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Abstract

This paper presents a full multigrid (FMG) method, which combines a multigrid method,
an active set algorithm and a nested iteration technique, to solve a linear complementarity
problem (LCP) modeling elastic normal contact problems. The governing system in this LCP
is derived from an integral equation and its coefficient matrix is dense, symmetric and block
Toeplitz. An efficient and accurate initial guess of pressures and contact area is provided by
the FMG method. One multigrid cycle is applied to solve this system approximately in each
active set iteration. The results of our numerical experiments indicate that, on the one hand,
one multigrid cycle is sufficient to obtain a satisfactory active set, and, on the other hand, our
method can reduce the number of matrix-vector products and hence reduce the computational
time to a great extent, compared to the original active set algorithm ”NORM” developed by
Kalker and implemented in his CONTACT software [13].

Keywords: full multigrid, linear complementarity problems, normal contact problem, active
set algorithm, wheel-rail contact.

1 Introduction

In the simulation of the dynamic behavior of railway, the interaction between the vehicle wheels
and rails attracts a lot of interest. It involves the solution of so-called contact problems [15],
concerning the normal and tangential tractions on the inter-surface. Venner and Lubrecht [12],
Willner [16] and Z.Li et al. [7], amongst many others are working on different aspects of these
problems. The formulation adopted in the CONTACT software, based on the variational approach
by Kalker [5], [6], [14], is regarded as an accurate model for contact problems. However, the
CONTACT solution methods need improvement when a fine discretization is applied. The work
in this paper focuses on the speedup, i.e. reducing the computational time for normal contact
problems in which a linear complementarity problem (LCP) is solved.

The structure of this paper is as follows: in Section 2, the normal contact problem is introduced
and the LCP is derived. The original active set algorithm ”NORM”, developed by Kalker, follows
in Section 3. Section 4 illustrates our FMG method, including the multigrid-based algorithm, each
component of the multigrid method and the FMG approach in general. Numerical experiments
with results are shown in Section 5, and the conclusions and future work will be summarized in
the end.
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Figure 1: Geometry of contact problems

2 Problem formulation

2.1 Normal contact problem

When the surfaces of two bodies roll over each other, a contact area occurs between them, carrying
normal and tangential tractions. An elastic field of displacements, strains, and stresses in the
bodies also appears with these tractions, all of which result in deformations [6]. The tractions
are the main issue we are solving for. In the normal contact problem, the forces of the contacting
bodies are perpendicular to the surface [10] and we only consider the normal tractions (pressures)
here.

Figure 1 shows the general geometry of this contacting phenomenon. The left graph is the
overall geometry, displaying a wheel rolling on the rail with a forward velocity v and angle velocity
ω. The rail is deformed caused by the forces from the wheel, Fw, and from the sleepers, Fs1, Fs2.
At the same time, the wheel has deformation due to the force from the rail, Fr. Now we stretch
this graph vertically in order to have an insight look at this phenomenon. The graphs of the wheel
and rail in the middle and on the right give the undeformed state and deformed state, respectively.
A contact area occurs where the surfaces of the wheel and rail coincide, while the distance between
their surfaces is positive outside the contact area with no tractions there. Let C denote the contact
area and E the exterior area. Then, the contact conditions for normal contact problems are:

e(x, y) = 0, p(x, y) ≥ 0, for a position (x, y) ∈ C, (2.1)

e(x, y) > 0, p(x, y) = 0, for a position (x, y) ∈ E, (2.2)

where p(x, y) is the normal traction, i.e. pressure, and e(x, y) is the deformed distance between
the wheel and rail, at position (x, y). Let h(x, y) denote the undeformed distance at (x, y), then
the deformed distance, e(x, y), can be defined by:

e(x, y) = h(x, y) + u(x, y), (2.3)

where u(x, y) is the deformation. This equation will be defined for all positions in the contact
area C and noticing that the deformed distance e(x, y) = 0 for position (x, y) ∈ C, equation (2.3)
results in:

u(x, y) = −h(x, y), for a position (x, y) ∈ C. (2.4)

2.2 The half-space approach

The method to calculate the deformation u is based on three simplifying assumptions in Kalker’s
variational approach [6]. First of all, the contact area is considered very small compared to the two
contacting bodies, and hence this area is considered to be flat. The second is that the contacting
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Figure 2: Influence coefficient Azz
(ix,iy)(jx,jy)

bodies are assumed to be made of homogeneous linear elastic material. The last assumption is to
ignore inertial effects in the motion.

These assumptions allow the use of the half-space approach, which approximates the elastic
field of two contacting bodies considering each body as a semi-infinite elastic solid bounded by
a plane surface. Based on the classic solutions by Boussinesq and Cerruti (see Johnson [4]) and
considering the normal contact problems, we give the normal traction-deformation relation, as
follows:

uz(x, y) =

∫ ∫
C

Azz(x, y, ξ, η)pz(ξ, η)dξdη, (2.5)

where z denotes the normal direction, uz and pz are the normal deformation and pressure, respec-
tively, and Azz(x, y, ξ, η) is the influence function for normal deformation at the surface position
(x, y) due to the contribution of a unit pressure at surface position (ξ, η). This influence function
is calculated by:

Azz(x, y, ξ, η) =
1− ν
πG

· 1

ρ
, (2.6)

where ν and G are the Poisson ratio and shear modulus, respectively, and ρ is the distance between
points (x, y) and (ξ, η), i.e., ρ = [(x− ξ)2 + (y − η)2]

1
2 .

2.3 Discretization

Solving contact problems often starts with the discretization of a potential contact area, which
contains the true contact area. The potential contact area is discretized by mx ·my rectangular
elements of size δx ·δy. Each element is numbered by (ix, iy) where 1 ≤ ix ≤ mx and 1 ≤ iy ≤ my.

A piecewise constant function per element is used to approximate the surface pressures. Then
the discretization of integral (2.5) gives:

uz(ix,iy) =

my∑
iy

mx∑
ix

Azz
(ix,iy)(jx,jy)p

z
(jx,jy), (2.7)

where the subscript (ix, iy) denotes the element. Influence coefficient Azz
(ix,iy)(jx,jy) is calculated

by integrating (2.5) for a unit traction in a single element (jx, jy) w.r.t. an observation point
at the center of element (ix, iy). It has the property that Azz

(ix,iy)(jx,jy) = Azz
(kx,ky)(lx,ly) when

jx− ix = lx− kx, jy − iy = ly − ky, i.e. the coefficients are identical for pairs of elements which
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have the same relative distance. Figure 2 shows the influence coefficients scaled by G for the test
problem in Section 5.1.

If we use an mx×my grid and let N = mx ·my, equation (2.7) defined by the potential contact
area gives the equation:

~u = A~p, ~p, ~u ∈ RN , A ∈ RN×N , (2.8)

where the influence coefficient matrix, A, is a dense, symmetric and block Toeplitz matrix. Com-
bining equations (2.3) and (2.8) leads to the main equation in the normal contact problem:

~e = ~h+A~p. (2.9)

From the above discussion, we consider equation (2.9) and the contact conditions (2.1) and
(2.2). This results in a linear complementarity problem LCP(h,A), which aims to find the pressures,
~p, contact area, C, and exterior area, E, satisfying

~e = ~h+A~p (2.10)

eI = 0, pI ≥ 0, for element I ∈ C, (2.11)

eI > 0, pI = 0, for element I ∈ E, (2.12)

where I is the element index calculated by I = (iy − 1) · mx + ix and 1 ≤ I ≤ N . Note that
the constraints on the deformed distance ~e are the primary constraints: eI = 0 defines the active
constrains and eI > 0 are inactive constraints. This LCP represents a mathematical model for
normal contact problems. We will discuss the original method and the FMG method for solving
it in the following sections.

3 Original method: Active set algorithm

The active set algorithm is well-known for optimization problems, such as the LCP problem above.
The main idea is to partition the inequality constraints into two groups, i.e. an active and inactive
set. Those parts that satisfy the constraints are put in the active set and the others are in the
inactive set. Only the active set is considered when solving the equality problem. One active
set iteration has two components, i.e. first to determine a current active set as the working set,
and then solve the equality problem in this active set. These two steps are repeated until all the
constraints or conditions are satisfied [9].

For the contact problem, the contact area is regarded as the active set and the exterior area
is the inactive set. The original algorithm has the following structure:

1. Find a starting active set, i.e. the initial contact area C0. After the discretization of the
potential contact area, we obtain an initial contact area C0 consisting of every element I which
satisfies the condition hI ≤ 0.

2. The Conjugate Gradient method is applied to solve the linear system (2.10) defined by the
current contact area Ck. Note that the N × N system is ”reduced” by inserting pI = 0 for the
elements I in the exterior area Ek.

3. Solution ~p and deformed distance ~e are used, according to the contact conditions (2.11)
and (2.12), to determine a new contact area Ck+1.
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4. If the new contact area Ck+1 is different from Ck, repeat 2 and 3. Otherwise, we have
found the correct contact area Ck+1 and the pressures on it.

From the above algorithm, we see that, in each active set iteration, we have to solve one
linear system (2.10). On the one hand, this system will be large and has a dense system matrix.
Note that this matrix is not Toeplitz anymore. On the other hand, several active set iterations
are needed before the correct contact area is obtained, which means that we have to solve many
different systems. Hence, these two facts cause slow computation.

4 A Full Multigrid method

4.1 Multigrid-based algorithm

Notice that, when we examine the contact conditions, we do not need the exact values of deformed
distance ~e or pressures ~p, since the conditions only focus on whether these values are positive,
negative or zero. Therefore, we arrive at an approach to solve system (2.10) approximately, by one
multigrid cycle, instead of the Conjugate Gradient method. This idea combined with the active
set algorithm results in our multigrid-based algorithm, which is described as follows:

1. We start with a discretization for the potential contact area. Check undeformed distance ~h:
put the element I satisfying hI ≤ 0 in the initial contact area C0.

2. Set the pressures in the exterior area Ek to zero, and define the system (2.10) by restricting
to the current contact area Ck.

3. Apply one multigrid cycle to this system, and obtain the pressures ~p.

4. Check the contact conditions:

(4.1) Consider each element I in the contact area Ck. If the pressure pI < 0 then put element

I to the exterior area and set pI = 0. This leads to the contact area C
k+1

and exterior

area E
k+1

.

(4.2) Consider each element I in the exterior area E
k+1

. Put the element I into the contact
area Ck+1 with its deformed distance eI = hI + uI ≤ 0.
Now a new contact area, Ck+1, and exterior area, Ek+1, have been obtained.

5. If this new contact area Ck+1 is different from the previous area Ck, then go to step 2. If
not, go to step 6.

6. If the solution is not of the required accuracy, then go to step 2. Otherwise, stop and we
have found a converged contact area and the pressures on it.

Here, superscript k denotes the iteration number of the active set algorithm. In this algorithm,
the multigrid method plays a crucial role. We will give more details about its components.

4.2 Multigrid components

Multigrid is one of the most efficient numerical solvers for systems of equations arising from elliptic
PDEs, but we will use the multigrid algorithm to deal with the system (2.10), which has a dense
coefficient matrix, in an active set iteration. Our work is closely related to that of Brandt, Lubrecht
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Figure 3: Standard coarsening means combining 2 × 2 cells into 1 coarse grid cell. For example,
the green element 1 on the coarse grid is obtained by combining four green elements 1,2,7,8 on the
fine grid.

and Venner, and their co-workers, as presented, for example, in [8, 2, 1, 12]. Since, according to
the contact conditions, the pressures in the exterior area are always zero, we keep these pressure
unchanged. A two-grid algorithm is given below. It is easy to extend it to a multigrid algorithm.

• Pre- and post- smoothing: We use the damped Gauss-Seidel method as the smoother. Notice
that we only deal with the pressures on the elements within the contact area Ck

h , because
the pressures in the exterior area Ek

h are fixed to zero.

• Calculate defects: The defects in the contact area, Ck
h , are computed, and the defects in the

exterior area Ek
h are set to zero. This gives us the fine grid defects, dh.

• Restrict the defects, dh, and contact area, Ck
h , to the coarse grid, resulting in coarse grid

defects, dH , and a coarse contact area, Ck
H , respectively.

• On the coarse grid: Apply an exact solver, i.e. a Gauss elimination method, for the defect
equation, AHvH = dH , defined by the coarse contact area, Ck

H . The coarse grid correction,
vH , satisfies vH = vH in Ck

H , and vH = 0 in Ek
H .

• Interpolate the coarse grid correction vH to the fine grid, yielding the fine grid correction vh,
and set vh = 0 in the exterior area Ek

h.

• Correction: Add correction, vh, to the smoothed pressures, ph, for all the elements in the
potential contact area.

Here, the subscripts h and H denote the fine and coarse grid, respectively. From this algorithm,
we can see that both systems (2.10) and AHvH = dH are defined on the contact areas Ck

h and
Ck

H , respectively. All the quantities in the exterior areas, Ek
h and Ek

H , are set equal to zero in this
algorithm, to satisfy the contact condition that pI = 0 for all the elements I in the exterior area.

The idea for coarsening is the simple and most frequently used choice, standard coarsening,
i.e. doubling the element size in each direction. An example is depicted in Figure 3, where all the
elements are numbered in lexicographic ordering. The strategy of restriction and interpolation is
described based on the green elements in Figure 3.

• Restriction of defects: the average of defects of four elements, for example 1,2,7 and 8,
becomes the defect for an element, 1, on the coarse grid, i.e. d1

H = 1
4 (d1

h + d2
h + d7

h + d8
h),

where d is defect, h and H denote the grid size (H = 2h), and the superscripts denote the
element numbers.

• Restriction of the contact area: among the elements 1,2,7,8, if there are 2 or more elements
in the contact area Ch, then the coarse grid element 1, which is obtained by combining these
four elements, is in the coarse contact area CH .
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• Interpolation of the correction: the correction of coarse element 1, i.e. v1
H , is the correction

of each of the four fine grid elements, 1,2,7,8, i.e. v1
H = v1

h = v2
h = v7

h = v8
h.

4.3 The FMG scheme

In addition to the multigrid-based algorithm described above, we also incorporated the idea of
nested iteration, which results in a full multigrid method. On the coarsest grid, we solve the LCP
by the original active set algorithm with the CG method, to obtain the coarse pressures ~p and
deformation ~u. Then, we interpolate them to a finer grid, where the deformed distance, ~e, is
calculated, yielding an initial contact area on this grid level. We solve the LCP on the current grid
level by the active set algorithm using one multigrid iteration, and repeat this procedure until we
reach the finest grid, where the multigrid algorithm is applied. The details of this FMG scheme
will be given in the full version of this paper. We will provide a numerical result here.

5 Numerical experiment and results

5.1 Test problem

This test is a ’Hertzian’ case [3]. The undeformed distance function is h(x, y) = a1x
2 + b1y

2− pen,
where a1 = 0.0016681/mm is the combined curvature in x-direction, b1 = 0.0030671/mm is the
combined curvature in y-direction and pen = 0.1091 mm is the maximum inter-penetration of
the undeformed profiles. The potential contact area is (x, y) ∈ [−10, 10] × [−6, 6] mm2, and steel
material with shear modulus G = 82000N/mm2 and the Poisson ratio ν = 0.28 is used to calculate
the coefficient matrix A in system (2.10). We solve for the contact area, C, and the corresponding
pressures.

Hertz gave an analytic solution to the normal contact problems in [3]. The contact area is
elliptic. For steel material in this test problem, the semi-axes of the contact ellipse are a2 =
6.0 mm, b2 = 4.0 mm, where a2 and b2 are half widths of the contact ellipse in the x- and y-
directions, respectively. The normal pressure is zero outside the contact ellipse. In the contact

area, it has ”semi-ellipsoidal” form: pn(x, y) = pmax ·
√

1− ( x
a2

)2 − ( y
b2

)2, where the maximum

pressure, pmax = 3Fn/(2 · π · a2 · b2) = 1631N/mm2, with total load Fn = 82000N .

5.2 Results by the multigrid solver

We first analyze the multigrid solvers numerically to determine the efficiency of the multigrid
components. The system we will solve here is called the C1 system, which is (2.10) defined by the
initial contact area. In this test, the C1 system will be solved to a high accuracy, not approximately.

We implement the multigrid V(1,1)-cycle with the following smoothers: standard Gauss-
Seidel, red-black Gauss Seidel, Jacobi, damped Jacobi, damped Gauss-Seidel, with ω > 1 (SOR)
and ω < 1 (SUR). The multigrid methods use 4× 4 as the coarsest grid. The iterations stop when
‖r‖2
‖h‖2 ≤ 10−6, which are the 2-norms of the residual and the right-hand side of the system (2.10),

respectively.

We found, first of all, that the multigrid methods with Jacobi and damped Jacobi smoothers
did not converge, when a fine discretization was used. Moreover, red-black Gauss-Seidel showed
worse convergence than the standard Gauss-Seidel smoother for system (2.10). We do not show
these results here.
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Discretization ω = 1.1 ω = 0.8 ω = 1 CG
64× 64 10 (0.2428 ) 9(0.1927) 9 (0.2077) 29
128× 128 11(0.2783) 9(0.1974) 10(0.2402) 61

Table 1: The number of iterations by multigrid with different smoothers and by CG to solve C1

system. The convergence factors of multigrid are given in brackets.

Table 1 presents the number of iterations obtained by multigrid with SOR (ω = 1.1), SUR
(ω = 0.8), and standard Gauss-Seidel (ω = 1) as the smoothers and the Conjugate Gradient method
(CG), for different discretization resolutions. It can be seen that the Gauss-Seidel smoother with
ω = 0.8 requires only 9 iterations, which is the least compared to the other methods on a 128×128
grid.

The convergence factor in brackets in the table is defined as in [11]: q̂(m) = m

√
‖dm

h ‖
‖d0

h‖
, in

some appropriate norm, i.e. the 2-norm in our case. The quantity q̂(m) is an average residual
reduction factor over m iterations, so it may be a good estimate of the multigrid convergence, if m
is sufficiently large. The smaller the convergence factor, the better the convergence performance.
In our test, m is chosen to be the total number of iterations for which the system is solved. From
the table, we find again that the Gauss-Seidel method with ω = 0.8 is the best choice for the
smoother, since its convergence factor is the smallest. We will analyze the multigrid performance
for the dense matrix system in more detail in the full version of this paper.

5.3 Results by multigrid-based algorithm

We arrive at the analysis of the multigrid-based algorithm to solve the LCP (2.10)-(2.12). We
choose the Gauss-Seidel method with ω = 0.8 as the smoother, and compare multigrid V(1,1)-,

V(0,1)- and V(1,0)-cycles. The stopping criterion ‖r‖2‖h‖2 ≤ 10−6 is also used here. Table 2 presents

the total number of multigrid iterations with the number of matrix-vector products in brackets, by
different multigrid cycles on different grids. The coarsest grid is 4× 4 for each case. The number
of CG iterations of the original algorithm is given as a comparison. For example, in the case of
the 1282-discretization, the original algorithm requires 8 active set iterations (not shown in the
table) with a total of 198 CG iterations. It can be seen from the table that the multigrid-based
algorithms require considerably fewer iterations than the original method, and this fact is more
pronounced on finer grids.

Since the total number of matrix-vector products plays a prominent role regarding the compu-
tational time, we make a comparison between the multigrid-based algorithm and the original active
set algorithm. We focus on the number of matrix-vector products on the finest grid, since this takes
most computational time. In our algorithm, one V(1,1) cycle calculates 3 such products: one for
both pre- and post- smoothers, and one to compute the defect. The Conjugate Gradient method
calculates 1 product in each CG iteration. The results are also shown in brackets in Table 2. Let
the factor a denote the ratio of matrix-vector product numbers by the original active set algorithm
compared to the multigrid-based algorithm. Then, when using the V(1,1)-cycle, for the 322−,
642, 1282− and 2562−discretizations, factor a is approximately 2.9, 4.4, 6.6 and 7.8, respectively.
As expected, these numbers increase as the discretization gets finer. Hence, the multigrid-based
algorithm shows that the computational time can be reduced to a great extent. Moreover, one
multigrid iteration is sufficient to give a satisfactory contact area for our present test case.
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Discretization V(1,1) V(1,0) V(0,1) CG
32× 32 9(27) 16(32) 16(32) 77(77)
64× 64 10(30) 17(34) 16(32) 131(131)
128× 128 10(30) 17(34) 16(32) 198(198)
256× 256 12(36) 20(40) 28(56) 280(280)

Table 2: The total number of multigrid iterations by the multigrid-based algorithm and the CG
iterations in the original active set algorithm, with the number of matrix-vector products in brackets

Discretization V(1,1) V(1,0) V(0,1)
32× 32 7(21) 13(26) 13(26)
64× 64 6(18) 11(22) 12(24)
128× 128 5(15) 9(18) 9(18)
256× 256 6(18) 10(20) 8(16)

Table 3: The total number of multigrid iterations by the FMG method and the CG iterations in
the original active set algorithm, with the number of matrix-vector products in brackets

5.4 Results by the FMG method

Now we combine the multigrid method with the FMG technique and present the convergence
results on the finest grid in Table 3. We find that the number of FMG iterations and matrix-vector
products are fewer when the FMG technique is applied, compared with the results in Table 2. And
now the factor a is approximately 3.7, 7.3, 13.2 and 15.6 when using the V(1,1)-cycle for the 322−,
642, 1282− and 2562−discretizations, respectively.

A comparison is made of the difference between the initial contact areas and the true contact
area when solving the LCP (2.10)-(2.12) on a 322−grid, which is shown in Figure 4, where the
blue spots denote the elements in the contact area and yellow represents the exterior area. It can
be seen from the figure that the initial contact area, using the FMG scheme (in (b)) resembles
much better the true contact area (in (c)), than the original method which was based on the initial
contact area (in (a)).

6 Conclusions and future work

In this paper, we presented a full multigrid method, which is a combination of a multigrid method,
an active set algorithm and the nested iteration approach, to solve linear complementarity prob-

Figure 4: Contact areas on 32× 32 grid: (a) the initial contact area obtained by selecting all the
elements I with hI ≤ 0, (b) the initial contact area by the FMG scheme, (c) the true contact area
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lems arising from elastic normal contact problems. Multigrid shows its efficiency for solving the
corresponding integral equations, which exhibit a dense coefficient matrix. In our test case, one
multigrid iteration appears to be sufficient to give an approximate solution to modify the contact
areas efficiently and accurately. The FMG scheme helps to give not only more accurate initial pres-
sures when solving system (2.10), but also provides a satisfactory initial contact area, resembling
the true contact area better than the present initial contact area. Compared with the original
active set algorithm in the CONTACT software, the FMG method can reduce the computational
time to a factor of 3.7 to 15.6 depending on the problem size. All of the three multigrid cycles
V(1,1), V(1,0) and V(0,1) perform very well, but V(1,1) seems to be the most robust method.

The future work will focus on four subjects. First of all, (local Fourier) analysis of multigrid
convergence should be part of our work, to understand the multigrid performance from a theoretical
perspective. Secondly, the fact that the coefficient matrix of the system is a block Toeplitz matrix
may allow us to employ the Fast Fourier Transform as a multigrid smoother in the algorithm.
Thirdly, we will apply our algorithm to more complicated situations. For example, if the contacting
surface is rough due to wear of the wheel and rail, then the true contact area consists of several
small irregular domains, instead of a simple ellipse. The above issues are still considered for the
normal contact problems. In the near future, however, we will also study the tangential contact
problems, for which more detailed solutions are demanded for railway applications.

References
[1] A. Brandt, C.W. Cryer, Multigrid algorithms for the solution of linear complementarity problems arising

from free boundary problems.

[2] A. Brandt, A.A. Lubrecht, Multilevel matrix multiplication and fast solution of integral equations, J. Com-
put. Phys., 90: 348370, 1990. SIAM J. Sci. Comput. 4: 655-684, 1983.
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