rotation angle γ and the ECS angle θ is given by

γ = arctan

(
sin θ

2 + cos θ

)
. (2.24)

Table 2.1 shows some standard values of the ECS angle θ and corresponding γ values according to
(2.24). Note that for a multigrid scheme with ω-Jacobi or Gauss-Seidel smoothing to be stable, θ
should be chosen no smaller than π/4, see (2.23). Using the more efficient GMRES(3) method as a
smoother, the ECS angle can be chosen somewhat smaller, i.e. an angle around θ = π/6 suffices to
guarantee a stable multigrid solution.
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θ (rad.) π/8 π/6 π/5 π/4 π/3
γ (deg.) 7.5◦ 9.9◦ 11.8◦ 14.6◦ 19.1◦

Table 2.1
ECS angle θ and corresponding rotation angle γ for the full complex grid. Values based on (2.24).

3. Numerical results for 2D and 3D Helmholtz problems. In this section, we validate
the theoretical result presented above by a number of numerical experiments in both two and three
spatial dimensions. It will be shown that the proposed method results in a very fast and wave
number-independent solution method for the scattered wave system, hence yielding a remarkably
efficient method for the calculation of the far field mapping.

The model problem used throughout this section is a Helmholtz equation of the form (2.4)
with k2(x) = k2

0(1 + χ(x)). The equation is discretized on a nd-point uniform mesh covering a
square numerical domain Ω = [−20, 20]d using second order finite differences. In the 2D case the
space-dependent wave number is defined as

χ(x, y) = −1/5
(
e−(x2+(y−4)2) + e−(x2+(y+4)2)

)
, (x, y) ∈ [−20, 20]2, (3.1)

i.e. the object of interest takes the form of two circular point-like objects with mass concentrated
at the Cartesian coordinates (0,−4) and (0, 4) (see Figure 3.1). For the 3D model problem, the
following straightforward extension of the object is used

χ(x, y, z) = −1/5
(
e−(x2+(y−4)2+z2) + e−(x2+(y+4)2+z2)

)
, (x, y, z) ∈ [−20, 20]3, (3.2)

representing two spherical point-like objects in 3D space (see Figure 3.2). The incoming wave
scattering at the given object is defined by

uin(x) = eik0η·x, x ∈ Ω, (3.3)

where η is the unit vector in the x-direction.
Figure 3.1 illustrates the theoretical result presented in Section 2. The above 2D Helmholtz

model problem with wave number given by (3.1) is solved for uN using respectively a standard LU
factorization method on the real domain Ω with ECS complex boundary layers (θ = π/4) along
the domain boundary ∂Ω, and a series of multigrid V(1,1)-cycles with ω-Jacobi smoothing on the
full complex domain (γ ≈ 14.6◦) up to residual tolerance 1e-6. The standard multigrid intergrid
operators used in this work are bilinear interpolation and full weighting restriction. The moduli
of the wave number function χ (top) and the resulting solution uN (mid) are shown on Figure 3.1
for both methods. Note how the solution uN on the full complex contour is indeed heavily damped
compared to the solution on the real domain. Consequently, using the numerical solution uN , the 2D
far field map integral (2.14) can be calculated using any numerical integration scheme over the real
or complex domain respectively. The resulting far field mapping F (α) is shown as a function of the
angle α on Figure 3.1 (bottom). One observes that the mapping is indeed identical when calculated
on the real and complex domain, conform with the theoretical results. However, the computational
cost of the real-domain method for calculation of the far field map is reduced significantly by the
ability to apply multigrid to the equivalent complex scaled problem.

In Table 3.1 convergence results are shown for the solution of the 3D scattered wave equation
(2.4) using a series of multigrid V(1,1)-cycles on various grid sizes. Note that the multigrid method
scales perfectly as a function of the number of grid points, as doubling the number of grid points in
every spatial dimension does not increase the number of V-cycles required to reach a fixed residual
tolerance of 1e-6. This is a standard result from multigrid theory. Additionally and more im-
portantly, remarkable k-scalability is measured for the multigrid solution method on the complex
contour. Indeed, the multigrid convergence factor (and thus the corresponding work unit load re-
quired to solve the problem up to a given tolerance) is almost fully independent of the wave number
k0, as can be observed from the table. Note that from a physical-numerical point of view it is only
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Fig. 3.1. Top: 2D object of interest |χ(x)| given by (3.1). Mid: solution to the Helmholtz problem (2.4) (in
modulus) on a nx × ny = 256× 256 grid solved using LU factorization (left) on a double ECS contour with θ = π/4,
and using a series of multigrid V-cycles (right) with ω-Jacobi smoother on the corresponding full complex contour
up to a residual reduction tolerance of 1e-6. Bottom: resulting 2D Far field maps F (α) calculated following (2.14).

meaningful to consider discretizations satisfying the k0h < 0.625 criterion for a minimum of 10 grid
points per wavelength, cfr. [6], for which the corresponding values are designated in Table 3.1 by a
bold typesetting.

Ultimately, the computed scattered wave solution on the complex domain can again be used to
calculate the far field integral (2.14). The resulting 3D far field mapping for the model problem with
k0 = 1 is plotted in Figure 3.2. The left hand side panel shows an iso-surface visualization of the
3D object of interest χ(x) given by (3.2). On the right panel a spherical projection of the resulting
3D far field mapping is shown. The color hue indicates the value of the far field amplitude in each
outgoing direction.

Note that the calculation of the scattered wave solution can be optimized even further by
considering the Full Multigrid (FMG) scheme. This is a nested iteration of standard V-cycles, where
on each level a series of V(1,1)-cycles is used to approximately solve the error equation and supply
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Fig. 3.2. Left: 3D object of interest |χ(x)| given by (3.2). Shown are the |χ(x)| = c isosurfaces for c = 0,
1e-2, 1e-10 and 1e-100. Right: 3D Far field map, resulting from Helmholtz problem (2.4) with k0 = 1 solved on a
nx × ny × nz = 64 × 64 × 64 full complex grid with θ = π/6 (γ ≈ 9.9◦) using a series of multigrid V-cycles with
GMRES(3) smoother up to residual reduction tolerance 1e-6.

nx × ny × nz 163 323 643 1283 2563

k0

1/4
10 (10) 9 (59) 9 (560) 9 (4456) 9 (35165)

0.24 0.20 0.21 0.20 0.20

1/2
12 (12) 10 (63) 10 (611) 10 (4937) 9 (35405)

0.31 0.24 0.22 0.23 0.21

1
7 (8) 13 (83) 11 (691) 10 (4899) 10 (38975)
0.13 0.32 0.27 0.24 0.24

2
2 (4) 8 (54) 13 (809) 11 (5418) 10 (38051)
0.01 0.14 0.33 0.27 0.24

4
1 (3) 2 (17) 7 (457) 13 (6337) 11 (41848)
0.01 0.01 0.12 0.33 0.26

Table 3.1
3D Helmholtz problem (2.4) solved on a full complex grid with θ = π/6 using a series of multigrid V(1,1)-cycles

with GMRES(3) smoother up to residual reduction tolerance 1e-6. Displayed are the number of V-cycle iterations,
number of work units and average convergence factor for various wave numbers k0 and different discretizations. 1
WU is calibrated as the cost of 1 V(1,1)-cycle on the 163-points grid k0 = 1/4 problem. Discretizations respecting
the k0h < 0.625 criterion for a minimum of 10 grid points per wavelength are indicated by a bold typesetting.

a corrected initial guess for a finer level by interpolating the corresponding coarse grid solution.
Table 3.2 shows convergence results for the solution of the 3D scattered wave equation (2.4)

using an FMG scheme. The setting is comparable to that of Table 3.1, as a residual reduction
tolerance of 10−6 is imposed for each wavenumber and at every level of the FMG cycle, yielding a
fine nx×ny×nz = 2563 grid residual of order of magnitude 10−9. Note that the number of V-cycles
performed on each level in the FMG cycle is decaying in function of the growing grid size due to
the increasingly accurate initial guess, resulting in a relatively small number of V-cycles (5-9) to be
performed on the finest level. Consequently, the number of work units (and thus the computational
time) required to reach the designated residual reduction tolerance is significantly lower than the
work unit load of the pure V-cycle scheme displayed in Table 3.1.

Timing and residual results from a standard FMG sweep performing only one V(1,1)-cycle
on each level on the 3D Helmholtz scattering problem with a moderate wave number k0 = 1 are
shown in Table 3.3 for different discretizations. Note that timings were generated using a basic
non-parallelised Matlab code, using only a single thread on a simple midrange personal computer
and taking less than 8 minutes to solve a 3D Helmholtz problem with 256 gridpoints in every spatial
dimension.
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nx × ny × nz 163 323 643 1283 2563

k0

1/4
8 (11) 6 (52) 5 (384) 5 (3190) 5 (25241)
1.93e-9 1.77e-9 2.46e-9 2.68e-9 3.00e-9

1/2
9 (12) 8 (68) 6 (452) 6 (3392) 6 (30215)
1.27e-8 1.87e-9 3.37e-9 1.30e-9 1.25e-9

1
5 (8) 9 (68) 8 (572) 7 (4013) 6 (30747)

1.33e-8 1.51e-8 4.07e-9 1.76e-9 3.66e-9

2
1 (5) 5 (43) 9 (600) 8 (4456) 7 (36367)

5.99e-13 1.18e-8 1.91e-8 5.28e-9 2.67e-9

4
1 (4) 1 (18) 5 (357) 9 (5038) 8 (39038)

8.90e-20 2.86e-13 5.19e-9 1.97e-8 4.65e-9

Table 3.2
3D Helmholtz problem (2.4) solved on a full complex grid with θ = π/6 using an FMG cycle with GMRES(3)

smoother up to residual reduction tolerance of 1e-6. Displayed are the number of V-cycle iterations on the designated
finest grid, number of work units and resulting residual norm for various wave numbers k0 and different discretiza-
tions. 1 WU is calibrated as the cost of 1 V(1,1)-cycle on the 163-points grid k0 = 1/4 problem. Discretizations
respecting the k0h < 0.625 criterion for a minimum of 10 grid points per wavelength indicated by a bold typesetting.

nx × ny × nz 163 323 643 1283 2563

CPU time 0.20 s. 0.78 s. 6.24 s. 53.3 s. 462 s.
‖r‖2 3.3e-5 7.9e-5 2.7e-5 1.1e-5 4.6e-6

Table 3.3
3D Helmholtz problem (2.4) with wave number k0 = 1 solved on a full complex grid with θ = π/6 using one

FMG-cycle with GMRES(3) smoother. Displayed are the CPU time (in s.) and the resulting residual norm for
various discretizations. System specifications: Intel R© CoreTM i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.

4. Conclusions and discussion. In this paper we have developed a novel highly efficient
method for the calculation of the far field map resulting from d-dimensional Helmholtz scattering
problems where the wave number is an analytical function. Our approach is based on the refor-
mulation of the classically real-valued Green’s function volume integral for the far field map to an
equivalent volume integral over a complex valued domain.

The advantage of the proposed reformulation lies in the scattered wave solution of the Helmholtz
problem on a complex domain, which for high dimensional problems can be calculated efficiently
using a multigrid method. Indeed, the reformulation of the Helmholtz forward problem on the full
complex contour is shown to be equivalent to a Complex Shifted Laplacian problem, where multigrid
has been proven in the literature to be a fast and scalable solver. However, whereas the Complex
Shifted Laplacian was previously only used as a preconditioner for highly indefinite Helmholtz prob-
lems, the complex-valued far field map calculation proposed within this paper effectively allows for
multigrid to be used as a solver.

The functionality of the method is validated on 2D and 3D model Helmholtz problems. It is
confirmed that the values of the far field mapping calculated on the full complex grid exactly matches
the values of the classical real-valued integral. Furthermore, the number of multigrid iterations is
shown to be largely wave number independent, yielding a fast overall far field map calculation.

One area of scientific computing where the proposed technique might be particularly valuable
is in the numerical solution of quantum mechanical scattering problems. These are generally high-
dimensional scattering problems where the wave number is indeed an analytical function and where
6D or 9D problems are common.

Finally we note that a number of modifications can be made to improve the efficiency of the
method even further, e.g. choosing the complex contour for the integral based on a steepest descent
scheme as proposed in [26].
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