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Abstract. Most algebraic multigrid (AMG) methods define the coarse operators by applying the
(Petrov-)Galerkin coarse approximation where the sparsity pattern and operator complexity of the
multigrid hierarchy is dictated by the multigrid prolongation and restriction. Therefore, AMG
algorithms usually must settle on some compromise between the quality of these operators and the
aggressiveness of the coarsening, which affects their rate of convergence and operator complexity.
In this paper we propose an algebraic generalization of the collocation coarse approximation (CCA)
approach of Wienands and Yavneh, where the choice of the sparsity pattern of the coarse operators
is independent of the choice of the high-quality transfer operators. The new algorithm is based
on the aggregation framework (smoothed and non-smoothed). Using a small set of low-energy
eigenvectors, it computes the coarse grid operator by a weighted least squares process. Numerical
experiments for two dimensional diffusion problems with sharply varying coefficients demonstrate
the efficacy and potential of this multigrid algorithm.

1. Introduction

Multigrid methods are well known for their efficiency in solving linear systems arising from the
discretization of elliptic partial differential equations (PDEs). See the introductory [11, 12, 30],
the comprehensive [26], and the classical [3, 4, 15, 16]. The discretization yields a sparse, typically
large system of equations

(1) Ax = b,

where A ∈ Rn×n, and x,b ∈ Rn are the vector of unknowns and the sampled right-hand side (RHS)
of the PDE, respectively.

It is common to distinguish between geometric multigrid, whereby the problem is associated with
a regular grid, and algebraic multigrid (AMG) where usually the matrix A in (1) is given explicitly
with no other information on the underlying system. Therefore, AMG methods are often chosen for
solving discretized PDEs over unstructured grids as well as certain difficult problems on structured
grids.

In order to solve (1), AMGmethods use two complementary components: local iterative methods,
such as Jacobi or Gauss-Seidel, and coarse-grid correction (CGC). The local iterative methods are
usually inefficient in handling certain error modes, called “algebraically smooth”, and thus they are
often referred to as relaxations or smoothers. CGC aims at handling these algebraically smooth
modes, and is done by solving a coarse-grid problem, that is a lower-dimensional version of the
error equation Ae = b − Ax = r, where r is the residual. In most AMG methods the coarse-grid
problem Acec = rc is defined by the (Petrov) Galerkin coarse approximation (GCA)

(2) Ac = RAP, rc = R(b−Ax),
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which is a projection of the error equation onto the subspace defined by the full-rank prolongation
and restriction operators, P ∈ Rn×nc and R ∈ Rnc×n, respectively, with nc < n. The process is
applied recursively, resulting in a hierarchy of successively coarser problems and their associated
operators.

One drawback of GCA is that the control over the sparsity of Ac is quite limited and is dictated
by P and R. This might lead to a growth in the sparsity pattern of the Galerkin coarse-grid
operators and high overall computational complexity of the multigrid algorithm. In the case of
large-scale parallel computing, this usually leads to high communication overhead on coarse grids
[23]. Thus, one must often compromise between the quality of these operators and the aggressiveness
of coarsening, which affects the rate of convergence and the operator complexity of the algorithm.

An example for the above discussion appears in aggregation-based AMG methods [8, 10, 27, 18,
17], where the coarsening is done by clustering (aggregating) the grid unknowns. In its simplest form
of pure (non-smoothed) aggregation (AGG), P and R are sparser than those obtained by most other
AMG approaches, and the operator complexity of the multigrid hierarchy is usually well-bounded
and attractive. However, it is difficult to obtain grid independent convergence using this approach,
and in many cases it requires some sort of acceleration on all levels of the hierarchy [19, 20], often
requiring a more elaborate recursive structure (usually W-cycles). Due to this inherent weakness,
the approach of Smoothed Aggregation (SA) [8, 10, 27, 13] is often preferred over AGG. In SA we
smooth the simple aggregation operators by a relaxation operator. This improves the convergence
properties of the multigrid solver, but it also increases the operator complexity of the multigrid
hierarchy. Therefore, when using SA we must make sure that our coarsening is aggressive enough
to prevent exaggerated stencil growth.

In [29] Wienands and Yavneh propose an alternative to GCA in (2), called Collocation Coarse
Approximation (CCA). The idea behind CCA is to assume control over the sparsity pattern of Ac by
selecting it explicitly. The coefficients of each row of Ac are chosen such that a certain subspace of
the algebraically smooth modes is approximated exactly as in GCA. This subspace is determined by
a set of local functions that form a good local basis for the algebraically smooth modes. For example,
in [29] mainly the monomials {1, x, y, x2, y2} were used to locally approximate geometrically smooth
modes. The CCA approach is shown to work well in a structured-grid environment, but it is
still unclear how to automatically choose the coarse-grid sparsity patterns and the basis functions
themselves. These limitations prevent CCA from being able to handle unstructured settings, for
example.

In this paper, we present an algebraic generalization of CCA, called Algebraic Collocation Coarse
Approximation (ACCA), which attempts to satisfy these requirements. Our algorithm uses the
aggregation framework as a basis platform, by applying adaptive smoothed aggregation (αSA, [8])
to define the transfer operators, but GCA is employed along with the simple AGG for defining a
sufficiently sparse non-zero pattern of Ac. Furthermore, we define our basis functions automatically
using the lowest eigenmodes of A, which we calculate using a multilevel eigensolver. This approach
is inspired by Bootstrap AMG (BAMG) [5], where the nonzero entries of P are calculated in a
similar way. This algorithm belongs to a group of adaptive algorithms, including [8, 9, 5], that
have a rather expensive setup phase and may fit scenarios were we solve (1) multiple times with the
same matrix A and multiple right hand sides b—then, a one-time expensive setup is worthwhile.

1.1. Preliminary definitions. Next, we briefly present some definitions and notations of the
adaptive aggregation framework that we use throughout this work.

1.1.1. Adaptive multigrid. It is known that, when (2) is used, the prolongation must be chosen so
as to accurately approximate the algebraically smooth modes. The purpose of adaptive multigrid
methods [8, 10, 9] is to treat problems where the local behavior of these smooth modes is not
available a priori. Their main idea is to calculate a prototype vector for the smooth modes by
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applying relaxations to the homogeneous system Ae = 0. Once such a vector is available, we define
the prolongation to have it in its range. Once a hierarchy of operators is set, it can be used to
further improve the prototype vector by applying V-cycles to the homogeneous system. Finally,
the hierarchy is reconstructed using the improved prototype vector. If A in (1) is nonsymmetric,
the restriction may be adapted independently of the prolongation [10].

1.1.2. Pure (non-smoothed) adaptive aggregation. Aggregation methods are defined by a
partitioning of the fine-grid index set {1, ..., n} into nc disjoint subsets {CJ}nc

J=1, which are called
aggregates. Given these aggregates and a prototype vector x, we define the simple AGG prolonga-
tion, which we denote by P0:

(3) (P0)i,J =

{ xi
(xc)J

i ∈ CJ ,

0 otherwise,

where (xc)J =
√∑

j∈CJ
x2j is the J-th entry of a coarse vector xc, which satisfies x = P0xc (x is

in the range of P0). By this definition, the columns of P0 are orthogonal and P0
TP0 = Inc , where

Inc is the identity matrix of size nc. For the AGG restriction operator R0 we use R0 = P T
0 , and

we also define a similar secondary restriction operator R̂ ∈ Rnc×n, that is used to generate coarse
versions of fine-grid vectors. For example, in a C\F splitting framework, and also in [29], R̂ is an

injection operator. In our case, we want to choose R̂ such that ∥x− P0(R̂x)∥2 is minimized. This
leads to

(4) R̂ = P0
T ,

which is the Moore-Penrose pseudo-inverse of P0, given that P0
TP0 = Inc .

In this work, we define our aggregation by the Bottom-Up approach used in [24, 25], but other
aggregation-based coarsening methods such as [27, 18] may also be suitable for our algorithm.

1.1.3. Smoothed aggregation operators. As mentioned above, SA methods aim at improving
the convergence properties of the simple AGG by smoothing the transfer operators P0 and R0,
which are henceforth dubbed tentative operators. More precisely, the SA prolongation is often
defined by

(5) P = Pω = (I − ωD−1A)P0,

where the matrix D is the diagonal of A, ω is a damping parameter (we use ω = 0.75), and
I − ωD−1A is the error propagation matrix associated with damped-Jacobi relaxation. If A is
symmetric then R = P T is usually used, and if not, then R may be [14]

(6) R = Rω = P0
T (I − ωAD−1).

2. Algorithm description

Given the problem matrix A, multigrid algorithms employing GCA define suitable P and R, and
then use (2) to construct Ac. Therefore, the sparsity pattern of Ac is dictated by P and R. The
main idea of CCA is to separate the issue of the coarse-grid operator sparsity pattern from the
transfer operators R and P . This allows us to fix the sparsity pattern of Ac and, independently,
use high quality transfer operators P and R. In [29], Ac is constructed in such a way that it yields
an exact approximation of the GCA operator, RAP , with respect to certain basis vectors. Assume
that the current error, e, is in the range of P , i.e., e = Pec. Also, assume that Ac is constructed
such that Acec = RAPec, implying that ec can be represented as a linear combination of the basis
vectors that are used to define Ac. Then, the two-level cycle of CCA eliminates the error e [29]:

(7)
enew =

[
I − P (Ac)

−1RA
]
e = [I − P (Ac)

−1RA]Pec
= [P − P (Ac)

−1RAP ]ec = P (Ac)
−1[Ac −RAP ]ec = 0.
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With this motivation, the CCA algorithm typically chooses the monomials {1, x, y, x2, y2, ...} as
basis functions, because they are able to represent accurately the geometrically smooth error modes
that comprise e and ec. To accomplish this for algebraically smooth errors, in ACCA we compute
the ke lowest eigenvectors of A (the ones corresponding to the smallest eigenvalues), where ke is
equal to or larger than the maximal number of non-zeros per row in Ac. These eigenmodes, that
comprise the near null-space of A, are known to be related to the sought algebraically smooth
modes [8, 5, 9].

Our algorithm starts with a preliminary phase (Phase I), where we calculate the set of global basis
vectors—approximations for the lowest eigenvectors of A. For this we build a simple aggregation
hierarchy (based on subsection 1.1.2 and GCA), and use it to approximate the ke eigenvectors by
applying the PINVIT AMG (PAMG) eigensolver of [2], together with the accelerated AGG K-cycle
algorithm of [19]. Once the basis vectors are set, we use a second phase (Phase II), where we define
the αSA operators (5)-(6), using lowest of the eigenmodes as a new prototype for our prolongation.
Next, we define the ACCA operator Ac to have the sparsity pattern of AGG produced by GCA,
and by using the operators R, P , and the basis vectors, we calculate Ac’s elements according to
the ACCA approach elaborated in this section. This process is repeated recursively, resulting in
the ACCA hierarchy.

A detailed description of both phases is given next, but we first note that, as in the αSA
framework of [8], we first diagonally scale the fine-level matrix A. That is, we effectively solve an

equivalent system D−1/2AD−1/2y = D−1/2b, and so we henceforth assume that the system (1) is
diagonally scaled.

2.1. Phase I: Multilevel Eigensolver for generating global basis vectors. In this work,
we assume that we should not use high-quality smoothed-aggregation transfer operators along
with GCA, because doing so may be inappropriate in our framework, for example, due to an
unacceptable increase in the operator complexity of our algorithm. However, to use our method,
we need to calculate a near null-space vector set, which is in principle at least as hard as solving
(1). Although this can be done by non-multigrid methods (such as Lanczos [21]), we prefer to
use a multigrid method that may lead to mesh-independent performance. Inspired by [5], we first
build a relatively cheap GCA multigrid hierarchy and use it to develop the multilevel eigensolver.
Most such eigensolvers, including the one we use [2], apply V-cycles iteratively. Since we allow only
complexity-friendly (low-quality) transfer operators, we need to accelerate our V-cycles to have the
best possible convergence rate when calculating our basis vectors.

As noted above, we build a GCA AGG hierarchy as in Section 1.1.2, and use it along with the
PAMG eigensolver of [2] together with the K-cycle algorithm of [19]. As described in [2, 5], when
coarsening a symmetric eigenproblem by GCA, we get a generalized eigenproblem

(8) P T
0 AP0v = λP T

0 P0v = λTv

where T is a positive definite matrix. In this work, T = P T
0 P0 = Inc , so we have a regular

eigenproblem on all grids. Nevertheless, we keep T in our algorithm description for generality.
In the first step of our algorithm, we create an initial prototype vector x by applying several

Gauss-Seidel relaxations on Ax = 0 starting with x = 1 (we do 20 relaxations). From this point,
Algorithm 1 describes a two-level algorithm for the creation of basis vectors in our setup Phase I
of ACCA. The multilevel algorithm is obtained by recursion, where we make sure that our coarsest
grid size is equal to or larger than ke.

In Step 2 of Algorithm 1, we apply the Bottom-Up aggregation procedure of [25], and define the
AGG operator P0 in (3). Then, we coarsen A and x (Step 3), and go down the multigrid hierarchy.
Once the problem is small enough, we stop coarsening and the AGG hierarchy is set. Following
that, we apply a direct coarsest level solution and, as we traverse up the multigrid hierarchy, we
apply the PAMG eigensolver together with K-cycles, in a Full Multigrid (FMG) style [11] in Steps
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Algorithm: {vi}kei=1 = Two-Level-AGG-PAMG-Eigensolver(A, T,x, ke, ν0)

% Initial prototype vector: x. Number of eigenmodes needed: ke.

% Number of relaxations at each level: ν0. (We use ν0 = 3)
% Kcycle for solving Ax = b: Kcycle(A,x,b, ν1, ν2) (2 accelerated W-cycles)

(1) Apply ν0 relaxations on Ax = 0.

(2) Define AGG P0 based on A and x.

(3) Apply GCA Coarsening: Ac = P T
0 AP0, xc = R̂x, T = P T

0 P0.

(4) Solve the coarse-grid generalized eigenproblem:

Find the lowest ke eigenpairs: {(vi
c, λ

i
c)}k

e

i=1 s.t Acv
i
c = λi

cTv
i
c

(5) Prolong the eigenmodes: vi = P0v
i
c.

(6) Post-smoothing and approximation of eigenvalues:

for i = 1, ..., ke : Apply ν0 relaxations on Avi = 0.

{(vi, λi)}kei=1 ← RitzProjection(A, T, {vi}kei=1).

(7) Apply several PAMG Eigensolver iterations:

for i = 1, ..., ke : vi ← Kcycle(A,vi, λiTvi, 1, 1).

{(vi, λi)}kei=1 ← RitzProjection(A, T, {vi}kei=1).

Algorithm 1: Setup phase I - Calculation of Basis Vectors

5-7. Step 6 is where we address the issue of having non-optimal P0 and R0. In [2, 5], where high-
quality AMG operators are used, the eigenvalues on each level are initialized with the corresponding
eigenvalues from the next coarser level (that is, we go from Step 5 to Step 7 directly with λi = λi

c).
In [5], the similarity of eigenvalues between consecutive coarser levels is the convergence criterion
of the BAMG process. Since P0 and R0 are of low quality, we do not have such similarity—this is
in fact the reason why these operators are of low quality. To address this issue, we first smooth the
basis vectors with zero RHS (without using a λivi RHS), so noise produced by the prolongation
is significantly damped, and the newly approximated λ’s in Step 6 are more accurate. The Ritz
projection procedure in Algorithm 1 is rather standard and can be found in the classical [6].

Our convergence criterion for Step 7 of the multilevel version of Algorithm 1 is given by

(9) max
i=1,2,...,ke

{
∥Avi − λivi∥∞

}
≤ ϵ,

where all vi’s are normalized and ϵ is problem size dependent. A bigger problem requires a smaller
ϵ. When this criterion is satisfied at the finest level, we achieve a good approximation to the ke

lowest eigenvectors of A, and phase I is completed.

2.1.1. An “economic” Phase I. The above process may be expensive, especially because of the
rather strict convergence criterion in (9). Yet, as in [5], there is no theoretical requirement in our
algorithm for having exact low eigenmodes as basis vectors. All we need is a set of algebraically
smooth vectors that are locally independent, and we choose them to be our approximation of the
lowest eigenmodes of A. Only one of these eigenmodes, which will be used as a prototype vector for
improving our prolongation, needs to be highly accurate. Hence, in practice we use an “economic”
phase I, where on the finest level we improve only the lowest eigenmode by PAMG, that is, we use
ke = 1 in Step 7 and in the criterion (9).

2.2. Phase II: building the CCA hierarchy. For describing our algorithm we start with some
definitions and notation for our second setup phase. Following that, we describe both the original
CCA and our new ACCA algorithms.
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2.2.1. Definitions and notation. Using the transfer operators (3), (5), and (6), we denote the
smoothed and non-smoothed GCA aggregation coarse operators by

(10) A0
c = P T

0 AP0, Aω
c = RωAPω,

and by (A0
c)i and (Aω

c )i we denote the i-th row vectors of A0
c and Aω

c , respectively. Next, let N
denote the coarse-grid index set {1, ..., nc}, and let the indices of the non zeros at lines i of (10) be

(11) N 0
i = {j : (A0

c)ij ̸= 0}, N ω
i = {j : (Aω

c )ij ̸= 0}.
Also, denote the sizes of the above sets by n0

i = |N 0
i |, nω

i = |N ω
i |.

Finally, we denote by T 0
i ∈ Rn0

i×nc and Tω
i ∈ Rnω

i ×nc the simple restriction matrices from the
coarse index set N to the index sets N 0

i and N ω
i respectively:

(12) (T 0
i )J,k =

{
1 k ∈ N 0

i
0 otherwise

, (Tω
i )J,k =

{
1 k ∈ N ω

i
0 otherwise

, k = 1, ..., nc,

where J is the J-th index in N 0
i and N ω

i . For example, the term T 0
i

[
(A0

c)
T
i

]
equals, by definition,

a dense vector of size n0
i comprised of the non-zero entries of the i-th row of A0

c .

2.2.2. The Phase II algorithm. Having finished Phase I, we have the ke global fine-grid basis
vectors {vi}kei=1 and, henceforth, we also refer to them as the columns of a basis-vector matrix

(13) B =
[
v1,v2, ...,vke

]
∈ Rn×ke .

Using the lowest eigenvector v1, we define our final αSA transfer operators P0, Pω and Rω by
(3), (5), and (6) respectively. Next, we define the ACCA operator Ac to have the same (attractive)
sparsity pattern as A0

c

(14) Sparsity(Ac) , Sparsity(A0
c),

and then calculate its entries. Algorithm 2 describes the “outer” part of Phase II using the
calculateACCARow() procedure that calculates each row of Ac. This process is repeated recur-
sively until nc is small enough, resulting in the multilevel ACCA hierarchy. The diagonal matrix
W that appears in Step 4 will be discussed later.

Algorithm: ACCA-Setup(A,B, ν0)

% Basis vectors matrix: B =
[
v1,v2, ...,vke

]
% Number of relaxations at each level: ν0 = 5.

(1) for i = 1, ..., ke : Apply ν0 relaxations on Avi = 0.

(2) Define AGG P0 based on A and v1.
(3) Define αSA operators Pω, Rω.
(4) Define a diagonal weight matrix W

for i = 1, ..., ke : Wii =
∥vi∥2
∥Avi∥2

(5) Apply GCA Coarsening: A0
c = P T

0 AP0, A
ω
c = P T

ω APω.

(6) Coarsen the basis-vector matrix: Bc = R̂B.

(7) Calculate the ACCA operator:

for i = 1, ..., nc : Apply (Ac)i = calculateACCARow((A0
c)i, (A

ω
c )i, Bc,W )

(8) Recursive Call: ACCA-Setup(Ac, Bc, ν0)

Algorithm 2: Setup Phase II - Calculation of the ACCA Hierarchy

We next describe an explicit construction of the ACCA operator—the calculateACCARow()
procedure (Step 7). This process is repeated independently for each row and therefore may be
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easily implemented in parallel computing scenarios. By way of motivation, we first briefly recall
the construction of the original CCA operator as in [29].

2.2.3. Construction of the original CCA operator. In the CCA algorithm of [29], a matrix

of basis vectors B(i) =
[
b
(i)
1 , b

(i)
2 , ..., b

(i)

n0
i

]
∈ Rnc×n0

i is generated geometrically for computing the

entries of each row i of Ac. These vectors are chosen a priori, typically as the monomial functions
{1, x, y, x2, y2, ...} centered at the grid point i as the origin. Then, motivated by (7), (Ac)i is defined
as the solution of

(15) [(Ac)i −RiAP ]B(i) = 0,

where R and P are the chosen high quality transfer operators (for ACCA, we use (5)-(6)).
Assuming that the (chosen a priori) non-zero indices of (Ac)i correspond to a set N 0

i , then by

setting M (i) = T 0
i B

(i) ∈ Rn0
i×n0

i and u(i) = T 0
i [(Ac)

T
i ] ∈ Rn0

i , we can rewrite (15) as a linear system

(16)
(
M (i)

)T
u(i) =

(
RiAPB(i)

)T
=

(
(RAP )iB

(i)
)T

,

with n0
i unknowns. Note that N 0

i corresponds to the non-zero indices of (Ac)i also in ACCA,
following (11) and (14).

Solving the system (16) gives the non-zeros of (Ac)i. By the a priori choice of B(i), we can safely

say that M (i) is non singular and well-conditioned, and solving (16) is sufficient for computing

the nonzeros of (Ac)i. Effectively, in (15)-(16), we use only the lines of B(i) corresponding to the

non-zero indices of (Ac)i and (RAP )i, and so we refer to these as the local basis vectors of B(i).

2.2.4. Construction of the ACCA operator. As in Algorithm 2, when calculating all the rows
of the ACCA operator Ac, we have the single coarse basis-vector matrix

(17) Bc = R̂B ∈ Rnc×ke ,

where ke is equal to or larger than the number of nonzeros in each row i, and B appears in (13).

Analogously to CCA, we may calculate (Ac)i by choosing the first n0
i columns of Bc as B(i) and

use (15) as in CCA. However, this is a risky approach since now we have no guarantee that the
resulting system is well-posed for all rows. The columns of Bc may be locally linearly dependent
even though they are globally independent, and in that case serious defects may occur in Ac.

To solve this issue, instead of (15), in ACCA we use an overdetermined system of equations
for calculating (Ac)i, taking all available factors into account. Our solution consists of a weighted
Least Squares minimization involving two quadratic terms

(18)
∥∥∥[(Ac)i − (Aω

c )i]B
(i)
∥∥∥2
2,W

+ βϕ [(Ac)i] −→ min,

where B(i) ∈ Rnc×ke is a basis-vector matrix, the weighted squared norm ∥v∥22,W is given by ⟨v,Wv⟩
for any vector v, and W is a diagonal weight matrix defined in Step 4 of Algorithm 2; ϕ is another
quadratic function for determining (Ac)i, and β > 0 is a balancing scalar between the two terms.

If we have ke = n0
i , and β = 0, then (18) reduces to (15), but with a different B(i). We now discuss

the choice of B(i), and describe ϕ later.
Let Ti ∈ Rni×nc be a simple restriction matrix that, similarly to (12), corresponds to the index

set Ni = N 0
i ∪ N ω

i , with |Ni| = ni. Then, G , TiBc ∈ Rni×ke is the sub-matrix of basis vectors
that corresponds to the effective indices in the first term of (18). This way, every sampled basis
vector (a column of G) has a local scale. This scale is somewhat irrelevant, since it is known that
only the ratios between strongly connected elements is the important characteristic of smooth error
modes [24]. In the LS minimization in (18), such a scale may act as a fake weight on the local basis
vectors, causing irrelevant preference to certain equations. To solve that, we simply normalize the
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columns of G. In our next step we apply a (stabilized) Gram Schmidt orthogonalization to G to
expose the local characteristics of our basis vectors and by that improve the numerical stability of
our minimization. We do not apply normalization in this Gram Schmidt process in order to prevent
situations were errors are amplified in cases where G has almost linearly dependent columns. The
above process and the final definition of B(i) is described in Steps 1-4 of Algorithm 3.

Procedure: calculateACCARow((A0
c)i, (A

ω
c )i, Bc,W )

% Restricted Basis vectors matrix: Bc ∈ Rnc×ke

% Diagonal weight matrix: W.

(1) Define G = TiBc ∈ Rni×ke

(2) Normalize the columns of G.
(3) Apply an orthogonalization process to G without normalizing its columns.

(4) Define B(i) = T T
i G ∈ Rnc×ke % zero-filling

(5) Solve the Least-Squares problem (18) with ϕ as in (19).

Algorithm 3: Calculation of the i-th row of an ACCA operator

The second term of (18) adds available information to our mechanism that does not depend on
the basis vectors. For that we use the AGG line (A0

c)i together with the fact that A0
c is known to

have a bad scale but good ratios between entries of each row. For example, for the finite differences
discretization of a Laplacian operator, plain 2×2 aggregation using a piece-wise constant P0 causes
a factor 2 scale when compared with the fine-grid operator [7] . This property has led to the idea of
accelerating AGG by overcorrection techniques [1, 28, 7, 22]. Inspired by this property, we define
ϕ as the quadratic distance function

(19) ϕ [(Ac)i] =

(
(Ac)ii −

1

2
(A0

c)ii

)2

+
∑

j∈N 0
i , j ̸=i

(
(Ac)ij −

(A0
c)ij

(A0
c)ii

(Ac)ii

)2

,

where the first term measures the distance between the diagonal element of the ACCA operator
and the scaled (by half) diagonal element of AGG, and the second term aims at making the ratios
between the off-diagonals of Ac and its diagonal be equal to the same ratios in the AGG operator
A0

c . The parameter 1
2 was chosen for all the test cases that we consider in this paper.

Lastly, we define the balancing parameter β in (18) as β = 10−2mini{Wii} (W appears in the

weighted norm of (18) and is defined in Step 4 of Algorithm 2). This way, if B(i) has enough
information for determining (Ac)i then the second term ϕ will not have a large influence on the
result of the minimization of (18). Otherwise, ϕ makes (18) well-posed. We note that as in [29],
the ACCA algorithm does not preserve the symmetry of A in Ac.

3. Numerical Results

In this section, the efficiency and robustness of the ACCA approach is investigated and compared
to both αSA and AGG. We consider the two-dimensional diffusion equation on the unit square with
Dirichlet boundary conditions

(20)
−(a(x, y)ux(x, y))x − (b(x, y)uy(x, y))y = f(x, y), (x, y) ∈ Ω = (0, 1)2

u(x, y) = g(x, y), (x, y) ∈ ∂Ω
.

The diffusion problem is discretized by the cell-centered finite differences method, leading to a
five-point stencil on a discrete domain Ωh with regular mesh size hx = hy = h. We present results
for h = 1/256, h = 1/512, and h = 1/1024 (i.e., for problem sizes 2562, 5122, and 10242).

We consider a collection of classical test cases that covers a variety of possible coefficient inho-
mogeneities, including jumps that are aligned with the grid lines and jumps that are not aligned
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Figure 1. Types of jumping coefficients problems.

with the grid lines (most of the problems appear in [29]). With each grid geometry, we used a
ratio of 1 : 104 of the coefficient discrepancy between the outer and inner shape. The problems are
denoted by

TC1: Horizontal jump, TC2: Inhomogeneous square,
TC3: Inhomogeneous 90◦ diamond, TC4: Inhomogeneous narrow diamond,
TC5: Inhomogeneous circle, TC6: Inhomogeneous ellipse,
TC7: Inhomogeneous L-shaped strip, TC8: Inhomogeneous narrow (0.04) vertical strip,

and the different choices of shapes and coefficients a, b are specified in Figure 1.
We use V(2,2) cycles, with two pre- and post- Gauss Seidel relaxations for all methods. For all

cases, we start with a random initial guess and solve a homogeneous problem where the right-hand-
side f and boundary condition g are set to zero. Then, the exact solution is known to be zero and,
thus, the numerical experiments are not limited by numerical accuracy. Hence, we compute the
asymptotic convergence factor γ by the geometric mean convergence factor per cycle, computed
over cycles number 45 to 50. We also compare each method’s operator complexity, op.c., which is
the total number of non-zero elements in the operators A on all the grids, divided by that of the
fine-level operator. Finally, the effective convergence factor, γeff , is defined as γeff = γ1/op.c and
is a measure for comparing the effectiveness of the cycles.

All three methods use the calculated lowest eigenvector v1 as the prototype vector for construct-
ing P and R ((3) for AGG, and (5)-(6) for ACCA and αSA). For AGG and αSA, this vector is
calculated using the same Algorithm 1 of ACCA, with ke = 1. For ACCA, we use ke = 6 basis
vectors. For all methods, in (9) we use ϵ = 10−6, 10−7, 10−8 for n = 2562, 5122, 10242, respectively.

Table 1 compares the performance of ACCA with AGG and αSA as solvers for the different test
cases. Most noticeable is the attractive (and almost identical) operator complexity of ACCA and
AGG in comparison with αSA. The convergence factors γ of ACCA are much closer to those of
αSA than to those of AGG, with αSA having the best γ values, as expected. The table shows that
the performance of ACCA in the problems with grid aligned jumps (TC1,TC2,TC7,TC8) is better
than its performance with the rest of the problems (non grid aligned jumps: TC3-TC6). Overall,
for all the problems presented, the effective convergence factors γeff of ACCA are comparable to
those of αSA, and a lot better than those of AGG.

Interestingly, the problem TC3 is the one reported problem that the original CCA algorithm
failed to handle. It is the only problem with non-grid aligned jumps in [29], and so it seems that
the ACCA algorithm may be more robust for such problems than CCA. In addition, the structured
grids are not preserved on the coarser grids of some of the above problems, indicating that ACCA
may handle similar problems on unstructured settings.
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Problem n AGG ACCA αSA
γ op.c. γeff γ op.c. γeff γ op.c. γeff

2562 0.921 1.341 0.940 0.161 1.341 0.256 0.072 2.572 0.360
TC1 5122 0.950 1.337 0.963 0.187 1.337 0.285 0.120 2.633 0.447

10242 0.963 1.335 0.972 0.187 1.335 0.285 0.256 2.680 0.602
2562 0.913 1.343 0.934 0.216 1.343 0.320 0.085 2.561 0.382

TC2 5122 0.949 1.338 0.961 0.235 1.339 0.339 0.165 2.637 0.504
10242 0.968 1.336 0.976 0.256 1.336 0.360 0.283 2.687 0.625
2562 0.941 1.445 0.959 0.424 1.443 0.552 0.130 2.949 0.500

TC3 5122 0.974 1.440 0.982 0.499 1.441 0.617 0.159 3.017 0.544
10242 0.974 1.436 0.982 0.541 1.436 0.652 0.256 3.082 0.642
2562 0.941 1.449 0.959 0.473 1.448 0.597 0.156 2.885 0.525

TC4 5122 0.973 1.443 0.982 0.497 1.443 0.616 0.230 2.968 0.609
10242 0.975 1.440 0.982 0.599 1.440 0.701 0.338 3.019 0.698
2562 0.926 1.412 0.947 0.391 1.413 0.515 0.092 2.812 0.428

TC5 5122 0.969 1.419 0.978 0.478 1.419 0.594 0.116 2.953 0.482
10242 0.975 1.408 0.982 0.588 1.408 0.686 0.167 2.966 0.547
2562 0.933 1.424 0.952 0.402 1.425 0.527 0.097 2.904 0.447

TC6 5122 0.969 1.415 0.978 0.475 1.415 0.591 0.114 2.929 0.476
10242 0.974 1.409 0.982 0.533 1.409 0.640 0.201 2.971 0.583
2562 0.909 1.337 0.931 0.172 1.335 0.268 0.071 2.529 0.351

TC7 5122 0.962 1.336 0.971 0.246 1.336 0.350 0.091 2.623 0.402
10242 0.967 1.334 0.975 0.350 1.334 0.455 0.123 2.672 0.457
2562 0.929 1.341 0.947 0.204 1.340 0.306 0.073 2.575 0.362

TC8 5122 0.962 1.336 0.971 0.294 1.336 0.400 0.087 2.638 0.396
10242 0.967 1.335 0.975 0.389 1.335 0.493 0.413 2.686 0.719

Table 1. Performance of ACCA, AGG and αSA V(2,2) cycles as solvers for different problems.

4. Conclusions and future work

In this paper we have presented a new algorithm which is an algebraic generalization for the
collocation coarse approximation (CCA) multigrid approach. The main advantage of both the
CCA and ACCA approaches is that the choice of the sparsity pattern of the coarse operators is
independent of the choice of the high-quality transfer operators. This property makes the two
approaches particulary worthwhile for parallel settings.

The new algorithm uses the well-known aggregation framework, adopting simple non-smoothed
aggregation for determining the sparsity pattern of the coarse operators, and smoothed aggregation
for having high-quality transfer operators. It computes the non-zero entries of the coarse grid
operator using a small set of low-energy eigenvectors, by a weighted least squares process. Numerical
experiments show that the algorithm has promising capabilities for 2D diffusion problems. It is quite
scalable and robust and may be advantageous in cases where strict sparsity constraints prevent us
from using high-quality GCA operators. We expect that our algorithm will have similar performance
for such problems also on unstructured settings.

Further research may be aimed at improving the scalability and performance ACCA on harder
problems, including non-symmetric problems. Also, investigating the theoretical aspects of the
approach may lead to a better way to define the basis vectors of the algorithm, and improve its
ability to solve various of other problems.
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