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Abstract. To explore feedback control of flow problems we consider the Stokes equations that
describe instationary, incompressible flows for low Reynolds numbers. After a standard finite element
discretization we get a differential-algebraic system of differential index two. We show how to reduce
this index with a projection method to get a generalized state space system, where a linear quadratic
control approach can be applied. This leads to large-scale saddle point systems which have to be
solved. For obtaining a fast iterative solution of those systems we derive efficient preconditioners
based on the approaches due to Wathen et al. [8, 15]. The main results can be extended to non-
symmetric Navier-Stokes equations.
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1. Introduction. Stabilization of flow problems is crucial for many areas of
engineering, e.g. car industry, aircraft constructing, to name a few. In this work
we follow an approach for feedback stabilization of incompressible flow problems by
Riccati-based feedback. The basic ideas for the numerical treatment are described
in [4] which uses the analytical approach [13] for the linearized Navier-Stokes equa-
tions. The first step for a detailed numerical treatment of this topic is explained here.
We consider a symmetric and linear approach for instationary, incompressible flow
problems, the so called Stokes equations

∂

∂t
v(t,x)− 1

Re
∆v(t,x) +∇p(t,x) = 0,

∇ · v(t,x) = 0,

 on (0,∞)× Ω, (1.1)

with the time t ∈ (0,∞), the spatial variable x ∈ Ω, the velocity field v(t,x) ∈ R2,
the pressure p(t,x) ∈ R and the Reynolds number Re ∈ R+. Additionally, we have
Ω ⊂ R2 as a bounded and connected domain with boundary Γ = ∂Ω, some Dirichlet
boundary conditions and appropriate initial conditions.

First we show that the discretized system within the feedback control approach leads
to large-scale saddle point systems. In Section 3, we introduce the solution strategy
for the saddle point system before we show some numerical examples in Section 4.

The methods below will be extended to the Navier-Stokes case [8, Section 7] in the
future, and we comment on this in Subsection 3.2.

2. Discretized Stokes Control System. We apply a standard finite element
discretization [2] to the Stokes equations (1.1) and get

M
d

dt
z(t) = Az(t) +Gp(t) + f(t), (2.1a)

0 = GT z(t), (2.1b)
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with the discretized velocity z(t) ∈ Rnv and pressure p(t) ∈ Rnp , the symmetric
positive definite mass matrix M ∈ Rnv×nv , the symmetric system matrix A ∈ Rnv×nv

and the discretized gradient G ∈ Rnv×np of rank np. The source term f(t) describes
the feedback influence via the boundary and can be expressed as f(t) = Bu(t) [4,
Section 2], with the boundary control u(t) ∈ Rnr and the input operator B ∈ Rnv×nr .
Since in general, one can only observe the velocity in parts of the domain we add the
output equation

y(t) = C z(t), (2.1c)

with the output y(t) ∈ Rna and the output operator C ∈ Rna×nv .

Equations (2.1a)-(2.1b) represent a differential-algebraic system (DAE) of differential

index two, with

[
M 0
0 0

]
as a singular left hand side coefficient matrix. Because

the solution set does not lie in an affine subspace but on a (hidden) manifold of the
Euclidean space, we face some additional difficulties referring to the solvability [16].
To avoid this problem we use the idea of index reduction described in [10, Section
3.] which is demonstrated in the next subsection for so called descriptor systems like
(2.1).

2.1. Projection Method. We follow the idea of index reduction as in [10],
which is used for balanced truncation model order reduction applied to descriptor
systems (2.1). We will show in Subsection 2.3 how this idea is also applicable in our
context. This means we use the projector

Π := I −G(GTM−1G)−1GTM−1, (2.2)

which is defined in [10, Section 3.] as an oblique projector in the Euclidean space. For
0 = GT z(t) this implies ΠT z(t) = z(t). The projector (2.2) ensures that the solution
fulfills the algebraic equation (2.1b) and simultaneously resides in the correct solution
manifold, the so called hidden manifold defined by

0 = GTM−1Az(t) +GTM−1Gp(t) +GTM−1Bu(t). (2.3)

Thus, system (2.1) reduces to

ΠMΠT d

dt
z(t) = ΠAΠT z(t) +ΠBu(t), (2.4a)

y(t) = CΠT z(t). (2.4b)

Because the nullspace of Π is not empty, we further consider the decomposition

Π = ΘlΘr, (2.5)

with Θl,Θr ∈ Rnv×(nv−np) satisfying

ΘT
l Θr = I(nv−np). (2.6)

If we substitute this decomposition into (2.4) we obtain

ΘT
r MΘr

d

dt
z̃(t) = ΘT

r AΘrz̃(t) + ΘT
r Bu(t), (2.7a)

y(t) = CΘT
r z̃(t), (2.7b)
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with z̃ = ΘT
l z ∈ Rnv−np . After replacing M = ΘT

r MΘr,A = ΘT
r AΘr,B = ΘT

r B and
C = CΘT

r , we obtain

M d

dt
z̃(t) = Az̃(t) + Bu(t), (2.8a)

y(t) = Cz̃(t), (2.8b)

as a generalized state space system with a symmetric positive definite mass matrix
M. In [10, Section 4] the generalized Lyapunov equations

AP̃MT +MP̃AT = −BBT , (2.9)

AT Q̃M+MT Q̃A = −CTC, (2.10)

have to be solved for P̃ , Q̃ to use the method for balanced truncation model order re-
duction. In the next subsections we will show that we have to solve similar equations
for the Riccati-based feedback approach. It is clear that for computational purposes
we do not want to form Π explicitly and we certainly cannot compute the decomposi-
tion (2.5). We will later see how we can work with (2.8) implicitly by solving certain
saddle point problems.

2.2. The Feedback Control Approach. For an asymptotic stabilization of
(1.1) we want to apply the idea of a linear quadratic control approach (LQR) to the
system (2.8). An introduction to LQR for state space systems can be found in, e.g.,
[11]. Because we consider the generalized state space system (2.8) with M 6= I we
have to modify the results slightly, as it is carried out in [14, Chapter 5.2]. There,
one ends up with the optimal control defined by

u∗(t) = −BTXMz̃∗(t) = −Kz̃∗(t) (2.11)

for system (2.8). Here u∗(t) minimizes the chosen cost functional

J (z̃(t),u(t)) =
1

2

∫ ∞
0

z̃(t)TCTCz̃(t) + u(t)Tu(t) dt, (2.12)

and X is the solution of the Generalized Algebraic Riccati Equation (GARE)

0 = CTC +ATXM+MTXA−MTXBBTXM =: R(X). (2.13)

Thus, we have to solve such a nonlinear matrix equation to get the optimal control
u∗(t). One way to solve this GARE is described in the next subsection.

2.3. Solving Generalized Algebraic Riccati Equations. A common way to
solve such nonlinear matrix equations is a Newton type method, as described in [14,
Chapter 4.5], and for the generalized case in [14, Chapter 5.2]. The Newton system
at step m is given by

R′|X(m)(N (m)) = −R(X(m)), X(m+1) = X(m) +N (m), (2.14)

with R′|X(m) the Frechét derivative of the Riccati operator R at X(m) defined as

R′|X(m) : N (m) 7→ (A− BBTX(m)M)TN (m)M+MTN (m)(A− BBTX(m)M).
(2.15)
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Algorithm 1 Generalized Low-rank Cholesky factor ADI iteration (G-LRCF-ADI)

Input: A(m),M,W(m) and shift parameters {p1, . . . , pimax}
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X(m+1)

1: V1 =
√
−2 Re (p1)

(
A(m) + p1M

)−T
(W(m))T

2: Z1 = V1
3: for i = 2, 3, . . . , imax do

4: Vi =
√

Re (pi)/Re (pi−1)
(
Vi−1 − (pi + pi−1)

(
A(m) + piM

)−T
(MTVi−1)

)
5: Zi = [Zi−1 Vi]
6: end for

Because N (m) = X(m+1) − X(m) the equations (2.14)-(2.15) yield the generalized
Lyapunov equation

(A(m))TX(m+1)M+MTX(m+1)A(m) = −(W(m))TW(m), (2.16)

with A(m) = A−BBTX(m)M and W(m) =

[
C

BTX(m)M

]
, which has the same struc-

ture as in (2.10) and has to be solved in each Newton step. Hence, we see that the
index reduction method in [10] is applicable.

A solution strategy for this kind of equation is the low-rank ADI iteration [1, Chapter
12], which is extended for the generalized case in [5] as shown in Algorithm 1 using
the above notation. For more details we refer to [14].

Combining the Newton iteration (outer iteration) and the G-LRCF-ADI (inner itera-
tion) yields the generalized low-rank Cholesky factor Newton method (G-LRCF-NM).
In Algorithm 1 large-scale linear systems of equations involving the projected matrices
have to be solved in lines 1 and 4. Both have the following structure(

A(m) + piM
)T

Λ = Y, (2.17)

with different right hand sides Y. Because one neither wants to build the dense
projector Π nor its decomposition, we recall the results in [10, Section 5] which
state that the solution of the Θ-projected equation (2.17) is also a solution of the
Π-projected equation

Π
(
AT −MTX(m)BBT + piM

T
)
ΠT Λ = ΠY, (2.18)

and use [10, Lemma 5.2] to solve the equivalent linear system[
AT −MTX(m)BBT + piM

T G
GT 0

] [
Λ
∗

]
=

[
Y
0

]
, (2.19)

instead of system (2.18). The complete process for computing the feedback operator
K = BTXM is shown in Algorithm 2. The linear system (2.19) has to be solved in
each ADI step. Note that each Newton step consists of several ADI steps. In the
remainder of this paper we show how we can efficiently solve (2.19).

3. Solving Large-Scale Saddle Point Systems. Systems of the form (2.19)
are often referred to as saddle point systems. A comprehensive overview about saddle
point systems is given in [6]. We explain the properties for the system (2.19) and our
choice of iterative solver.
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Algorithm 2 Generalized Low-rank Cholesky factor Newton method for Stokes

Input: M,A,G,B,C, shift parameters {p1, . . . , pnADI
}

Output: Feedback operator K
1: K0 = [ ]
2: for m = 1, 2, . . . , nARE do
3: W (m) =

[
CT (K(m−1))T

]
4: Get V1 by solving[

AT − (K(m−1))TBT + p1M
T G

GT 0

] [
V1
∗

]
=

[√
−2 Re (p1)W (m)

0

]

5: K
(m)
1 = BTV1V

T
1 M

6: for i = 2, 3, . . . , nADI do
7: Get Ṽ by solving[

AT − (K(m−1))TBT + piM
T G

GT 0

] [
Ṽ
∗

]
=

[
MTVi−1

0

]

8: Vi =
√

Re (pi)/Re (pi−1)
(
Vi−1 − (pi + pi−1)Ṽ

)
9: K

(m)
i = K

(m)
i−1 +BTViV

T
i M

10: if

(
||K(m)

i −K(m)
i−1 ||F

||K(m)
i ||F

< toladi

)
then

11: break
12: end if
13: end for
14: K(m) = K

(m)
nADI

15: if
(
||K(m)−K(m−1)||F

||K(m)||F
< tolnewton

)
then

16: break
17: end if
18: end for
19: K = KnARE

3.1. Properties of the Saddle Point System. The saddle point system aris-
ing from the feedback control approach for the Stokes equations is of the form (2.19),
with M = MT � 0, A = AT ≺ 0 and pi < 0. Although the matrices A,M and G are
sparse, the low rank product KTBT will become dense, such that the main part of
the matrix will become dense, destroying the efficiency of Algorithm 2. To avoid this,
we can write the system in form of a low rank update([

AT + piM
T G

GT 0

]
︸ ︷︷ ︸

A

−
[
KT

0

]
︸ ︷︷ ︸

KT

[
BT 0

]︸ ︷︷ ︸
BT

) [
Λ
∗

]
︸︷︷︸

Λ

=

[
Y
0

]
︸︷︷︸

Y

, (3.1)

which can be written in compact form as

(A−KTBT )Λ = Y, (3.2)
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and then use the Sherman-Morrison-Woodburry formula [9]

(A−KTBT )−1 =
(
Inv

+ A−1KT (Inr
−BTA−1KT )−1BT

)
A−1. (3.3)

This means we have to solve with A and a small dense matrix of size nr � nv.
Furthermore, it appears that we additionally have to solve with A for the right hand
side KT . But if we look at line 4 of Algorithm 2, we see that we solve for KT as the
right hand side in the first ADI step, such that we can avoid the additional costs, if
we save the result and re-use it later. Finally, we obtain the saddle point system[

AT + piM
T G

GT 0

] [
Λ
∗

]
=

[
Y
0

]
, (3.4)

which we have to solve for a couple of different right hand sides. Our strategy for
computing the solution of (3.4) is discussed next.

3.2. Preconditioned Iterative Solvers. To solve the system (3.4) we use it-
erative methods, instead of direct solvers, because the size n = nv +np becomes large
for usual finite element discretizations. If we want to use a symmetric iterative solver
(e.g. MINRES [12]) we might use a symmetric positive definite preconditioner such as

P =

[
−PF 0

0 PSC

]
(3.5)

[8, Section 6.1], where PF approximates F = AT + piM
T and PSC the Schur comple-

ment GTF−1G.

Because our primary focus is to derive efficient preconditioners for the Navier-Stokes
saddle point system we do not implement and use this version of the preconditioner.
Therefore we have explicitly used AT during the whole derivation, although A is
symmetric for the Stokes equations, and investigate a preconditioner for the potential
non-symmetric block structured matrix

F :=

[
F G
GT 0

]
, with F = AT + piM

T and F 6= FT . (3.6)

We believe that the additional cost of using a non-symmetric iterative method also
for the Stokes equations are minimal because we need only a few GMRES steps using
efficient preconditioning techniques.

Based on the ideas in [8, Section 8.1] our choice is the block structured non-symmetric
left preconditioner

P :=

[
PF 0
GT −PSC

]
⇒ P−1 =

[
P−1F 0

P−1SCG
TP−1F −P−1SC

]
. (3.7)

Applying P−1 from the left to F gives

P−1F =

[
P−1F F 0

P−1SCG
TP−1F F − P−1SCG

T P−1SCG
TP−1F G

]
. (3.8)

For PF = F and PSC = GTF−1G (3.8) yields[
F−1F 0

P−1SCG
TF−1F − P−1SCG

T P−1SCG
TF−1G

]
=

[
Inv

0
0 Inr

]
. (3.9)

6



But we cannot form PSC ∈ Rnp×np as this would require F−1 ∈ Rnv×nv explicitly. A
good approximation for the Schur complement for the Navier-Stokes case is derived
from a least-squares commutator approach, i.e.,

PSC ≈ SpF
−1
p Mp ⇒ P−1SC ≈M

−1
p FpS

−1
p , (3.10)

[8, Section 8.2], with Sp the discretized Laplacian on the pressure space and Fp the
system matrix defined on the pressure space. Thus, one has to solve a pure Neumann
problem S−1p [7], multiply with the system matrix on the pressure space Fp once
and solve a linear system with symmetric positive definite Mp, to apply the Schur
complement approximation. Note that for the symmetric Stokes case Fp = AP +pcMp

the Schur complement approximation becomes slightly easier [15, Section 3], because
the system matrix Ap is just the negative stiffness matrix Sp scaled by ν := 1

Re , such
that

PSC ≈ Sp(−νSp + piMp)−1Mp, (3.11)

⇒ P−1SC ≈M
−1
p (−νSp + piMp)S−1p = −νM−1p + piS

−1
p . (3.12)

Hence, we just solve a pure Neumann problem S−1p [7] and a linear system with the
mass matrix Mp for the differently scaled right hand side.

In (3.9) we assumed F as the best choice for PF . To get an efficient preconditioner we
want to apply a Multigrid approximation of F in the future [8, Section 8.3.2]. For
the proof of concept we use a sparse direct solver in MATLAB® (via the ”backslash”
operator) in the numerical experiments for our proposed preconditioner.

Some problems with the nested iterations, as well as some mentionable remarks re-
garding the numerical realization, are shown next.

4. Numerical Examples. The matrices for the numerical tests arise from a
standard mixed finite element discretization (P2-P1Taylor-Hood elements) of a von
Kármán vortex street. Using a Bänsch-refinement [3] we get six different magnitudes
for nv and np and every second level corresponds to one level of global uniform re-
finement (see Table 4.1).

Level nv np
1 3 452 453
2 8 726 1 123
3 20 512 2 615
4 45 718 5 783
5 99 652 12 566
6 211 452 26 572

Table 4.1: Levels of refinement

All computations are done within MATLAB R2010b on a 64-bit compute server with
CPU type Intel® Xeon® @3.46GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and
144 GB main memory available, of which we only use a minor fraction during all our
experiments.

At first we show some results concerning the innermost iteration for solving (3.4).
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Figure 4.1: Preconditioned residuals of GMRES for refinement levels of Table 4.1
(pc = −1,Re = 10).

4.1. Solving the Saddle Point System. To solve system (3.4) for one ex-
emplary right hand side we use the non-symmetric iterative solver GMRES that is
available in MATLAB with the preconditioner (3.7) and the Schur complement ap-
proximation (3.12) introduced above. In Figure 4.1 the preconditioned residuals cor-
responding to the numbers of iterations for the different levels of refinement from
Table 4.1 are listed.

One observes that we do not need more iterations if we refine our mesh. Hence, we
have a robust (with respect to the mesh parameter) preconditioned iterative method
to solve saddle point systems like (3.4). Another parameter is the Reynolds number
Re which can influence the number of iterations. Figure 4.2a shows this influence for
refinement Level 1 and the ADI shift pc = −1. We see that we need only a few more
iterations if we increase Re. The next parameter which changes during Algorithm 2
in each ADI step is the ADI shift pc. Figure 4.2b shows the dependence of the number
of iterations on pc for refinement Level 1 and Re = 10. As before, we need slightly
more iterations if we increase the absolute value of pc.
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(a) Number of iterations for different Reynolds
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(b) Number of iterations for different ADI-shifts
(Re = 10, Level 1).

Figure 4.2: Number of iterations depending on parameters.
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GMRES tol ∅ GMRES steps # ADI steps time

10−6 13 > 500 > 2800 sec.
10−7 15 82 375 sec.
10−8 16 71 348 sec.
10−9 18 65 330 sec.
10−10 19 55 308 sec.
10−11 20 55 335 sec.
10−12 21 55 341 sec.
10−13 23 55 386 sec.
10−14 23 55 458 sec.
10−15 24 55 494 sec.
10−16 25 55 491 sec.

”direct solver” - - 55 7 sec.

Table 4.2: Relation of the accuracy of GMRES with the time to solve a Newton step
(Re = 10, Level 1).

4.2. Solving Nested Iterations. The saddle point system (3.4) has to be
solved at each ADI step. To compute one Newton step (2.14) we need a number
of ADI steps to reach the stopping criterion for the Newton iteration. Depending on
how accurate the saddle point system in each ADI step is solved we need more or less
ADI steps. Because we use iterative solvers we can influence this accuracy up to a
certain point. In Table 4.2 we compare the number of ADI steps and the required
computation time in relation to the accuracy of the GMRES iteration. Notice that we
do not necessarily need the highest accuracy GMRES can achieve. For this example
we could reach the best time for an intended tolerance of 10−10 where we needed on
average 19 steps within GMRES and 55 ADI steps. We see that this setup generates
the same number of ADI steps as if we would use a direct solver for the saddle point
system. For this level of refinement the direct solver is of course faster than our
iterative method because the number of unknowns is comparably small.

Finally we note that the choice of the ADI shifts pc and the stopping criteria for the
ADI and the Newton iteration will be presented in detail elsewhere, because the focus
of this paper is on the efficient solution of the occurring saddle point systems.

5. Conclusions. In the paper we have shown how we can use the idea of in-
dex reduction for balanced truncation model order reduction for the Riccati-based
feedback approach, applied to a Stokes flow problem. We have pointed out the prop-
erties of the resulting saddle point systems and have introduced an efficient way to
solve such equations. Therefore we have investigated preconditioners to be used in
iterative methods, and in particular a way to get a good approximation of the Schur
complement. We have illustrated some numerical examples how different parameters
influence the solvers and have shown the competitiveness of our algorithm.

In the future, we will deal with the non-symmetric Navier-Stokes flow and explore in
detail the additional difficulties arising there. We will also investigate the acceleration
of the iterative solver in order to deal with multiple right hand sides, which is an
advantage of the direct solvers, that solve them almost simultaneously.
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