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Abstract

This article studies the problem of image restoration
of observed images corrupted by impulse noise and other
types of noise (e.g. zero-mean Gaussian white noise). Since
the pixels damaged by impulse noise contain no informa-
tion about the true image, the damaged pixels can also be
considered as missing information. If the pixels corrupted
by impulse noise are known, then the image restoration be-
comes a standard image inpainting problem. However, the
set of damaged pixels is usually unknown, thus how to find
this set correctly is a very important problem. We proposed
a method using binary matching pursuit that can simultane-
ously find the damaged pixels and restore the image. This
method can also be applied to situations where the damaged
pixels are not randomly chosen, but follow some unknown
procedure. By iteratively restoring the image and updating
the set of damaged pixels, this method has better perfor-
mance than other methods, as shown in the experiments.

1. Introduction
Observed images are often corrupted by impulse noise

during image acquisition and transmission, caused by mal-
functioning pixels in camera sensors, faulty memory loca-
tions in hardware, or bit errors in transmission [5]. There
are two common types of impulse noise: salt-and-pepper
impulse noise and random-valued impulse noise. Assume
that the dynamic range of an image is [dmin, dmax]. For im-
ages corrupted by salt-and-pepper impulse noise, the noisy
pixels can take only two values dmin and dmax, while for im-
ages corrupted by random-valued impulse noise, the noisy
pixels can take any random value between dmin and dmax. If
the original unknown image u is defined on a domain Ω,
then the observed image f is modeled as

f =

{
Hu+ e1 x ∈ Λ
e2 x ∈ Λc := Ω\Λ, (1)

where Λc is the set of pixels corrupted by impulse noise.
Since the damaged pixels contain no information about
the true image, the damaged pixels can also be considered

as missing information. If Λc is known, then the image
restoration problem becomes a standard image inpainting
(and deblurring) problem [3], and there are many methods
for solving this problem [4, 13]. When the set Λc is not
empty and unknown, the challenge of the problem is to de-
tect the damaged pixels (remove the impulse noise) and re-
store the lost details simultaneously. There are already sev-
eral types of approaches for solving this problem.

One group of approaches [20, 2, 1, 15] treat e2 as out-
liers and use the L1 norm in the fidelity term to increase the
robustness of inpainting to outliers, and the problem is to
solve

min
u

∫
Ω

|Hu− f |+ J(u), (2)

where J(u) is a regularization on the true image u. There
are many candidates for the regularization J(u) such as
Rudin, Osher and Fatemi’s total variation models [21, 22]
and framelet based models [8, 17]. This approach does not
need to find the damaged pixels and performs well when
there is only impulse noise. For the case of images cor-
rupted by multiple types of noise (e.g. Gaussian noise plus
impulse noise), other types of noise are not treated properly.

Second group of approaches are the two-stage ap-
proaches [9, 10, 6, 7, 17, 23], which estimate the inpaint-
ing region Λc before restoring the true image u. In these
approaches, the second stage after estimating the set Λc be-
comes a regular image inpainting (and deblurring) problem:

min
u

SΛ(Hu, f) + J(u), (3)

where SΛ is a fidelity term performing only on Λ and de-
pends on the type of noise e1. If the noise e1 is zero-mean
additive Gaussian white noise, we can choose SΛ(Hu, f) =∫
Λ

1
2 (Hu−f)2. The success of these two-stage approaches

relies on the accurate detection of Λc, e.g. adaptive me-
dian filter (AMF) [16] is used to detect salt-and-pepper im-
pulse noise, while adaptive center-weighted median filter
(ACWMF) [14] is utilized to detect random-valued impulse
noise.

Though adaptive median filter can detect most pixels
damaged by salt-and-pepper impulse noise, it is more dif-
ficult to detect pixels corrupted by random-valued impulse

1



noise than salt-and-pepper impulse noise. We proposed a
method which can simultaneously detect the damaged pix-
els and restore the image. Instead of keeping the estimation
of the set Λc fixed, the estimation of the set is updated to-
gether with restoring the image.

The work is organized as follows. The review of adap-
tive center-weighted median filter is given in section 2. In
section 3, we introduce our general method for removing
impulse noise, and one example based on framelet is pro-
vided. Some experiments are given in section 4 to show the
efficiency of proposed method. We will end this work by a
short conclusion section.

2. The Adaptive Center-Weighted Median Fil-
ter

In order to remove random-valued impulse noise, adap-
tive center-weighted median filter (ACWMF) [14] is a good
method when the noise level is not high. So the result of
ACWMF is often utilized in two-stage methods [6, 7, 17] to
estimate the set Λc.

If u is a noisy M -by-N grayscale image, and ui,j is the
gray level at pixel (i, j) ∈ {1, · · · ,M} × {1, · · · , N}, the
expression of the ACWMF filter is as follows:

y2ki,j = median{ui−s,j−t, (2k) ⋄ ui,j | − h ≤ s, t ≤ h},

where (2h + 1) × (2h + 1) is the window size, and ⋄ rep-
resents the repetition operation. For k = 0, 1, · · · , J − 1,
where J = 2h(h + 1), we can determine the differences
dk = |y2ki,j − ui,j |. They satisfy the condition dk ≤ dk−1

for k ≥ 1. To determine if the considered pixel (i, j) is
noisy, a set of thresholds Tk is utilized, where Tk−1 > Tk

for k = 1, · · · , J − 1. The output of the filter is defined in
the following manner:

uACWMF =

{
y0i,j , if dk > Tk for some k,
ui,j , otherwise.

(4)

Usually, if the window size is chosen as 3×3 (i.e., h = 1
and J = 4), four thresholds Tk(k = 0, · · · , 3) are needed,
and they are calculated as follows:

Tk = s · MAD + δk, (5)

MAD = median{|ui−s,j−t − y1i,j | − h ≤ s, t ≤ h}, (6)

where [δ0, δ1, δ2, δ3] = [40, 25, 10, 5] and 0 ≤ s ≤ 0.6.
The performance of ACWMF is demonstrated in Figure

1 on a 256x256 blurry cameraman image when 25% of the
pixels are corrupted by random-valued impulse noise. For
the first case (top row), the set having the corrupted pix-
els are chosen randomly, and from the result obtained from
ACWMF, we can still see some features of the cameraman
image. For the other case (bottom row), we specify a set
containing the damaged pixels, and ACWMF misses quite

Figure 1: Noisy images and the sets detected by ACWMF.
Left column: noisy images corrupted by random-valued
noise; Right column: the sets of damaged pixels detected by
ACWMF. White point means that the corresponding pixel is
corrupted by noise.

a lot of real noise and false-hits some noise-free pixels. The
success of two-stage methods depends on the accuracy of
detecting damaged pixels. Therefore, we propose a method
to update the set together with the restoration of the image,
instead of estimating the set before restoration as in two-
stage methods.

3. Blind Inpainting using Binary Matching
Pursuit

3.1. Formulation

For a M × N image, Λ ∈ {0, 1}M×N is a binary ma-
trix denoting the undamaged pixels (pixels not corrupted by
impulse noise):

Λi,j =

{
1, if pixel (i, j) ∈ Λ,
0, otherwise. (7)

We use PΛ(·) to represent the projection of an image onto a
matrix supported by Λ:

PΛ(u)i,j =

{
0, if Λi,j = 0,
ui,j , if Λi,j = 1.

(8)

Given a degraded image f , our objective is to estimate
the damaged (or missing) pixels and restore them. We pro-
pose the following model to solve this problem:

min
u,v

S(Hu+ v, f) + λ1J(u)

subject to: ∥v∥0 ≤ K,
(9)



where S(Hu + v, f) is the fidelity term, J(u) is the regu-
larization term on the true image, The parameter λ1 is de-
pendent on the noise level of e1. The higher the noise level,
the larger the parameter should be. The parameter K is de-
pendent on the number of damaged pixels.

Assuming that (u∗, v∗) is the optimal solution to the
problem (9), when v∗i,j ̸= 0, we have v∗i,j = fi,j−(Hu∗)i,j .
Therefore if we denote

Λi,j =

{
0, if vi,j ̸= 0,
1, if vi,j = 0.

(10)

then problem (9) is equivalent to

min
u,Λ

SΛ(Hu, f) + λ1J(u),

subject to:
∑

i,j(1− Λi,j) ≤ K
(11)

where SΛ(Hu, f) is the fidelity term only on the set Λ as-
sumed to be undamaged. Problem (11) can be solved by al-
ternating minimization method, and the algorithm for solv-
ing (11) is described below.

3.2. Algorithm

The optimization problem defined in (11) is non-convex
and has both continuous and discrete variables. It is still
difficult to solve it in the pair (u,Λ), but we can use al-
ternating minimization method, which separates the energy
minimization over u and Λ into two steps. For solving the
problem of u with Λ fixed, it is a convex optimization prob-
lem and finding Λ with u fixed is a combinatorial optimiza-
tion problem.

1) Finding u: Given an estimate of the support matrix
Λ, the minimization over u is just an image inpainting (and
deblurring) problem [12]:

min
u

SΛ(Hu, f) + λ1J(u), (12)

and there are many existing methods for solving this prob-
lem.

2) Finding Λ: Given an estimate of the image u, the min-
imization over Λ becomes:

min
Λ

SΛ(Hu, f),

subject to:
∑

i,j(1− Λi,j) ≤ K.
(13)

Since Λij ∈ {0, 1}, if the fidelity term is a summation
over all pixels assumed to be undamaged, the energy can
be rewritten as follows:

SΛ(Hu, f) =
∑
i,j

Λi,jϕ ((Hu)i,j , fi,j) (14)

where ϕ is the fidelity term for each pixel.
It can be solved exactly in one step:

Λi,j =

{
0 if ϕ ((Hu)i,j , fi,j) > τ,
1 if ϕ ((Hu)i,j , fi,j) ≤ τ,

(15)

where τ is the Kth largest value of ϕ ((Hu)i,j , fi,j). There-
fore, the proposed algorithm for blind inpainting is itera-
tively finding u and Λ. Since Λi,j can only take values 0
and 1, this can be considered a binary version of matching
pursuit [18], named binary matching pursuit (BMP).

The algorithm can be applied to many methods for bet-
ter performance and one example using framelet for image
deblurring when the blurry image is corrupted by Gaussian
white noise and impulse noise is described below.

3.2.1 Framelet-Based Deblurring

Though total variation (TV) is popular for regularization
term in recent years as it preserves edges, its limitation is
that TV-based regularization can not preserve the details
and textures very well on the regions of complex structures
due to the stair-casing effects [19]. Framelet-based algo-
rithms are introduced in [8, 17] for impulse noise removal.
In [17], iterative framelet-based approximation/sparsity de-
blurring algorithm (IFASDA) and accelerated algorithm of
IFASDA (Fast IFASDA) are proposed to deblur images cor-
rupted by impulse plus Gaussian noise. They both have two
steps, the first step is to apply AMF or ACWMF on f to
estimate the set Λc; the second step is deblurring the image
using framelet from PΛ(f).

The energy functional to be minimized is

E(u) := ∥ϕ(PΛ(Hu− f))∥1 + λ∥OwHu∥1, (16)

where OwH := [w1O2
1 w2OT

2 · · · w17OT
17]

T and ϕ(x) =
ηx2

η+|x| . {Ok}17k=0 are the matrix representations of the tight
framelet filters {τk}17k=0 under a proper boundary condition
[11] (see Section III in [17] for the tight framelet filters O
and weight w). In addition a matrix OH is formed by stack-
ing the matrices Ok, 1 ≤ k ≤ 17 together, that is

OH = [O2
1 OT

2 · · · OT
17]

T (17)

Associated with the matrix OH and a diagonal matrix

Γ := diag(· · · , γl, · · · ), γl ≥ 0, (18)

the shrinkage function ShΓ : RM×N → RM×N is defined
as follow:

ShΓ(f) := OT
0 O0f +OT

H · shrink(OHf,Γ) (19)

where shrink is the componentwise thresholding operator

shrink(x,Γ)[l] = sign(x[l])max{|x[l]| − γl, 0}. (20)

The algorithm is

un+1 = ShΓn(u
n − βn∇Jn(u

n)) (21)



where

Jn(y) := ∥ϕn(PΛ(Hy − f))∥1 + λn∥OwHy∥1, (22)

with

ϕn(x) =
ηnx

2

ηn + |x|
. (23)

The ACWMF can not estimate the set Λc perfectly, es-
pecially when noise level is high and two types of impulse
noise are present, thus frequently updating the set is neces-
sary. The new constraint optimization problem using BMP
is

min
u,Λ

∥ϕ(PΛ(Hu− f))∥1 + λ1∥OwHu∥1
subject to:

∑
i,j(1− Λi,j) ≤ K.

If alternating minimizing method is utilized, the first step
for finding u is the same as IFASDA, and the second step
for updating Λ is very easy to find from (15). The modified
IFASDA algorithm Ada IFASDA is shown below:

Input: Given blurred noisy image f , set n = 1;
Apply AMF/ACWMF on f to estimate the set Λc;
for n = 1, 2, · · · , do

Estimate ηn, βn, λn, Γn;
Compute un+1;
Stop if un+1 meets a stopping criteria;
if mod(n,5)=0 then

Update Λc by (15);
end
n = n+ 1;

end
Algorithm 1: Proposed framelet-based deblurring al-
gorithm (Ada IFASDA).

In fact, we do not need to wait until the step for finding
u converges, several iterations in IFASDA are sufficient for
the full algorithm to converge. We choose to update the set
Λc for every five iterations in IFASDA.

Similarly, Fast IFASDA can also be modified into
Ada Fast IFASDA by adding the steps for updating Λc ev-
ery five iterations in Fast IFASDA.

4. Experiments
Test images are blurred by the kernel

fspecial(’disk’,3), and corrupted by Gaus-
sian noise of mean zero and standard deviation σ = 5.
Several noise levels (s = 25%, 40%, 55% for random set,
and s = 25.32%, 31.40%, 36.83% for specified set) are
added into those blurry and noisy images. To evaluate the
quality of the restoration results, peak signal to noise ratio

Figure 4: The damaged pixels detected by ACWMF and
Ada IFASDA. Left column: the set obtained by ACWMF;
Right column: the set obtained by Ada IFASDA

(PSNR) is employed. Given an image u ∈ [0, 255]m×n, the
PSNR of the restoration result û is defined as follows:

PSNR(û, u) = 10 log10
2552

1
mn

∑
i,j

(ûij − uij)2
. (24)

The quantitative qualities (PSNR values) of restored im-
ages are listed in Table 1. From Table 1, the performances of
Ada IFASDA and Ada Fast IFASDA are better than those
of IFASDA and Fast IFASDA respectively. The restored
images of Fast IFASDA and Ada Fast IFASDA for noise
levels s = 55% and s = 36.83% are shown in Figures
2 and 3 respectively. From the results, a better estimate
for the damaged pixels is very crucial to two-stage meth-
ods (e.g. IFASDA), especially when the noise level is high.
The results show the advantage of simultaneously detecting
damaged pixels and restoring images.

Furthermore, we compared the damaged pixels detected
by ACWMF and obtained from Ada IFASDA in Figure 4
for the cameraman image. For the first case where the
damaged pixels are chosen randomly (s = 40%), the set
obtained from our method is also random and does not
contain any information from the image, while the set de-
tected by ACWMF still has some information. For the sec-
ond case where the set of damaged pixels is not random
(s = 31.40%), the set obtained by our method is still better
than the set from ACWMF.

In the modified algorithms, parameter K plays an impor-
tant role in the results of restored images. If we know the
number of damaged pixels (pixels in Λc) |Λc| , then K can
be chosen as the exact number of damaged pixels. However



Figure 2: The restored results of images blurred by fspecial(’disk’,3) and corrupted by random-valued noise (level
s = 55%) at random set and Gaussian noise (STD σ = 5). Top row: blurry and noisy images; Middle row: the results
restored by Fast IFASDA; Bottom row: the results restored Ada Fast IFASDA.
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Figure 5: PSNR values for different K/|Λc| for cameraman
image when the level of random-valued noise is 40%.

the difference between Hu and f may be very small at some
damaged pixels and these pixels may not be considered as
damaged. Thus, a number slightly less than |Λc| is better.
To find a best rate for K/|Λc|, we test on the cameraman

image when the level of noise is 40%, and the results are
shown in Figure 5. For both methods, we can obtain image
with highest PSNR when the rate is 0.85, and this number
is chosen for all previous experiments.

5. Conclusion
This paper present a general algorithm using binary

matching pursuit for blind image inpainting and removing
impulse noise by iteratively restoring the image and identi-
fying the damaged pixels. One method based on framelet is
introduced and it is shown in the experiments that the pro-
posed method outperforms other methods for image deblur-
ring in the presence of Gaussian white noise and random-
valued impulse noise. It can easily be applied to other meth-
ods and more difficult case where there are multiple types
of impulse noise.
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Figure 3: The restored results of images blurred by fspecial(’disk’,3) and corrupted by random-valued noise (level
s = 36.83%) at specific set and Gaussian noise (STD σ = 5). Top row: blurry and noisy images; Middle row: the results
restored by Fast IFASDA; Bottom row: the results restored Ada Fast IFASDA.
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