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Abstract. The Brinkman model is a unified law governing the flow of a viscous fluid in cavity (Stokes
equations) and in porous media (Darcy equations). In this work, we explore a novel mixed formulation of
the Brinkman problem. Introducing the flow’s vorticity as additional unknown, this formulation leads to
a uniformly stable and conforming discretization by standard finite element (Nédélec, Raviart-Thomas,
piecewise discontinuous). Based on stability analysis of the problem in the H(curl)−H(div)−L2 norms,
we derive a scalable block diagonal preconditioner which is optimal in the constant coefficient case. Such
preconditioner is based on the auxiliary space AMG solvers for H(curl) and H(div) problems available
in hypre ([10]). The theoretical results are illustrated by numerical experiments.

Introduction

The Brinkman equations describe the flow of a viscous fluid in cavity and porous media. It was
initially proposed in [1], [2] as a homogenization technique for the Navier-Stokes equations. Typi-
cal applications of this model are in underground water hydrology, petroleum industry, automotive
industry, biomedical engineering, and heat pipes modeling.

Mathematically speaking the Brinkman model is a parameter-dependent combination of the Darcy
and Stokes models. Since in real applications the number and the locations of the Stokes-Darcy
interfaces might not be known a priori, the unified equations in the Brinkman model represent an
advantage over the domain decomposition methods coupling the Darcy and the Stokes equations.
However, the high variability in the PDE coefficients, that may take extremely large or small values,
negatively affects the conditioning of the discrete problem which poses a substantial challenge for
developing efficient preconditioners for this problem.

Another challenging aspect of the Brinkman model is the construction of a stable finite element
discretization ([21]). In [14], it is proved that inf-sup compatible finite element for Stokes (Taylor
Hood, P2-P0, Crouzeix-Raviart - P0, mini elements) will lead to non-convergent discretizations in the
limit Darcy case (viscosity ν → 0 or inverse permeability k →∞) and that Raviart-Thomas elements
for the discretization of the velocity field fail in the case ν 6= 0, since they are not H1-conforming.
Numerous different approaches have been proposed in the literature to address the numerical stability
of the discretization. Among those, in [7] and [8], the authors introduce jumps penalization on the
normal component of the velocity field or on the pressure field to stabilize the Crouzeix-Raviart and
P0 finite elements or P1-P0 finite elements, respectively. In [9], an augmented Lagrangian approach
and a least squares stabilization is explored in order to use inf-sup compatible Taylor-Hood elements
also in the Darcy case, while in [14] high order non-conforming elements are investigated.

In the present paper, we consider the mixed formulation of the Brinkman problem proposed by the
authors in [20]. Following what has already been done for the Stokes problem ([6], [3]), the authors
introduced the (scaled) vorticity as additional unknown. The well-posedness analysis of the mixed
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formulation was based on the Hilbert complex structure for the Hodge Laplacian, and the numerical
stability of the method was guaranteed by an analogous results on the discrete level. The particular
choice of Nédélec, Raviart-Thomas and piecewise discontinuous elements, in fact, reproduces the same
embedding and mapping properties of the continuous spaces in the finite elements spaces. The linear
system obtained after finite element discretization has a symmetric saddle point form. In contrast to
the penalization methods for the Brinkman problem, our approach provides a conforming discretization
by standard finite elements. Discretization errors in the H(div)-norm of the velocity and in the L2-
norm of the pressure show uniform decay rates with respect to the inverse permeability coefficient k(x).
Only the (scaled) vorticity is approximated with less accuracy as we approach the Darcy limit.
A main disadvantage of the mixed formulation approach is that the Hodge decomposition holds only
for particular sets of boundary conditions ([3]).

In this work, we focus on the development of effective preconditioning techniques for the discrete
saddle point problem. Following the approach in [15], we construct a block diagonal preconditioner
with optimal convergence properties based on the stability analysis of the continuous problem. Such
preconditioner has on the main diagonal the finite element matrices corresponding to the H(curl),
H(div), and L2 norms involved in the stability estimates. To improve the efficiency of the precon-
ditioner, we resort to the recently developed auxiliary space multigrid preconditioner for H(div) and
H(curl) problems.

In Section 1, we briefly derive the mixed formulation of the Brinkman problem based on the Hodge
Laplacian, and we provide a stability estimate. In Sect. 2, we address the numerical discretization
of the mixed formulation with Nédélec, Raviart-Thomas and piecewise polynomial discontinuous finite
element which leads to a large sparse saddle point linear system. In Sect. 3, we derive an optimal
preconditioner with respect to the mesh size. We also investigate an augmented Lagrangian approach in
order to improve the robustness of the preconditioner with respect to the PDE coefficients. Finally, in
Sect. 4 we present numerical results for the case of constant coefficient and smoothly varying coefficient.

1. Mixed formulation of the Brinkman Problem

Let Ω be a bounded domain in Rd with a regular enough boundary ∂Ω that has well-defined unit
outward normal vector n ∈ Rd. The generalized Brinkman problem reads

(1.1)


−ν ∆u + k(x)u +∇p = f(x) ∀x ∈ Ω
div u = g(x) ∀x ∈ Ω
u× n = g on ∂Ω
−p+ νdiv (u) = h on ∂Ω,

where ν ≥ 0 is the fluid viscosity and k(x) is the inverse permeability of the medium. The challenge of
this problems is when the coefficient k = k(x) takes two extreme values O(1) and O(1/ε) in different
parts of Ω. In the part of the domain with k = O(1), the PDE behaves like a Stokes problem, whereas
in the rest of the domain, it behaves like Darcy equation.

In the present work, for simplicity, we assume natural boundary conditions on ∂Ω. However, other
set of boundary conditions, like the essential boundary conditions (u · n = un, σ × n = στ ), can also
be treated in a similar way. For the Hodge Laplacian, natural boundary conditions are also known in
the literature as electric boundary conditions while the essential ones as magnetic boundary conditions
due to the close relation with Maxwell’s equations. In our work, we do not consider the case of full
Dirichlet boundary condition, as the mixed formulation is harder to analyze; it leads to suboptimal
discretization error behavior ([3]).

To obtain a mixed formulation of the Brinkman problem (1.1) we exploit the vector calculus identity

∆u = ∇ div u− curl curl u,
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and we define the (scaled) vorticity variable

σ = ε curl (u), ε =
√
ν.

After some straightforward manipulations, the mixed formulation reads

(1.2)


σ − ε curl (u) = 0, x ∈ Ω
ε curl (σ)− ε2∇(div u) + k(x)u +∇p = f(x), x ∈ Ω
div (u) = g(x), x ∈ Ω
u× n = g, on ∂Ω
−p+ ε2div (u) = h, on ∂Ω.

1.1. Functional spaces and orthogonal decompositions. We now introduce the notation used
throughout the paper. For vectorial functions u,v ∈ [L2(Ω)]d and scalar functions p, q ∈ L2(Ω), we let
(u,v) =

∫
Ω u · v dΩ and (p, q) =

∫
Ω pq dΩ. Similarly, we denote by ‖v‖ and ‖p‖ the norms induced by

the respective inner products.
To come up with the weak formulation of the system (1.2), we introduce the functional spaces Q, R
and W , defined as

- Q ≡ H(curl,Ω) :=
{
σ ∈ L2(Ω)|curl σ ∈ L2(Ω)

}
, equipped with the norm

‖τ‖2Q = ‖τ‖2 + ‖curl (τ )‖2

- R ≡ H(div,Ω) :=
{
u ∈ L2(Ω)|div u ∈ L2(Ω)

}
, equipped with the norm

‖v‖2R = ‖v‖2 + ‖div (v)‖2.

- W ≡ L2(Ω), equipped with the norm

‖q‖2Q = ‖q‖2.
We denote with Q∗, R∗, and W ∗ the dual spaces of Q, R, and W , respectively.

Then we recall the orthogonal decomposition in L2, H(curl) and H(div). Such decompositions are
of utmost importance in the stability analysis of the mixed problem ([20]), and for the derivation of
the auxiliary space multigrid preconditioners for such spaces ([4], [5]). Letting X = {τ ∈ H(curl)|∃ψ ∈
H1 : τ = ∇ψ} and Y = {v ∈ H(div)|∃ψ ∈ H(curl) : v = curl ψ}, we have the following orthogonal
decompositions:

L2 = X⊕Y, H(curl) = X⊕X⊥, H(div) = Y ⊕Y⊥.

As immediate consequence of such orthogonal decompositions, the inf-sup conditions

(1.3) inf
u∈Y

sup
τ∈Q

(u, curl τ )

‖u‖R‖τ‖Q
≥ 1

γ
and inf

p∈W
sup
v∈R

(p, div v)

‖p‖W ‖v‖R
≥ 1

β

hold for some constant γ and β which depends only on the domain Ω. In fact, the spaces X⊥ and Y⊥

have the property that

‖τ⊥‖H(curl) ≤ γ‖curl τ⊥‖L2 ∀τ⊥ ∈ X⊥, and ‖v⊥‖H(div) ≤ β‖div v⊥‖L2 ∀v⊥ ∈ Y⊥.

1.2. Well-posedness of the mixed variational formulation. Proceeding as in [20], with standard
manipulation, we obtain the variational formulation of the mixed Brinkman problem (1.2).

Problem 1.1. Find (σ,u, p) ∈ Q×R×W such that

(1.4)

 m(σ, τ ) −c∗(u, τ ) = F (τ ) ∀τ ∈ Q
−c(σ,v) −a(u,v)− d(u,v) +b∗(p,v) = G(v) ∀v ∈ R

b(u, q) = H(q) ∀q ∈ Q
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where

m(σ, τ ) = (σ, τ ) σ, τ ∈ Q(1.5)

c(σ, v) = ε (curl σ,v) σ ∈ Q, v ∈ R,(1.6)

a(u, v) = ε2(div u, div v) u, v ∈ R,(1.7)

d(u,v) = (k(x)u,v) u,v ∈ R,(1.8)

b(u, q) = (div u, q) u ∈ R, q ∈ Q.(1.9)

F ∈ Q∗, G ∈ R∗, H ∈W ∗ are bounded functionals that take into account volume forces and boundary
conditions.

The stability analysis of the mixed formulation was carried out by the authors in [20], following the
analysis of the Hodge Laplacian in [6], [3]. Here, we summarize the main result.

Theorem 1.1. If ε ≥ 0 and k(x) ∈ L∞(Ω) ∩ L2(Ω), 0 ≤ kmin ≤ k(x) ≤ kmax almost everywhere in
Ω, then for given continuous linear functionals F ∈ Q∗, G ∈ R∗, H ∈ W ∗ the generalized Brinkman
problem (1.1) admits an unique solution and the following a priori estimate holds:

‖σ‖2Q + ‖u‖2R + ‖p‖2W ≤ C(Ω, ε, kmin, kmax)(‖F‖2Q∗ + ‖G‖2R∗ + ‖H‖2W ).

The main ingredients in the proof of the stability theorem are the inf-sup conditions (1.3) and the
orthogonal decomposition of Q and R. We refer to [20] for the details.

2. Discretization

Let us introduce the finite element spaces Qh ⊂ Q, Rh ⊂ R, Wh ⊂W . In order to achieve stability
of the discretized problem, the discrete spaces Qh, Rh, Wh should preserve Hilbert structure of de
Rham complex in the continuous case (see [6] for more details):

Q→ curl → R→ div →W

Qh → curl → Rh → div →Wh.

A standard choice for numerical discretization of the Hodge Laplacian is the following. For a given
integer r ≥ 0, we let Qh be the (r + 1)-th order Nédélec finite elements ([16]), Rh the r-th order
Raviart-Thomas finite elements ([18]), and Wh the piecewise discontinuous polynomials finite element
of degree r. A possible alternative, which also lead to a stable method, is to use continuous piecewise
polynomials finite element of degree r + 1 to discretize Qh ([3]).

For such choice of discrete spaces, it is well-known (see e.g. [19]) that the inf-sup conditions (1.3)
hold with β and γ independent from the mesh diameter h, and moreover

curl Qh = Rh, and div Rh = Wh.

In the following and in the numerical experiments, we will restrict ourselves to the case r = 0, i.e.
first order Nédélec elements, lowest order Raviart-Thomas elements, and piecewise constant elements.
Such choice leads to linear decay of the discretization error, and it is optimal for in the case of low
regularity in the analytical solution, due to discontinuity in the PDE coefficients.

The discrete Galerkin problem reads:

Problem 2.1. Find (σh,uh, ph) ∈ Qh ×Rh ×Wh such that

(2.1)

 m(σh, τ h) −c∗(uh, τ h) = F (τ h) ∀τ h ∈ Qh

−c(σh,vh) −a(uh,vh)− d(uh,vh) +b∗(ph,vh) = G(vh) ∀vh ∈ Rh

b(uh, qh) = H(qh) ∀qh ∈ Qh
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Let Σ, U, P the finite element vectors collecting the degree of freedom σih, i = 1, . . . ,dim(Qh), uih,
i = 1, . . . ,dim(Rh) and pih, i = 1, . . . ,dim(Wh), and let M , C, A, D, B the finite element matrices
whose entries are given by

Mi,j = m(σjh, τ
i
h) = (σjh, τ

i
h) i, j = 1, . . . ,dim(Qh)

Ci,j = c(σjh,v
i
h) = ε (curl σjh,v

i
h) i = 1, . . . ,dim(Rh) j = 1, . . . ,dim(Qh)

Ai,j = a(ujh,v
i
h) = ε2(div ujh,div vih) i, j = 1, . . . ,dim(Rh)

Di,j = d(ujh,v
i
h) = (k(x)ujh,v

i
h) i, j = 1, . . . ,dim(Rh)

Bi,j = b(ujh, q
i
h) = (div ujh, q

i
h) i = 1, . . . ,dim(Wh) j = 1, . . . ,dim(Rh).

In algebraic form, we obtain the linear system

(2.2) BX = B

where the block matrix B and block vectors X and B read:

(2.3) B =

M −CT 0
−C −A−D BT

0 B 0

 , X =

Σ
U
P

 , B =

F
G
H

 .
We also introduce the augmented formulation of the Brinkman problem that will be used for the

derivation of the preconditioner. Letting MW being the pressure mass matrix and γ ∈ R a positive
number, the augmented matrix and right hand side have the form

(2.4) Bγ =

M −CT 0
−C −A−D − γBTM−1

W B BT

0 B 0

 , Bγ =

 F
G− γBM−1

W H
H

 .
3. Preconditioning

The discretized linear system (2.2) has the form of a symmetric saddle point problem, having
dim(Qh)+dim(Wh) positive eigenvalues and dim(Rh) negative eigenvalues. An effective iterative meth-
ods to solve linear system with symmetric indefinite matrices is minres ([17]) with a symmetric positive
definite preconditioner P.

To derive the preconditioner, we follow the approach presented in ([15]) to precondition symmetric
saddle point problems in a Hilbert space setting. According to the authors, the mapping properties
of the differential operators of the continuous problem suggest that block diagonal preconditioners
are natural choices for saddle point problems. More specifically, given a stability estimate for the
continuous problem in some functional spaces, the saddle point discrete system is spectrally equivalent
to the block diagonal matrix, in which the blocks represent the discretization of the inner products in
those spaces.

For some positive number wQ, wR, wW , let us introduce the symmetric positive definite variational
forms

(3.1)
q(σh, τ h) = (σh, τ h) + wQ(curl σh, curl τ h), σh, τ h ∈ Qh

r(uh,vh) = wR(uh,vh) + wR(div uh, div vh), uh,vh ∈ Rh

w(ph, qh) = wW (ph, qh), ph, qh ∈Wh.

The above forms define weighted inner products in Q, R and W .
Therefore (based on [15]), an optimal preconditioner for the saddle point problem (2.2) is given by

(3.2) P =

Q 0 0
0 R 0
0 0 W

 ,
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where Q, R, W are the matrix representation of the weighted inner products q(σh, τ h), r(uh,vh), and
w(ph, qh).

In the constant coefficient case k(x) = k0, the coercivity analysis of the Schur complement D+A+
k0B

TM−1
W B + ε2CM−1CT = k0MR + (k0 + ε2)BTM−1

W B + ε2CM−1CT based on the uniform inf-sup
condition provides the optimal weights

(3.3) wQ =
ε2

k0 + ε2
, wR = k0 + ε2, wW =

1

k0 + ε2
.

In the numerical results section, we verify mesh independence of this weighted norm preconditioner for
constant coefficients. An approximated version of the preconditioner based on auxiliary space AMG for
H(curl) and H(div) is also discussed. Finally, we extend such preconditioner to the case of non-constant
coefficient k(x), obtaining optimal convergence rates for smooth coefficients k(x).

4. Numerical Results

The numerical results presented in this section are obtained using the finite element library MFEM
[http://code.google.com/p/mfem/], developed at LLNL. MFEM is a general, modular, parallel C++
library for finite element methods research and development. It supports a wide variety of finite
element spaces in 2D and 3D, as well as many bilinear and linear forms defined on them. It includes
classes for dealing with various types of triangular, quadrilateral, tetrahedral and hexahedral meshes
and their global and local refinement. Parallelization in MFEM is based on MPI, and it leads to high
scalability in the finite element assembly procedure. It supports several solvers from the hypre library
(http://www.llnl.gov/CASC/hypre/). In particular, in our work we used the auxiliary space algebraic
multigrid solvers for H(curl) and H(div) ([12], [13]).

The initial meshes used in our simulation were generated with the unstructured mesh generator
netgen [http://www.hpfem.jku.at/netgen/].

The numerical results presented in this section were obtained on hera, a high performance computer
at LLNL. Hera has a total of 864 nodes connected by InfiniBand DDR (Mellanox). Each node has 16
AMD Quad-Core Opteron 2.3Ghz cpus, and 32GB of memory. Hera is running CHAOS 4.4, a linux
kernel developed at LLNL, specific for high performance computing.

Our code was compiled with the Intel mpiicc and mpiicpc compilers version 11.1.046.

4.1. Constant coefficient weak scalability test. We study the performance of the proposed precon-
ditioner in the case of constant coefficients. In particular, we present results relative to the augmented
formulation of the Brinkman problem and the block diagonal preconditioner P, where the weights wQ,
wR, wW are chosen accordingly to (3.3).

Two cases are analyzed:

- exact preconditioner: the blocks P−1
Q , P−1

R are solved exactly by using the preconditioned
conjugate gradient method.

- AMG preconditioner: the blocks P̂−1
Q , P̂−1

R are given by one V-cycle for the auxiliary space

AMG for H(curl) and H(div) problem respectively.

In practice the AMG version of the preconditioner out-performs the exact one, but we remark the
theoretical importance of the latter, since it allows us to confirm the theoretical mesh independence of
the preconditioner.

For this test we used three different meshes in which the number of elements doubles from the
previous to the next. By cycling the three meshes and by using uniform refinements on each of them,
we are able to build a sequence of Brinkman problem whose size doubles each time. The sizes of
the three meshes at the coarser level of refinement are given in Table 1. We use Metis ([11]) for the
partitioning of the mesh in aggregates.
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nt nf ne
mesh 1 30336 62336 37940
mesh 2 57472 118304 72164
mesh 3 129920 266448 161602

Table 1. Number of elements nt, faces nf , and edges ne on the coarser level of each
unstructured mesh.

Through the simulations we chose the number of processes in order to keep the number of unknowns
per processor as constant as possible as we increased the total number of unknowns. We equally dis-
tribute the number of processes on each node of the parallel machine and we try to balance concurrency
inside the node, on the one hand, with communications between nodes, on the other.

In Table 2 we verify the mesh independence of the exact version of the preconditioner. The outer
tolerance of MINRES was set to 10−10 while the inner tolerance of PCG was set to 10−12. The number
of iterations is uniformly bounded for every value of k. Beside the case k = 106 in which we observe a
moderate increase of the iteration numbers, the preconditioner shows a perfectly mesh independence
behavior.

In Table 3 we show the number of iterations when using a single V-cycle of the auxiliary space AMG
preconditioners for H(curl) and H(div), keeping all other parameters in the test the same as before.
For fixed k, we observe a moderate increase of the number of iterations as the number of unknowns
is growing. This is expected, given the particular choice of the parameters in the V-cycle which are
made in order to minimize wall time instead of number iterations. We refer to [12] for a more detailed
discussion about the choice of the multigrid parameters and their effects on number of iterations for the
auxiliary space AMG preconditioner for H(curl) problems. Regarding the dependency of the iteration
count with respect to the value of k we notice that in the AMG version the number of iterations (even
if higher) is quite homogeneous with respect to k (for fixed mesh size).

Finally, in Table 4 we report the wall time to set-up the preconditioner (tsetup) and to solve iteratively
the linear system with minres (tsolve). Timings are computed by using the mpi function MPI Wtime().
The computation of the preconditioner consists in two phases. First we assemble the finite element
matrices for the variational forms q(σh, τ h), r(uh,vh), and w(ph, qh). Then we compute the auxiliary
space interpolators, restriction matrices, and coarse matrices and solvers needed for to apply the V-
cycle. We show only one column for tsetup since the preconditioner setup is independent from the values
of k. tsetup is usually negligible compared to tsolve (less than 10% in all cases), and it scales well (even
if not perfectly) with the number of processes. The fact that for np = 16 and np = 128 it is faster than
in the cases np = 8 and np = 64, respectively, may suggest some load unbalance due to the partition
of the meshes in the latter case. With respect to the solution times tsolve we notice that for a fixed
problem size they tend to decrease as we approach the Darcy limit since less iterations are required
to converge. For fixed k the scaling of tsolve with respect to the number of processors is similar to the
one reported in [12] up to 128 processes, but we observe a severe loss of scalability when we use 256
processes. Possible causes of this loss of performance could be not perfect load balancing and hardware
configuration issues, which are beyond the scope of this work.

4.2. The case of non-constant coefficients. Now we consider the case of non-constant coefficient
k(x). Being Ω = [0, 1]3 and c ≤ 1 a positive number, we consider the case

(4.1) k(x) =
1

sin(πy) sin(πz) + c
∀(x, y, z) ∈ Ω.

The number c controls how large are the variations in the coefficient k(x), since k(x) ranges between
kmin ∼ 1 and kmax ∼ 1

c . We let the viscosity ν = ε2 = 1 and we choose the right hand side and natural
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N Number of MINRES iterations (Exact Preconditioner)
k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0

130612 16 16 16 18 30 17 10
247940 16 16 16 18 30 18 10
557970 16 16 16 18 30 20 10
1027944 16 16 16 18 30 20 10
1949480 16 16 16 18 30 22 10
4396980 16 16 16 18 30 23 10
8156368 16 16 16 18 30 23 10
15460560 16 16 16 18 30 25 10
34910120 16 16 16 18 30 27 10

Table 2. Number of MINRES iterations with the exact preconditioner for different
values of k. N represents the total number of unknowns.

Number of MINRES iterations (AMG Preconditioner)
N k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0

130612 44 44 44 36 37 32 21
247940 48 48 48 40 39 34 23
557970 51 51 51 46 43 37 24
1027944 57 57 57 48 49 39 26
1949480 60 60 60 51 50 40 27
4396980 61 61 61 52 52 42 28
8156368 68 69 68 61 55 43 28
15460560 72 73 72 64 58 44 30
34910120 72 72 72 65 59 45 30

Table 3. Number of MINRES iterations with the AMG preconditioner for different
values of k. N represents the total number of unknowns.

tsolve (AMG Preconditioner) tsetup
nn np N k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0
1 1 130612 15.2 15.1 15.1 12.7 13.0 11.3 8.0 0.71
1 2 247940 17.7 17.7 17.7 15.1 14.7 13.0 9.5 0.96
1 4 557970 22.6 22.5 22.5 19.5 19.4 16.8 11.9 1.28
8 8 1027944 25.6 25.2 24.9 21.6 21.9 17.5 13.0 1.47
8 16 1949480 26.8 26.9 26.8 22.8 22.6 18.4 13.7 1.42
8 32 4396980 33.0 33.0 33.1 28.3 28.6 22.9 17.0 1.74
64 64 8156368 36.2 36.8 36.7 33.2 30.6 24.5 20.1 2.15
64 128 15460560 45.3 44.8 44.9 41.5 35.7 28.3 22.0 1.76
64 256 34910120 90.0 91.7 91.0 83.2 76.7 52.3 43.6 2.56

Table 4. Computational cost of the AMG preconditioner. nn is the number of nodes
used, np is the number of processes, N the total number of degree of freedom, tsolve
and tsetup measures the time in seconds to solve the linear system and to assemble the
preconditioner, respectively.

boundary conditions on ∂Ω such that the analytical solution is given by

σexact =

 0
π sin(πy) cos(πz)
−π cos(πy) sin(πx)

 uexact =

sin(πy) sin(πz)
0
0

 pexact = −x.
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Exact nit AMG nit

nref
1
c = 1 1

c = 103 1
c = 106 1

c = 1 1
c = 103 1

c = 106

0 19 30 30 26 35 36
1 19 29 30 32 37 38
2 19 29 32 46 45 48
3 19 27 32 52 49 53
4 19 27 32 63 61 61
5 – – – 74 70 70

Table 5. Performances of the exact and AMG preconditioner for variable coefficient
problem. The quantity 1

c ∼
kmax
kmin

determines how large it is the variation in the PDE

coefficient k(x), nref represents the number of uniform mesh refinements, nit the number
of preconditioned minres iterations to achieve a relative reduction of the residual norm
up to 10−10.

The computational domain Ω is discretized with an initial unstructured tetrahedral mesh with 474
elements. The original mesh is then uniformly refined 5 times, where each element of the mesh is
divided in 8 using bisection. The total number of degree of freedoms ranges from around 2 thousand
dofs on the coarsest mesh up to 65 millions on the finest mesh.

For this test, we extend the augmentation technique discussed before to the case of non constant
coefficient. In particular, we solve the augmented saddle point problem

(4.2)


(σh, τ h)− ε (uh, curl τ h) = F (τ h) ∀τ h ∈ Qh

−ε (curl σh,vh)− (k(x)uh,vh)− ((k(x) + ε2)div uh, div vh) + (ph,div uh) =
G(vh) +H(k(x)div vh) ∀vh ∈ Rh

(div uh, qh) = H(qh) ∀qh ∈Wh

preconditioned by a block-diagonal preconditioner with blocks corresponding to the following bilinear
forms:

(4.3)


(σh, τ h) + ε2

(
1

k(x) + ε2
curl σh, curl τ h

)
σh, τ h ∈ Qh(

(k(x) + ε2)uh,vh
)

+
(
(k(x) + ε2)div uh,div vh

)
uh,vh ∈ Rh(

1

k(x) + ε2
ph, qh

)
ph, qh ∈Wh.

In Table 5, we report the number of minres iterations for the solutions of the Brinkman problem
with variable coefficients (stopping criterion: norm of the relative residual less or equal to 10−10). We
show both the exact and inexact block-diagonal preconditioner. The inexact preconditioner consists of
one V-cycle of the auxiliary space AMGs applied to the weighted H(curl) and H(div) variational forms
in (4.3). The qualitatively behavior of the preconditioner is similar to the case of constant coefficients
in Table 3.

Conclusion

In this paper we constructed an efficient and scalable preconditioner for the mixed formulation of
the Brinkman problem proposed by the authors in [20]. The algebraic saddle point system obtained
after finite elements discretization can be efficiently solved with Krylov iterative methods and a block
diagonal AMG preconditioner. In particular, we used the auxiliary space algebraic multigrid precon-
ditioners for H(curl) and H(div) for the vorticity and velocity block respectively, and diagonal scaling
for the pressure block. In the case of constant or smooth PDE coefficients, the proposed preconditioner
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exhibits fairly scalable properties and it is robust with respect to a wide range of values of the inverse
permeability coefficient k(x).
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