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Abstract

In this paper, we introduce and study a parallel scalable domain decomposition method for the simulation
of blood flows in three-dimensional compliant arteries, by using a fully coupled system of linear elastic-
ity equation and incompressible Navier-Stokes equations in an arbitrary Lagrangian-Eulerian framework.
The system is discretized with a fully-implicit finite element method on unstructured moving meshes and
solved by a Newton-Krylov algorithm preconditioned with an overlapping additive Schwarz method. The
investigation focuses on the accuracy and parallel scalability of the algorithm. Simulations based on the
patient-specific pulmonary artery geometries are performed on a supercomputer with thousands of proces-
sors. Our algorithm is shown to be scalable with a large number of processors and for problems with millions
of unknowns.

Keywords: fluid-structure interaction, blood flow simulation, restricted additive Schwarz, domain
decomposition, parallel computing

1. Introduction

Computer modeling of blood flow in the arteries is an important and very challenging problem. Such
simulations in the virtual environment have been used to study the vascular system in a variety of applications
including predicting the development of artery diseases and the treatment for the diseases [7, 19]. In order
to understand, computationally, the sophisticated hemodynamics in the arteries, it is essential to take into
account the deformability of the artery walls. Simulations with the rigid wall assumption preclude the
ability to predict the pressure wave propagation phenomena, which is the crucial characteristics of the
blood flow. In the fluid-structure interaction (FSI) problems, different approaches are used to keep track
of the fluid-structure coupling on the interface, e.g. the arbitrary Lagrangian-Eulerian (ALE) framework
[16, 17], the space-time formulation [4, 22] and the coupled momentum method [12]. In our approach, we
describe the fluid equations within the ALE framework by introducing a new equation for the fluid domain
motion, ensuring that the fluid-structure coupling conditions are satisfied exactly on the interface. Although
the computation of the fluid domain motion can be avoided in the coupled momentum method, the ALE
formulation is not limited to small wall deformations, which is a prerequisite in the coupled momentum
method [12].

Another challenging issue arise in the numerical computation of the coupled system is the coupling for-
mulation between the fluid and solid subsystems. Two well-known formulations are iterative and monolithic.
In iterative approaches, the fluid and the structure equations are solved one after the other repeatedly, until
some desired tolerance is reached [9, 13]. The convergence of these approaches is difficult to achieve in
some situations [6], since the approaches are very similar to nonlinear Gauss-Seidel with two large blocks.
In contrast, we develop a monolithic coupling as in [2, 8], where the fluid, the structure and the mesh
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movement equations are solved simultaneously in a fully coupled fashion and the coupling conditions are
enforced strongly as part of the system. The monolithic approach has been shown to be more robust. Many
of the convergence problems encountered within the iterative approaches can be avoided.

However, there is a price to pay in the monolithic approach. Solving the fully-coupled system is com-
putationally more expensive. The equation for the fluid domain motion introduced in the ALE formulation
brings in a new field of variables and further nonlinearity. And the monolithic approach requires a fully
coupled FSI solver, precluding the use of existing fast fluid and structure solver. Furthermore, the blood flow
simulations often results in a very large scale computation, making the use of massively parallel computer
a must. It necessitates the development of a fully coupled FSI solver that is not only robust with respect
to the physical variables such as Reynolds number, Poisson ratio, etc, but also highly scalable on machines
with a large number of processors. In this paper, we focus on developing a class of parallel scalable Newton-
Krylov-Schwarz method with an overlapping restricted additive Schwarz preconditioner for solving the fully
coupled FSI system in 3D, with emphasis on the robustness and the parallel scalability of the algorithms.

The rest of the paper is organized as follows. In Section 2, we describe the formulation of the FSI
problem, and also the discretization of the problem, both in space and time. In Section 3, we present the
Newton-Krylov-Schwarz method for solving the nonlinear fully coupled system. In Section 4, we demonstrate
the effectiveness of the algorithm by showing some numerical results using different geometries and problem
sizes, and report the parallel performance of the algorithm. Finally, we offer some concluding remarks in
Section 5.

2. Mathematical formulation and discretization

Our fully coupled approach is described by a system with three components, the linear elasticity equation
for the wall structure in the Lagrangian frame of reference, the incompressible Navier-Stokes equations for
the fluid in the ALE framework, and the Laplace equation for the displacement of the fluid domain. Let
Q, € R? be the structure domain. The displacement x, of the artery walls is assumed to satisfy

0°x, n 0
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where p; is the density of the structure, and o5 = A(V - x5)I + ps(Vxs + VXST) is the Cauchy stress
tensor. The Lamé parameters \s and us are related to the Young’s modulus E and the Poisson ratio vg
by A\s = vsE/((1 + vs)(1 — 2vy)) and pus = E/(2(1 4+ vs)). As in [18, 21], the mass-proportional damping
coefficient « is considered in our formulation to represent the damping effect of the surrounding tissue on the
structure. Other choice concerning the surrounding tissue effects by imposing particular boundary condition
on the external artery walls can be found in [8].

To model the fluid in a moving domain Q¢(t) € R3, the displacement of the fluid domain x; in the
reference configuration Qy € R? is assumed to satisfy a Laplace equation,

~V.o,=1f, in Q, (1)

Axy =0 in .
We define an ALE mapping A, from Qg to Q(¢):
A Qo — Qp(t), AY)=Y +x¢(Y), VY €Qq,
where Y is referred to as the ALE coordinates. The incompressible Navier-Stokes equations defined on the
moving domain Q;(t) are written in the ALE form as
pr g |, T Pillay —wy) - Viup = Voop =0 in y(0),
V-ur=0 in Qp(t),

where p; is the fluid density, uy is the fluid velocity, and oy = —psI + s (Vug + Vug?) is the Cauchy stress
tensor. w, = 0x¢/0t is the velocity of the moving domain and Y indicates that the time derivative is taken
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with respect to the ALE coordinates. On the inlet boundary I';, a given velocity profile is prescribed. On
the outlet boundary I',, the zero traction condition of - n = 0 is considered, where n is the unit outward
normal. These boundary conditions may be chosen differently, depending on the problem at hand.

More importantly, three coupling conditions are strongly enforced on the fluid-structure interface I',,

x5
ot’

Os Mg = —0f- Ny, Uf = Xf = Xss (2)
where n,, ny are unit normal vectors on the fluid-structure interface.

By introducing the structure velocity x5 as an additional unknown variable, we can rewrite the structure
momentum equation (1) as a first-order system of equations. We define the variational space of the structure
problem as

X ={xs € [H' (Q)]? :xs=00nT,}.
The weak form of the structure subproblem is stated as follows: Find xs € X and X5 € X such that V¢, € X
and Vo, € X,

. 0 ) O0Xs
Bs({xs,xs},{gbs,sas};af):ps&/Q %o - o dma/Q ) dm/Q Vs : o, d0

s

—/ ﬁbs‘(af-ns)ds—/ fs~¢5dﬂ+/ <8xs—ks>-<psd9:0.
'y 0. Qs 675

s

The variational spaces of the fluid subproblem are time dependent, and the solution of the structure
subproblem provides an essential boundary condition for the fluid subproblem by (2). We define the trial
and weighting function spaces as:

V={uy e [H Q1)) :uf=gonT;,us =0x,/0t onT,},
Vo={uy e [H'(Qs®))?:uf=00onT; UT,},
P = L2(94(1)).
The weak form of the fluid problem reads: Find uy € V' and ps € P such that V¢ € Vj and Vi € P,

0
Bf({uf7pf}a{¢f7¢f};Xf) = pfA (t) %
5

-¢fdﬂ+ﬂf/ [(ufp —wy) - V]uy - g5 dQ

Y Q5 (1)

—/ pr(V - o) dQ—i—Q,uf/ e(uy) : e(gy) dQ+/ (V-uyp)yy d2 =0,
Qy(t) Qs (t)

Qy(t)

where e(uy) = (Vu; + Vu?)/Q. The weak form of the domain movement problem reads: Find x; € Z such
that V¢ € Z,

Bm(Xf,f):/Q V§:fo dQ = 0.

And the variational spaces are defined as

Zo={x; € [H'()]® :x; =0onT; UL, UT,},
Z={x; € [H' Q)] :xp =xs0onTy,x; =00nI; UT,}.

We discretize the fully coupled problem in space with a finite element method, consisting of unstructured
P1-P1 stabilized elements for the fluid, P1 elements for the structure and P1 elements for the fluid domain
motion. We denote the finite element subspaces Xp,, Vi, Vi.0, Pn, Zh, Zp,0 as the counterparts of their infinite
dimensional subspaces. Because the fluid problem requires that the pair V}, and P, satisfy the LBB inf-sup
condition, additional stabilization terms are needed in the formulation with equal-order interpolation of the
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velocity and the pressure as described in [20, 24]. The semi-discrete stabilized finite element formulation for
the fluid problem reads as follows: Find uy € V}, and py € P}, such that Vo € V}, o and V¢ € P,

B({ug,pst {ds.v}ixp) =0,

with

B({ug,ps} A ¥r}ixs) = By ({up, o} Ads s} sxe) + Y (Voup,meV-dy)

KeTfh
an
> (8t .

Ty — wy) - Vg + Vg1 (0 — wp) - Vs + wf>)

KeT} K
+ Z (e - Vuy, dy) e + Z (g - Vuy, mUs - Vor)
KeTfh KeTfh

where Tfh = {K} is the given unstructured tetrahedral fluid mesh, and W is the conservation-restoring
advective velocity introduced in [20],

ou
uf = —Tm (tf

+ (uf —wy) - Vuy + fo) .
Y
Here 7., 7, and 7, are stabilization parameters as discussed in [23].

We form the finite dimensional fully coupled FSI problem as follows: Find z, € Xy, #s € X, uy € Vj,
py € Pp and xy € Zj such that Vo, € Xj,, Vo, € Xy, Vo € Vio, Vo5 € Py, and V€ € Z, o,

Bs({ws, o5}, {bs, ps}i0p) + Bug,prt Ao vr s ep) + Bu(xy,§) = 0. (3)

The system (3) is further discretized in time with a backward Euler scheme. Since the temporal discretization
scheme is fully implicit, at each time step, we obtain the solution ™ at the n'* time step from the previous
time step by solving a sparse, nonlinear algebraic system

Fn(z™) =0, (4)

where z™ corresponds to the nodal values of the fluid velocity uy, the fluid pressure p¢, the fluid mesh
displacement xy, the structure displacement x, and the structure velocity x, at the nt® time step. For
simplicity, we ignore the script n for the rest of the paper.

3. A highly scalable nonlinear solver

To design an algorithm for (4) that is highly scalable in terms of the total compute time, many important
factors need to be taken into consideration. None of the components of the algorithm is new, but to arrive at
the best combination, we have to consider not only the properties of the nonlinear system, the properties of
the domain decomposition methods, but also the software and hardware of our computational environment.
In the Newton-Krylov-Schwarz approach, the nonlinear system (4) is solved via the inexact Newton method
[10]. At each Newton step the new solution 2(**1) is obtained from the current solution z(*) by 21 =
z®) + ) (k) wwhere the step length %) is determined by a cubic line search technique. The Newton
correction s(¥) is approximated by solving a preconditioned Jacobian system J M, Mys®) = —F (k)
with GMRES, where M, ! is a one-level restricted additive Schwarz preconditioner [5].

The evaluation of the Jacobians of the fully coupled system is non-trivial. The difficulty lies in the evalu-
ation of the cross derivatives, e.g. the derivatives of fully coupled system with respect to the mesh movement.
One solution is to use the finite difference approximation to calculate the cross derivatives [15], but such
approximation is required at each Newton iteration and is computationally expensive. Another solution is
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to use a computationally cheap approximation [14], but this often deteriorates the overall convergence. In
our implementation, we compute the Jacobians analytically including all those cross derivatives.

To define the domain decomposition preconditioner, we first partition the finite element mesh (which
consists of the meshes for all components of the coupled system) into non-overlapping subdomains Q?, l=
1,..., N, where the number of subdomain N is always the same as the number of processors np. Then, each
subdomain QZ is extended to an overlapping subdomain QZ’(S. Here ¢ is an integer indicating the level of
overlap. Note that the decomposition of the mesh is completely independent of which physical variables are
defined for a given mesh point. The number of variables at a given mesh point is considered for the purpose
of load balancing. The one-level restricted additive Schwarz preconditioner is defined by

N

Mt =3 (BRI R,
£=1

where R) and R, are restrictions to the degrees of freedom in the non-overlapping subdomain Qf and the
overlapping subdomain Qg’é, respectively. J is a restriction of the Jacobian matrix defined by J, = Ry J, R} .
Sparse LU or incomplete LU factorization can be used to obtain the inverse or an approximate inverse of
the subdomain Jacobian. To improve the efficiency for the costly LU factorization, we also consider some
point-block versions of LU and ILU that keep the coupling between all physical components of each mesh
point.

4. Numerical results

In this section, we report some numerical results of the proposed fully coupled FSI solver by simulating the
blood flows in compliant arteries. We first validate our solver by testing a benchmark 3D FSI problem. We
then investigate the numerical behavior and parallel performance of our solver with two complex branching
geometries derived from clinical data. Our solver is implemented using PETSc library [1]. All computations
are performed on the Janus supercomputer at the University of Colorado at Boulder.

4.1. A benchmark case

A benchmark 3D FSI problem consists of a straight cylinder representing the fluid domain with length
5 cm and radius 0.5 cm, and the surrounding wall with thickness 0.1 cm. A constant traction of - n =
1.33 - 10* dynes/cm? is imposed on the inlet boundary for 3 ms. A zero traction condition is applied to
the fluid at the outlet boundary. The fluid is characterized with viscosity py = 0.03 em?/s, and density
ps = 1.0 g/em3. The Young’s modulus E = 3-10° g/(cm s?), the Poisson ratio v, = 0.3, and the structure
density ps = 1.2 g/cm? are the parameters of the structure model. The damping parameter « is set to be
zero in this case.

The fluid and the structure are initially at rest and the simulation is run on a mesh with 2.41 - 108
elements and 3.08 - 10° degrees of freedom, for a total time of 10 ms with a time step size At = 0.1 ms. The
simulation proceeds to the next time step when the residual of the nonlinear system is less than 1076, To
validate our algorithm, we show the computed fluid pressure and the structure deformation at ¢t = 2.5, 5.0,
10.0 ms as in Figure 1. Our results show good agreement with the published results [9, 11]. The pressure
wave propagation along the cylinder is observed. The wall structure deforms in response to the propagation
of the wall pressure, which is a key feature of the fluid-structure interaction.

4.2. A two-branch artery case

In this subsection, we perform simulations for a branching geometry with two branches obtained from a
pulmonary artery. The artery wall thickness is assume to be 10% of the local arterial diameter. For the inlet,
we prescribe a pulsatile periodic flow wave, with a period T of 0.6 s. For the outlets, the relation P = QR is
implicitly prescribed on the outflow boundaries as the resistance boundary condition, where Q) = fF us-nds
represents the flow rate at the outflow boundaries [12, 25]. The resistance R = 1408.0 dyn - s/cm® and
R = 677.6 dyn - s/cm® at the left artery outlet and the right artery outlet, respectively. The elastic artery
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Figure 1: Pressure wave propagation and structure deformation. The deformation is amplified by a factor of 12 for visualization
purpose only.
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Figure 2: Flow waves and pressure at the inlet and outlets over one cardiac cycle, obtained using the resistance outflow
boundary condition. Figure on the left represents the flow rate at the inlet and outlets, and figure on the right shows the fluid
pressure at the inlet and outlets.

wall is characterized with density of 1.2 g/cm?, Young’s modulus of 1.5 x 105 g/(em s?), the Poisson ratio
of 0.48, and the damping parameters o = 6.0 x 103, which are chosen in the literature [18, 21]. The blood
is modeled with a density of 1.0 g/em? and kinematic viscosity of 0.035 cm?/s. All the physical parameters
chosen are physiologically realistic. The simulations are run for 3 cardiac cycles with a time step size of 0.001
s. In Figure 2, we show the simulated results for fluid flow and pressure at the inlet, the left artery outlet
(LPA), and the right artery outlet (RPA) during one cardiac cycle. The outflow lags the inflow due to the
compliance of the arterial wall. The computed phase shift between the inflow and the outflow at RPA is 0.02
s. Figure 3 shows snapshots of the fluid velocity field at two phases of the cardiac cycle, the peak systole,
and early-diastole. The fully three-dimensional flow field is quite complex, especially in the diastole phase.
Figure 4 shows the arterial wall velocity vectors at the same two phases, illustrating the corresponding wall
movement in response to the fluid dynamics. Such complex flow structures are usually very difficult to be
measured clinically, high resolution computer provides a unique way to reveal the phenomena.

We next study the parallel performance and the scalability of our solver to the fully coupled FSI problem.
Unless otherwise specified, the stopping criterion for the Newton iteration is when the relative residual norm
of the nonlinear system is less than 107%. The accuracy of preconditioned Jacobian system is governed
by the relative tolerance of 107%. The time step size is fixed as At = 0.001 s, and the simulation is
stopped after 10 time steps. As shown in Figure 5, our algorithm shows satisfactory strong scalability for
problem sizes with over 4 million degrees of freedoms and with up to 3072 processors. As we increase the

6



Figure 3: Flow in a pulmonary artery with two branches at the peak systole (left) and the early diastole (right). The fluid
streamlines are colored by velocity magnitude.

Figure 4: Arterial wall velocity vectors obtained at two points of the cardiac cycle: peak systole (left), early diastole (right).

number of processors, the compute time decreases, and the parallel speedup is nearly ideal. It is worth
noting that the growth in GMRES iterations for large processor counts may be a problem if we consider
to solve the problem on a much larger mesh and with a larger number processors. In those situations,
one possible solution to improve the scalability is the use of a multilevel preconditioner. In our algorithm
with an overlapping Schwarz preconditioner, the choice of subdomain solver has a significant impact to
the overall performance. In Table 1, we show the results using point-block LU (BLU) and point-block
ILU with 2 levels of fill-ins (BILU(2)), by comparing with the results using LU. When LU is used as the
subdomain solver, the subdomain problem is solved exactly. We obtain the best performance in terms of
GMRES iterations. However, LU factorization is computationally expensive especially when the number of
processors is small. Using the point-block factorizations helps improving the efficiency of the factorization.
Both of the point-block factorizations shown in the table reduce the fill-in ratio needed in the decomposition.
Without deteriorating the convergence, the compute time is reduced by almost 50% if we replace LU by
point-block LU. In the case of BILU(2), although there is a mild growth in the number of GMRES iterations,
the compute time is further reduced. Comparing with the results using LU factorization, using BILU(2) as
the subdomain solve saves nearly 75% of the compute time when the processors is small.

4.8. Complex branching artery case

Here we perform simulations for a larger and more complicated branching geometry obtained from a
biplane angiography data from a pulmonary artery. We assume the wall thickness is 10% of the artery
radius. The solid density is 1.2 g/em?; the Young’s modulus of the structure is 7.5 x 10° g/(em s?); the
Poisson ratio is 0.48. The fluid density is 1.0 g/cm3, and the kinematic viscosity is 0.035 cm?/s. The inlet
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Figure 5: Parallel speedup, average compute time per time step, and average GMRES iterations per Newton iteration for the
two branching problem with increasing number of processors. The number of unknowns of each problem is listed in the legend.

LU BLU BILU(2)
np | NI GMRES time filin | NI GMRES time filkin | NI GMRES time fllin
128 |20 6250 9538 16.73 | 20 6250 5073 14.66 | 2.0 11030 2221 4.76
256 | 2.0 7650 3516 1323 | 2.0 7650 21.92 10.62 | 2.0 118.75 1287 4.58
512 | 2.0 10225 17.06 891 |20 10230 958 891 |20 12715 753 475
1024 | 2.0 12945 809 657 | 2.0 12945 618 510 | 2.0 14850 4.94  4.86

Table 1: Performance with respect to the number of processors for different subdomain solvers. The tests are carried on a
mesh with 1.24-10% unknowns with fixed overlap size § = 1. “np” denotes the number of processors. “NI” denotes the average
Newton iteration per time step. “GMRES” denotes the average GMRES iterations per Newton step. “time” refers to the
average compute time, in seconds, per time step. “fill-in” refers to the average fill-in needed in the factorization per iteration.

boundary condition is parabolic in space and time profile like 1+ sin(nt) with a maximum of 16.5 em/s. The
zero-traction boundary conditions are imposed at the outflows. Since the purpose of these simulations is
mainly to test the performance of our algorithm, the choice of boundary conditions may not be physiological
realistic, but are chosen from the literature [2, 3]. Simulation results for this branching model is shown in
Figure 6.

Our algorithm again shows very good scalability to this complicated model; see Figure 7. Although there
is a mild growth of GMRES iterations, the parallel speedup is nearly linear as we increase the number of
processors. As for the overlapping additive Schwarz preconditioner, the overlap parameters § is significant
to the convergence of the linear system. In Table 2, we show the results of various choices of ¢ on different
meshes and number of processors. By increasing the size of overlapping §, the average number of GMRES
iterations decreases. However, smaller overlapping sizes produce better timing results. It is always a trade
off to choose the best §. Large § corresponds to a better preconditioner and fewer iterations. But large §
requires more communications and more time in subdomain solve, which may cost more in the total compute
time.

5. Conclusion

In this paper, we introduced and studied an ALE based framework for fully coupled fluid-structure
interaction problems for the simulations of blood flows in three-dimensional compliant arteries, and developed
a parallel domain decomposition algorithm with an overlapping Schwarz preconditioner for solving the
corresponding monolithically coupled, nonlinear system. We demonstrated that the Newton-Krylov-Schwarz
algorithm allows us to simulate blood flows in compliant arteries both accurately and efficiently. In particular,
the algorithm shows a great deal of robustness with respect to the complicated patient-specific geometries,
large meshes and large number of processors. In the future, we plan to further develop this class of algorithms
to include multilevel capabilities.



Figure 6: Results of a simulation on a branching geometry. In the large images, the fluid shaded by pressure is shown on the
left, and the fluid velocity colored in its magnitude is shown on the right. The structure is shown in a solid shade in both
images. In the inset images, the structure shaded by norm of the displacement is shown on the left, and the fluid streamlines
colored by vorticity is shown on the right. Both insets representing a magnification of the marked portion.
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Figure 7: Parallel speedup, average compute time per time step, and average GMRES iterations per Newton iteration for the
complex branching problem with increasing number of processors. The number of unknowns of each problem is listed in the
legend.

unknowns | np Newton GMRES time

0=1 2 3 0=1 2 3 0=1 2 3
256 | 2.0 2.0 2.0 | 54.50 47.45 42.85 | 25.58 29.85  33.03
1.83-10% | 512 | 2.0 2.0 2.0 | 63.30 55.80 51.60 | 11.89  13.06  16.05
1024 | 2.0 2.0 2.0 | 84.95 71.65 65.05 6.16 6.61 9.51
512 | 2.0 2.0 2.0 | 101.90 74.15 64.50 | 160.50 197.05 258.04
1.07-107 | 1024 | 2.0 2.0 2.0 | 121.20 96.90 88.20 | 73.66  94.40 140.72
2048 | 2.0 2.0 2.0 | 159.00 118.80 102,50 | 33.89  38.19  54.88

Table 2: The effect of various choices of the overlapping parameter § on different mesh sizes and number of processors. “np”
denotes the number of processors. “Newton” denotes the average Newton iteration per time step. “GMRES” denotes the
average GMRES iterations per Newton step. “time” refers to the average compute time, in seconds, per time step.
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