LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST
EIGENVALUES OF LARGE GENERALIZED EIGENVALUE PROBLEMS

MINGHAO WU*

Abstract. In linear stability analysis of a large-scale dynamical system, we need to compute the rightmost
eigenvalue(s) for a series of large generalized eigenvalue problems. Existing iterative eigenvalue solvers are not robust
when no estimate of the rightmost eigenvalue(s) is available. In this study, we show that such an estimate can be
obtained from Lyapunov inverse iteration applied to a special eigenvalue problem of Lyapunov structure. Furthermore,
we generalize the analysis to a deflated version of this problem, and propose an algorithm that computes a few rightmost
eigenvalues for the eigenvalue problems arising from linear stability analysis. Numerical experiments demonstrate the
robustness of the algorithm.

1. Introduction. This paper introduces a robust algorithm for computing a few rightmost
eigenvalues of generalized eigenvalue problems. In particular, we are concerned with problems of the
form

J(a)x = uMz (1.1)
arising from linear stability analysis (see [8]) of the dynamical system
Mu; = f(u, @). (1.2)

M € R™ ™ is called the mass matrix, and the parameter-dependent matrix J(a) € R™*"™ is the
Jacobian matrix %(ﬂ(a),a) = %(a), where @(«) is the steady-state solution to (1.2) at «, i.e.,
f(@, &) = 0. Let the solution path be the following set: S = {(@, «)|f (@, &) = 0}. We seek the critical
point (T, ) associated with transition to instability on S. Our primary interest is (1.2) arising from
spatial discretization of 2- or 3-dimensional, time-dependent partial differential equations (PDEs).
Therefore, we assume n to be large and J(«), M to be sparse throughout this paper.

The conventional method of locating the critical parameter o, is to monitor the rightmost
eigenvalue(s) of (1.1) while marching along S using numerical continuation (see [8]). In the stable
regime of S, the eigenvalues p of (1.1) all lie to the left of the imaginary axis; as (@, @) approaches
the critical point, the rightmost eigenvalue of (1.1) moves towards the imaginary axis; at (., a.),
the rightmost eigenvalue of (1.1) has real part zero, and finally, in the unstable regime, the rightmost
eigenvalue of (1.1) has positive real part. The continuation usually starts from a point (g, ag) in the
stable regime of S and the critical point is detected when the real part of the rightmost eigenvalue of
(1.1) becomes nonnegative. Consequently, the robustness and efficiency of the eigenvalue solver for
the rightmost eigenvalue(s) of (1.1) are crucial for the performance of this method. Direct eigenvalue
solvers such as the QR and QZ algorithms (see [11]) compute all the eigenvalues of (1.1), but they
are too expensive for large n. Existing iterative eigenvalue solvers (see [11]) are able to compute a
small set (k < n) of eigenvalues of (1.1) near a given shift o € C efficiently. For example, they work
well when k eigenvalues of (1.1) with smallest modulus are sought, in which case ¢ = 0. However,
in the computation of the rightmost eigenvalue(s), there is no good way to determine the value of o.

Meerbergen and Spence [9] proposed the Lyapunov inverse iteration that estimates the critical
parameter a, without computing the rightmost eigenvalue(s) of (1.1). Assume (U, ) is in the
stable regime of S and is also in the neighborhood of the critical point (@, a.). Let A = . — ayg
and A = J(ap). Then the Jacobian matrix J(a.) at the critical point can be approximated by
A + \:B where B = %(ao). It is shown in [9] that A. is the eigenvalue with smallest modulus
of the special eigenvalue problem AZM? + MZAT + \(BZM” + MZB7) = 0 and that \. can
be computed by a matrix version of inverse iteration. Estimates of the rightmost eigenvalue(s) of
(1.1) at «. can be obtained as by-products. Elman et al. [5] refined the Lyapunov inverse iteration
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proposed in [9] to make it more robust and efficient, and examined its performance on challenging
test problems arising from fluid dynamics.

The method proposed in [5,9], although it allows us to estimate the critical value of the parameter
without computing the rightmost eigenvalue of (1.1), only works in the neighborhood of the critical
point (%@, a.). In [5], for instance, the critical parameter value «. of all numerical examples is known
a priori, so that we can pick a point (uo, ap) close to (@, o) and apply Lyapunov inverse iteration
with confidence. In reality, . is unknown and we start from a point (%o, «g) in the stable regime of
S which is distant from the critical point, then the method of [5,9] cannot be used to estimate a,
since J(a.) cannot be approximated by A + A.B anymore. However, some quantitative information
about how far away (g, cg) is from the critical point can still be obtained by estimating the distance
between the rightmost eigenvalue(s) of (1.1) at (g, p) and the imaginary axis: if the rightmost
eigenvalue is far away from the imaginary axis, then it is reasonable to assume that (U, aq) is
far away from the critical point as well, and therefore we should march along S using numerical
continuation until we are close enough to (@, a.); otherwise, we can assume that (%o, cg) is already
in the neighborhood of the critical point and the method of [5,9] can be applied to estimate c..

The goal of this paper is to develop a robust method to compute a few rightmost eigenvalues
of (1.1) at any point in the stable regime of S. The plan of this paper is as follows. In section
2, we show that the distance between the rightmost eigenvalue(s) of (1.1) and the imaginary axis
is in fact the eigenvalue with smallest modulus of an n? x n? eigenvalue problem with a special
Kronecker structure. This means that this eigenvalue can be computed efficiently by Lyapunov
inverse iteration. In section 3, we present numerical results for several examples arising from fluid
dynamics. In section 4, we show that the analysis of section 2 can be generalized to a deflated
version of the n? x n? eigenvalue problem, which leads to an algorithm for computing & (1 < k < n)
rightmost eigenvalues of (1.1). Finally, we make some concluding remarks in section 5.

2. Computing the distance between the rightmost eigenvalue(s) and the imaginary
axis. Let (g, @) be any point in the stable regime of S and assume M is nonsingular in (1.1).
Let (uj,x;) (|lzjll2 =1, 7 = 1,2,...,n) be the eigenpairs of (1.1) at (%o, ), where the real parts
of pj, Re(y;), are in decreasing order, i.e., 0 > Re(ui) > Re(uz) > ... > Re(pn). Then the
distance between the rightmost eigenvalue(s) and the imaginary axis is —Re(pu1). Let A = J ()
and S = A!M. To compute this distance, we first observe that —Re(u) is the eigenvalue with
smallest modulus of the n? x n? generalized eigenvalue problem

Alz = /\(—Ao)z, (2.1)

where Ay = ST+ 1®S and Ay =25 ® S (I is the identity matrix of order n). We proceed in
two steps to prove this assertion. First, we show that —Re(uq) is an eigenvalue of (2.1).

THEOREM 2.1. The eigenvalues of (2.1) are A\, ; = *%(/M +u5), 4,5 =1,2,...,n. The eigen-
vector of (2.1) associated with A, ; is z; ; = 0 jT; @ & + fi jo; @ x; for any «; 5,5 ; € C (o, ; and
Bi,; cannot be zero at the same time).

Proof. Since (u;,z;) (j = 1,2,...,n) are the eigenpairs of Az = puMz, (uj_l,xj) are the
eigenpairs of S. For any pair (¢,7) (4,7 =1,2,...,n) and any «; ;,5;,; € C,

Ao @xj+ Bija; @x) = ai;(SOT+ TR 8) (z @a;) + Bij(SRT+1®S)(z; @ ;)
= a; j[(Sz;) @ x5 + 2 @ (Sx))] + Bi[(S7)) ® 25 + 15 @ (S25)]

aig (w0t (@) + By (1t + it (2 @ @)

= ('t + ;) (Qigms @ x5 + Bijo; @ 1),

Similarly, we can show that
Ao jo; @ xj + i ja; @ x3) = 2(papg) ™ (s @ 5 + Bija; ® ;).

Therefore, i j = —%pip; (ui_l —|—,uj_1) = —1(wi + p;) is an eigenvalue of (2.1) and z;; is the
eigenvector of (2.1) associated with A; ;. O



If py is real, then —Re(uy) = —p1 = —%(ul + p1) = A1,1; if pq is not real (i.e., p1 = iz and
x1 = T3), then —Re(p1) = —%(ul + 7)) = —%(,ul + p2) = A2 = A21. In both cases, by Theorem
2.1, —Re(p1) is an eigenvalue of (2.1).

We next show that —Re(pq) is the eigenvalue of (2.1) with smallest modulus.

THEOREM 2.2. Assume all the eigenvalues of Ax = pMax lie in the left half of the complex
plane. Then the eigenvalue of (2.1) with smallest modulus is —Re(f11).

Proof. Let u; = aj +14b;. Then 0 > a1y > a2 > ... > a,. If the rightmost eigenvalue of
Az = pMz is real, then —Re(p1) = A1, and since 0 > a1 > ag > ... > ay, it follows that

1 1
Ml = a4+ a)? < o [(ai+a5)* + (0 + b)) = A

for any pair (4,7). Alternatively, if the rightmost eigenvalues of Ax = pMz consist of a complex
conjugate pair, then a1 = ag, by = —be, —Re(pt1) = A1,2 = A2.1, and similarly,

[(ai + aj)2 + (b + bj)2] = |)\i,j|2

NG

M2l = Aenl? = i [(al +a1)? + (b — b1)2] <
for any pair (4,7). In both cases, —Re(p1) is the eigenvalue of (2.1) with smallest modulus. O
Assume Az = Mz has a complete set of eigenvectors {x;}7_;. Then (2.1) also has a complete
set of eigenvectors {z; ® x; }f j=1- By Theorem 2.2, the distance between the imaginary axis and the
rightmost eigenvalue(s), —Re(u1), can be found by inverse iteration applied to (2.1). Unfortunately,
this approach is not suitable for large n because it involves solving linear systems of order n?. In
[5,9], an n? x n? eigenvalue problem similar to (2.1) is dealt with by rewriting the equation of
Kronecker sums into an equation of Lyapunov structure. Here, similarly, we can rewrite (2.1) into

SZ + ZST + A\(25285T) = 0. (2.2)

Any eigenpair (A, z) of (2.1) is related to a solution (A, Z) of (2.2), which we also refer to as an
eingenpair of (2.2), by z = vec(Z). By Theorem 2.1 and the relation between (2.1) and (2.2),
(Nij» Zij) (1,5 =1,2,...,n) with Z; j = o jx;aT +ﬁi7jxixJT are the eigenpairs of (2.2); in addition,
by Theorem 2.2, —Re(uy) is the eigenvalue of (2.2) with smallest modulus. Furthermore, under
certain conditions, —Re(p;) is a simple eigenvalue of (2.2) whose associated eigenvector is real,
symmetric and of low rank. Assume the following: (al) for any 1 < ¢ < n, if Re(u;) = Re(u1),
then p; = fi7; (a2) py is a simple eigenvalue of Ax = pMz. Consequently, if pq is real, —Re(p1) is
a simple eigenvalue of (2.1) with the eigenvector z = cx; ® z¥ for any ¢ € C; otherwise, —Re(u;)
is a double eigenvalue of (2.1) with the eigenvector z = c;21 ® Ty + 21 ® x;1 for any c¢1,c0 € C.
When the eigenvectors of (2.2) are restricted to the symmetric subspace of C"*™, by Theorem 2.3
from [9], —Re(p1) is a simple eigenvalue of (2.2) that has a unique (up to a scalar multiplier), real
and symmetric eigenvector Z = z1x] (if p is real), or Z = zy27 + T12T (if py is not real) where
27 denotes the conjugate transpose of z1. Therefore, we can apply Lyapunov inverse iteration (see
[5,9]) to (2.2) to find —Re(u1), the eigenvalue of (2.2) with smallest modulus:
Algorithm 1 (Lyapunov inverse iteration for computing —Re(u1))

1. Given V; € R™ with ||[Vi]l2 =1 and Dy = 1, let Z; = VyD1V{f and m = 1.

2. For/=1,2,--- _ _

2.1. Rank reduction: compute S = V,I'SV; and solve for the eigenvalue A of

SZ+ Z5T + X\25Z5T) =0 (2.3)
with smallest modulus and its eigenvector Z= ‘N/ﬁ‘N/T, where V € R™*" and
D eR™ with |D||p=1andr=1({(=1)or 2 (£ > 2).
2.2. Set Z, = VZDVZT and Ay = A, where V, = V,V.

2.3. If (\¢, Zy) is accurate enough, then stop.
2.4. Else, solve for Y; from

SY; + Y, ST = —257,8" (2.4)
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in factored form: Y, = WHDHIVZ_p where Vy11 € R™*™ and Dy, € R™*™.

As the iteration proceeds, the iterate (A, Zg = VyDoVE) will converge to (—Re(u), Z = VDVT)
where ||D|r =1 and V = z; (if y; is real) or V € R"*? is an orthonormal basis of {z1,Z7} (if p1
is not real). Besides an estimate of the distance —Re(u1) between the rightmost eigenvalue(s) of
Az = pMz and the imaginary axis, we can also obtain from Algorithm 1 estimates of the rightmost
eigenpair(s) of Az = pMuz as by-products. Consider the generalized eigenvalue problem

(I+AS)x = pSz. (2.5)

THEOREM 2.3. If A = X\;j = —3 (i + ) (i,5 = 1,2,...,n) where p;, juj are eigenvalues of
Az = uMz, then (2.5) has a zero eigenvalue, or a pair of eigenvalues that sum to zero.

Proof. Since S = A~'M, (uj_l, :rj) (j =1,2,...,n) are the eigenpairs of S. For any pair (i, j)
(Z7j = 1727"'77?')’

(I+ NijS) i = x5 + Niju; '@ = (i + Nij) i '@ = (i + A j) Sz,

and similarly, (I 4+ X;;S)x; = (uj + Aij) Sx;. Therefore, if A = \;; = —p;, then (2.5) has a
zero eigenvalue associated with the eigenvector x;; if A = \;; = —%(,ui + p;) with ¢ # 7, then
(i + Nij, b5 + Xiyj) is a pair of eigenvalues of (2.5) that sum to zero, and the eigenvectors of (2.5)
associated with them are (z;,2;). O

By Theorem 2.3, if A = —Re(j11), then (2.5) has a zero eigenvalue associated with the eigenvector
a1 (if py is real), or a conjugate pair of pure imaginary eigenvalues p1 — Re(pq) and fip — Re(u1)
associated with the eigenvectors z1 and Z7 (if 1 is not real). Since Ay converges to —Re(u1) and
V, converges to V, at each iteration of Algorithm 1, by solving the r» x r (r = 1 or 2) generalized
eigenvalue problem

V(T4 XeS) Vel ye = pe (VI SVi) we, (2.6)

we obtain estimates of py and x1: py = —A¢ + pe, ¢ = Veye. To compute the rightmost eigenpair
(1, x1) more accurately, we can use any iterative eigenvalue solver with o = p, as the shift.

At each iteration of Algorithm 1, a large-scale Lyapunov equation (2.4) needs to be solved. We
can rewrite (2.4) as

SY, + Y,8T = P,C,PF (2.7)

(see [5] for details) where Py is orthonormal and is of rank 1 (¢ = 1) or 2 (¢ > 1). The solution
to (2.7), Yy, is real and symmetric, and frequently has a low rank (see [1]). Since S is large, direct
methods such as [2] are not suitable. An iterative method that solves Lyapunov equations with
large coefficient matrix and low-rank right-hand side is needed. The Krylov-type methods for (2.7),
such as the Rational Krylov Subspace Method (RKSM) [4], seek approximate solutions of the form
WXWT, where W € R™™ (m < n) is an orthonormal basis of the Krylov subspace and X
is the solution to the m-dimensional, projected Lyapunov equation (WTSW)X + X(WTSW)T =
(WTP)Co,(WT P,)T, which can be solved using direct methods. The main cost of solving (2.7) using
Krylov-type methods is approximately m linear solves with coeflicient matrix a A +bM, where values
of the scalars a,b depend on the Krylov method of choice.

In step 2.1 (rank reduction) of Algorithm 1, although it may look like computing the Rayleigh
quotient S = VISV requires another m linear solves with coefficient matrix A, in fact, if a Krylov-
type method is used to solve (2.7), S can be obtained from the Arnoldi decomposition computed by
the Krylov-type method at no cost when ¢ > 1.

3. Numerical experiments. In this section, we test Algorithm 1 on several problems arising
from fluid dynamics. Note that when (1.2) comes from the finite element discretization of Navier-
Stokes equations, the mass matrix M is singular, leading to the infinite eigenvalues of (1.1) and a
singular S = A~'M. As in [5], we use the matrix transformation proposed in [3] to get a nonsingular
mass matrix. This transformation maps the infinite eigenvalues of (1.1) to finite ones away from the
imaginary axis, and leaves the finite eigenvalues of (1.1) unchanged. From here on, M refers to the
nonsingular mass matrix after the transformation.
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3.1. Example 1: driven-cavity flow. Linear stability analysis of this flow is considered in
many papers (see [7], for example). The Q2-Q1 mixed finite element discretization (with a 64 x 64
mesh) of the Navier-Stokes equations gives rise to a generalized eigenvalue problem (1.1) of order
n = 9539. The parameter « is the Reynolds number defined by Re = %, where v is the kinematic
viscosity. Figure 3.1a depicts the path traced out by the eight rightmost eigenvalues of (1.1) for
Re = 2000, 4000, 6000, 7800, at which the steady-state solution to (1.2) is stable. As the Reynolds
number increases, the eight rightmost eigenvalues all move towards the imaginary axis. In addition,
although the rightmost eigenvalue starts off being real, one conjugate pair of complex eigenvalues
(whose imaginary parts are about +3i) move faster towards the imaginary axis than the other
eigenvalues and eventually become the rightmost. They first cross the imaginary axis at Re ~ 7929,
causing instability in the steady-state solution of (1.2) (see [5]).
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Fig. 3.1: (a) The eight rightmost eigenvalues for driven-cavity flow at different Reynolds numbers
(* : Re = 2000, o : Re = 4000, ¢ : Re = 6000, O : Re = 7800). (b) The 300 eigenvalues with
smallest modulus at Re = 7800 (x: the rightmost eigenvalues).

Finding the conjugate pair of rightmost eigenvalues at a high Reynolds number is difficult in
this example. Suppose we are trying to find the rightmost eigenvalues at Re = 7800 by conven-
tional methods, such as computing k eigenvalues of (1.1) with smallest modulus using the Implicitly
Restarted Arnoldi (IRA) method [10]. If we use the Matlab function ‘eigs’ (which implements IRA)
with its default setting, then k has to be as large as 250, since there is a large number of eigenvalues
that have smaller modulus than the rightmost pair (see Figure 3.1b). This leads to at least 500
linear solves, and in practice, many more. More importantly, note that the decision k = 250 is made
based on a priori knowledge of where the rightmost eigenvalues lie. In general, we cannot identify
a good value for k which guarantees that the rightmost eigenvalues will be found.

For four various Reynolds numbers from 2000 to 7800, we apply Algorithm 1 (with RKSM as
the Lyapunov solver) to calculate the distance between the rightmost eigenvalue(s) of (1.1) and
the imaginary axis. The results are reported in Table 3.1. At the /" iteration of Algorithm 1, A,
denotes the estimate of the distance, i.e., the estimate of —Re(u1), (pe, 2¢) is the estimated eigenpair
of (2.5), rg = (I + X\¢S) xp — peSxy is the residual of (2.5), Ry = SZy + Z,ST + \¢ (QSZZST) is the
residual of (2.2), and Ry = SY;+ Y, ST — P,C, P} is the residual of the Lyapunov solve. Both [|9R,| -
and ||R¢||r are cheap to compute (see [5] for details). The stopping criterion for the Lyapunov
solve is || R¢|| < 1079, and m, denotes the dimension of the Krylov subspace needed by RKSM in
order to meet this criterion. Therefore, the main cost of each iteration is about my, linear solves.
The initial guess V; is chosen to be a random vector (of norm 1) in R™ and the stopping criterion
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for Algorithm 1 is |9, < 1078. All linear systems are solved using direct methods. Table 3.1
shows that the distances between the rightmost eigenvalue(s) of (1.1) and the imaginary axis at
Re = 2000, 4000, 6000, 7800 are 3.26410e-2, 1.60751e-2, 1.08438e-2, 5.13509e-3, respectively. We also
obtain estimates of the rightmost eigenvalue(s) of (1.1), —A; + p¢, at the four Reynolds numbers:
-3.26410e-2, -1.60751e-2, -1.08438e-2, and -5.13509e-3£2.698454.

Table 3.1: Algorithm 1 applied to Example 1 (Lyapunov solver: RKSM)

DY o el B [Rel, e
Re=2000

1 8.84383e+2 0 2.41642e+02 1.32049e¢+02 8.49152e-10 143

2 3.26410e-2 -8.37114e-15  4.48970e-13 2.52377e-11 — —
Re=4000

1 -1.77658e+4 0 1.01952e4+06 6.58651e+03 9.21268e-10 230

2 1.60751e-2 5.13941e-14 1.94353e-12 4.40201e-10 — —
Re=6000

1 1.30124e+3 0 7.46125e+02 8.55652e¢+02  9.99064e-10 301

2 1.08438e-2 -3.89829e-14  2.18625e-12 7.20713e-10 — —
Re=7800

1 6.95951e+2 0 4.78732e+02 6.58622e+02 9.02875e-10 366

2 5.13509e-3 2.69845i1 7.60018e-11 3.62567e-11 — —

3.2. Example 2: flow over an obstacle. For linear stability analysis of this flow, see [5]. The
Q2-Q1 mixed finite element discretization (with a 32 x 128 mesh) of the Navier-Stokes equations gives
rise to a generalized eigenvalue problem (1.1) of order n = 9512. Figure 3.2a depicts the path traced
out by the six rightmost eigenvalues of (1.1) for Re = 100,200, 300, 350 in the stable regime, and
Figure 3.2b shows the 300 eigenvalues of (1.1) with smallest modulus at Re = 350. (In this example,
the Reynolds number Re = %) As for the previous example, as the Reynolds number increases, the
six rightmost eigenvalues all move towards the imaginary axis, and the rightmost eigenvalue changes
from being real (at Re = 100) to a complex conjugate pair (at Re = 200,300, 350). The rightmost
pair of eigenvalues of (1.1) cross the imaginary axis and the steady-state solution to (1.2) loses its
stability at Re ~ 373.

We again apply Algorithm 1 to estimate the distance between the rightmost eigenvalue(s) of
(1.1) and the imaginary axis for the four Reynolds numbers mentioned above. The results are
reported in Table 3.2 (see section 3.1 for notation). The stopping criteria for both Algorithm 1 and
the Lyapunov solve (2.7) remain unchanged, i.e., |Re||z < 107% and || Ry||» < 107°.

Remark. As seen in Tables 3.1 and 3.2, Algorithm 1 converges in just two iterations in many
cases. We can show that as long as the first Lyapunov equation SY; + Y187 = P,C; P{ is solved
accurately enough, Algorithm 1 will always converge in two iterations (see [6]).

4. Computing k rightmost eigenvalues. In section 2, we have shown that when all the
eigenvalues of (1.1) lie in the left half of the complex plane, the distance between the rightmost
eigenvalue(s) and the imaginary axis, —Re(u1), is the eigenvalue of (2.2) with smallest modulus. As
a result, this eigenvalue can be computed by Lyapunov inverse iteration, which also gives us estimates
of the rightmost eigenvalue(s). In section 3, numerical experiments demonstrate the robustness and
efficiency of Lyapunov inverse iteration applied to (2.2). As seen in these examples, when we march
along the solution path S, it may be the case that an eigenvalue that is not the rightmost moves
towards the imaginary rapidly, becomes the rightmost eigenvalue at some point, and eventually
crosses the imaginary axis first, causing instability in the steady-state solution. Therefore, besides
the rightmost eigenvalue(s), it is helpful to monitor a few other eigenvalues in the rightmost part of
the spectrum as well. In this section, the goal is to discuss how Lyapunov inverse iteration can be
applied repeatedly to compute k rightmost eigenvalues of (1.1), where 1 < k < n.
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Fig. 3.2: (a) The six rightmost eigenvalues for flow over an obstacle at different Reynolds numbers
(% : Re =100, o : Re =200, < : Re = 300, O : Re = 350). (b) The 300 eigenvalues with smallest
modulus at Re = 350 (x: the rightmost eigenvalues).

Table 3.2: Algorithm 1 applied to Example 2 (Lyapunov solver: RKSM)

Y o el EZI® [Rel, me
Re=100

1 -2.42460e+0 0 5.76523e+0 1.15123e+1  7.07831e-10 48

2 5.72856e-1 -2.01081e-14 8.87207e-6 2.19026e-5 1.44423e-10 20

3 5.72852e-1 -8.48302¢e-16 2.10538e-7 5.19760e-7 2.59670e-10 12

4  5.72852¢-1 1.30404e-15 6.37589%e-8 1.57403e-7 6.49978e-10 10

5 5.72852e-1 -1.85924e-15 7.50147¢-9 1.85191e-8 6.16387e-10 4

6 5.72852e-1 1.44773e-15 1.23444e-9 3.04748e-9 — —
Re=200

1 -2.45074e+0 0 5.87186e+0 1.16834e+1  8.20904e-10 66

2 3.28838e-1 2.16393i1 1.61772e-5 7.96948e-6 9.79193e-10 74

3 3.28838e-1 2.16393i 6.04017e-8 2.97889%e-8 9.91143e-10 40

4 3.28838e-1 2.16393i1 8.89769¢-9 4.37230e-9 — —
Re=300

1 -2.47804e+0 0 5.97742e+00 1.18371e+01 7.09501e-10 80

2 1.04049e-1 2.22643i1 2.04448e-07 9.38438e-08  9.59921e-10 70

3 1.04049e-1 2.22643i 9.30321e-10 4.28600e-10 — —
Re=350

1 -2.49317e+0 0 6.04038e+0 1.19385e+1  8.85599e-10 89

2 2.410711e-2 2.247361 1.39467¢e-8 6.26715e-9 — —

We continue to assume the following: we are at a point (@, ap) in the stable regime of the
solution path & and the eigenvalue problem Az = pMaz with A = J(«ap) has a complete set of
eigenvectors. Let By = {p1, o, - .., g } be the set containing k rightmost eigenvalues of Az = pMuz
such that if u; € Ej, then fi; € Ej, as well. In addition, let Xy = [x1,72,...,2,] € C"*¥ be the
matrix that holds the k corresponding eigenvectors. Assume both Ej and X}, are known and we are
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interested in computing —Re(ug+1), the distance between the (k+1)% rightmost eigenvalue and the
imaginary axis. We will show that we can use the same methodology described in section 2, that
is, that —Re(up1) is the eigenvalue with smallest modulus of a certain n? x n? eigenvalue problem
with the same Kronecker structure as (2.1) and it can be computed by Lyapunov inverse iteration.

Let S = (I — Qng) S, where @ € R™** is an orthornormal basis of Xj. We claim that the
distance between piy1 and the imaginary axis, —Re(ug+1), is the eigenvalue of

Az =\ (—80) Z, z€R (ﬁo) , (4.1)

with smallest modulus, where Al =SeI+I® §, Ay =25® §, and R (M) denotes the range of a
matrix M. To prove this claim, we first study the eigenvalues and eigenvectors of S. R

LEMMA 4.1. LetZ; = x; for j <k and T; = (I — Qng) x; for j > k. The eigenpairs of S are
(0,7;) with j <k, and (uj_l,@) with j > k.

Proof. The proof is quite straightforward and is omitted here. O

Under the assumption that Ax = uMzx has a complete set of eigenvectors, we can show that
{Z; ® @}ijl are linearly independent and R (£0> = span{Z; ® Z;|i,j > k}. Now we will show
that —Re(pr+1) is the eigenvalue of (4.1) with smallest modulus.

THEOREM 4.2. Let %, ; = Qi ;T @ T + Bi;T; @ T for any pair (i,5) (i,5 =1,2,...,n) and any
&i,j,@,j € C (a;; and B\” cannot be zero at the same time). The eigenpairs of (4.1) are (X j,%i ;)
fori,g > k.

Proof. With the help of Lemma 4.1, the proof is very similar to that of Theorem 2.1. O

If pgy1 is real, —Re(pg41) = Agt1,6+1; otherwise, —Re(pg+1) = Ait+1,k+2 = Ait2,k+1- In either
case, by Theorem 4.2, —Re(p41) is an eigenvalue of (4.1).

THEOREM 4.3. Assume all the eigenvalues of Ax = pMx lie in the left half of the complex
plane. Then the eigenvalue of (4.1) with smallest modulus is —Re(fig11)-

Proof. See the proof of Theorem 2.2. O

Let P, = {Z € C"*"|Z = (I—Qng)X (I—QkQE) where X € C"*"}. If Z € Py, then

z=vec(Z) R (£0>, and wvice versa. Therefore, (4.1) can be rewritten in the form of a matrix

equation,
SZ+ 287 + A (2§Z§T) —0, Z e Py (4.2)

By Theorem 4.3, —Re(up+1) is the eigenvalue of (4.2) with smallest modulus. Let P§ = {Z €
Py|Z = ZT} be the symmetric subspace of Py. Assume the following (similar to assumptions
(al) and (a2) in section 2): (bl) for any k + 1 < i < n, if Re(u;) = Re(ug+1), then p; = Trr1;
(b2) pg+1 is a simple eigenvalue of Az = pMaz. As a result, when the eigenspace of (4.2) is
restricted to P7, —Re(ur+1) is a simple eigenvalue of (4.2) that has the unique (up to a scalar
multiplier), real and symmetric eigenvector Z = (I — QkQE) kaxEH (I — QkQ;‘f) (if pg1 is real),
or Z = (I — Qng) (xk+1x,t+1 +mxg+l) (I — Qng) (if pig41 is not real). Therefore, if we can
restrict the search space for the target eigenvector of (4.2) to PPj, Lyapunov inverse iteration can
be applied to (4.2) to compute —Re(ug+1). This implies that in Algorithms 1, we should seek a
solution to the Lyapunov equation

SY; +Y,8T = p,C,PF (4.3)

in P}, where P,C, Pl = 72§Z£§T. In general, solutions to (4.3) are not unique: any matrix of the

form Y, + QkXQ;{ where X € C"*" is also a solution, since ng = 0 by Lemma 4.1. However, in
the designated search space Pj, the solution to (4.3) is indeed unique. The Lyapunov solver RKSM
can be modified to compute the unique solution to (4.3) in Pj.

By Theorem 2.3 and Lemma 4.1, the eigenvalue problem

(I + )\§> x = pSx (4.4)
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has a zero eigenvalue or a conjugate pair of pure imaginary eigenvalues pg1 — Re(pr41) and g1 —
Re(ugy1) if A = —Re(pg+1). Therefore, using the method of computing estimates for (ui,z1)
described in section 2, we can obtain estimates for (ugy1, Zr+1) here as well.

The analysis above leads to the following algorithm for computing & rightmost eigenvalues of
Az = pMz:

Algorithm 2 (compute k rightmost eigenvalues of Az = uMz)
1. Initialization: i =0, E; =0, X; =0, Q; =0, and S = S = A~1M.
2. While i < k, compute the (i + 1) rightmost eigenpair:
2.1. Solve (4.2) for the eigenvalue with smallest modulus, —Re(f;+1), and its corresponding
eigenvector in P} using Algorithm 1. Obtain an estimate f;41 for p;41.
2.2. Compute (41, z;+1) accurately using an iterative eigenvalue solver with o = f1;41.
2.3. Update:
if g1 is real:
Ei1 < {Ei, pis1}, Xip1  [Xi wiga], i — i+ 1
else:
EZ‘J’_Q <— {Ei7ﬂi+1,m}, XH_Q <— [Xk7xi+17ﬁj:l]a 14— 1+ 2.
2.4. Let Q; € R™** be an orthonormal basis of X; and let S = (I — QiQiT) S.

At each iteration of Algorithm 2, the next rightmost eigenvalue pi;41 or the next pair of rightmost
eigenvalues ({41, fi+2 = Tit1) are computed. We test Algorithm 2 on the two examples considered
in section 3 to compute a few rightmost eigenvalues of (1.1) at a certain Reynolds number (the target
eigenvalues are marked by ‘07" in Figures 3.1a and 3.2a). The results of Algorithm 1 at each iteration
of Algorithm 2 are reported in Tables 4.1 and 4.2, where Ay denotes the estimate of —Re(p;+1), pe
denote the estimated eigenvalue of (4.4), ry is the residual of (4.4), Ry is the residual of the eigenvalue
problem (4.2), and R, denotes the residual of the Lyapunov solve (4.3). For example, when we use
Algorithm 2 to find eight rightmost eigenvalues of (1.1) for the cavity flow at Re = 7800, as shown in
Table 4.1: in the first iteration, the rightmost pair of eigenvalues 1,2 = —5.13509e — 3 £2.69845¢ are
found; in the second iteration, Algorithm 2 finds the third rightmost eigenvalue pg = —8.44960¢e — 3;
the fourth and fifth rightmost eigenvalues, py5 = —1.53097¢ — 2 £ 0.910374, are found in iteration
3; in the following iteration, Algorithm 2 picks up the sixth and seventh rightmost eigenvalues
te,7 = —2.16259e — 2 + 1.78863¢; and at last, in the fifth iteration, the eighth rightmost eigenvalue
ug = —2.99634e — 2 gets computed.

Table 4.1: Algorithm 2 (k = 8) applied to Example 1 (Re = 7800, Lyapunov solver: RKSM)

Y o [rell [l [Rellr  ma
Iteration 1

1 6.95951e+2 0 4.78732e+02 6.58622e+02 9.02875e-10 366

2 5.13509¢-3 2.698451 7.60018e-11 3.62567e-11 — —
Iteration 2

1 7.32044e+2 0 5.03483e+02  6.92569e+2  9.55688e-10 365

2 8.44960e-3  5.86661e-14  5.06015e-12 1.80579e-9 — —
Iteration 3

1 6.70701le+1 0 3.15116e+01 2.96177e4+01 9.50232e-10 364

2 1.53097e-2 0.919371 6.19001e-11 7.12215e-11 — —
Iteration 4

1 6.82490e+1 0 3.18706e+01 2.97730e+01 9.92182e-10 362

2 2.16259e-2 1.788631 8.03894e-11  4.59443¢-11 — —
Iteration 5

1 5.58888e+1 0 2.59430e+01  2.40938¢+01 9.76190e-10 362

2 2.99634e-2 -3.85945e-14  3.03416e-12 1.89975e-10 — —




Table 4.2: Algorithm 2 (k = 6) applied to Example 2 (Re = 350, Lyapunov solver: RKSM)

‘ Ar pe [ell2 [Rellr [Rellr—— my
Iteration 1

1 -2.49317e+0 0 6.04038e+0 1.19385e+1  8.85599e-10 89

2 2.410711e-2 2.24736i1 1.39467e-8 6.26715e-9 — —

Iteration 2
-2.49284e+0 0 6.03899e+00 1.19362e+01 7.82734e-10 86
2 2.84079e-1 4.59280e-14  3.00574e-12 1.30693e-11 — —
Iteration 3

—_

1 -2.40435e+0 0 5.66951e4+00 1.13265e+01 9.69285e-10 84
2 3.35708e-1  -2.92636e-12  2.25745e-11 1.10909e-10 — —
Iteration 4
1 -3.07840e+0 0 7.87471e+0 1.32487e+1  7.92390e-10 85

2 5.64849e-1  -1.11057e-12 1.20581e-9 3.01907e-9 — —
Iteration 5

-3.05288e+0 0 7.76816e+0 1.31121e+1  4.29111e-10 87

7.91958e-1 1.97705e-11 5.18047e-9 9.25097e-9 — —

—_

[\)

5. Conclusion. In this paper, we developed a robust method of computing a few rightmost
eigenvalues of (1.1) at any point in the stable regime. We show that the distance between the
rightmost eigenvalue of (1.1) and the imaginary axis is the eigenvalue with smallest modulus of an
n? xn? eigenvalue problem (2.1). Since (2.1) has the same Kronecker structure as the one considered
in previous work [5,9], this distance can be computed by Lyapunov inverse iteration as well, which
also produces estimates of the rightmost eigenvalue(s) as by-products. Furthermore, assuming k
rightmost eigenpairs are known, we show that all the main theoretical results proven for (2.1) can
be generalized to the deflated problem (4.1), whose eigenvalue with smallest modulus is the distance
between the (k + 1)%% rightmost eigenvalue and the imaginary axis. Finally, an algorithm that
computes a few rightmost eigenvalues of (1.1) are proposed. The method developed in this study
together with the method proposed in [5,9] constitute a robust way of detecting the transition to
instability in the steady-state solution of a large-scale dynamical system.
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