
Efficient Serial and Parallel Coordinate Descent
Methods for Huge-Scale Truss Topology Design

Peter Richtárik and Martin Takáč (June 30, 2011)

Abstract In this work we propose solvinghuge-scale instances of the truss topology
design problem with coordinate descent methods. We developfour efficient codes:
serial andparallel implementations ofrandomized andgreedy rules for the selection
of the variable (potential bar) to be updated in the next iteration. Both serial methods
enjoy anO(n/k) iteration complexity guarantee, wheren is the number of potential
bars andk the iteration counter. Our parallel implementations, written in CUDA
and running on a graphical processing unit (GPU), are capable of speedups of up
to two orders of magnitude when compared to their serial counterparts. Numerical
experiments were performed on instances with up to 30 million potential bars.

1 Introduction

In the process of designing mechanical structures such as railroad bridges, airplanes
or buildings, one faces the problem of designing a truss—a system of elastic bars of
varying volumes with endpoints at nodes, which are usually given by a 2D/3D grid,
and are either fixed (and cannot move) or free—capable of withstanding a specified
vector of forces applied to the nodes in an “optimal way”. After the forces are ap-
plied, the structure deforms (bars are stretched, free nodes move) to an equilibrium
position, storing potential energy (compliance). Trussesof smaller compliance are
more rigid. The goal of Truss Topology Design (TTD) is for a given grid structure
of nodes and a vector of forces acting on them to construct a truss of at most a given
total volume havingminimum compliance.

In recent years methods of mathematical programming have been applied to solve
various formulations of the TTD problem. For instance, a single load TTD can be
cast as a linear program [5], robust TTD as a semidefinite program [1], TTD with

Peter Richtárik
School of Mathematics, University of Edinburgh, UK, e-mail: Peter.Richtarik@ed.ac.uk

Martin Takáč
School of Mathematics, University of Edinburgh, UK, e-mail: Takac.MT@gmail.com

1

2 Peter Richtárik and Martin Takáč (June 30, 2011)

integer variables as an integer linear semidefinite program[3]. We refer to [9] for a
comprehensive survey.

Our work is motivated by the need to solvehuge-scale TTD problems using
methods withprovable iteration complexity guarantees. These are problems on
which second order methods fail due to memory limitations and for which even
the evaluation of the gradient is time-consuming. We argue that coordinate descent
methods (CDM) are well suited for this task; these are some ofthe reasons:

1. CDMs in general havelow per-iteration memory andwork requirements, which
is an essential prerequisite for any method harboring hopesto solve a huge-scale
problem.

2. This effect isextreme for TTD problems under formulation (1), which we pro-
pose in this paper, due toinherent super-sparsity of matrix A caused by each
bar being related to two 2D forces. Each column of matrixA will have at most
4 nonzeros and one iteration of a (non-greedy) CDM will henceonly needO(1)
memory and will performO(1) work, independently of the dimension of the prob-
lem.

3. CMDs can be easilyparallelized, achievinghuge speedups when compared to
serial implementations.

For alternative heuristic approaches to huge-scale TTD problem see [2,10].

2 Problem formulation

Consider anr× c grid of nodes,m being free (although due to space limitations we
only work with 2D trusses in this paper, the results are applicable to the 3D case
as well). We allow, potentially, all pairs of nodes to be joined by a bar, except we
require that no two potential bars intersect at more than onepoint. By n we denote
the number of potential bars,wi ≥ 0 is the weight of bari, the total weight of all
bars cannot exceed 1. The collection of 2D forces (load) acting at the free nodes is
represented byd ∈ R2m; the collection of node displacement associated with bari
after the load is applied is denoted byai ∈ R2m.

The compliance of a truss with weightsw under the loadd is equal to1
2dT v,

wherev is any solution of the equilibrium system∑i wiaiaT
i v = d. The problem of

minimizing compliance subject to∑i wi = 1 can be equivalently written as the linear
program maxv{dT v : |aT

i v| ≤ 1, i = 1, . . . ,n}, the dual of which is equivalent to
minx{‖x‖1 : Ax= d}, whereA= [a1, . . . ,an]. For more detail about the construction
above we refer to Section 1.3.5 in [5]. In [7] a gradient method is described for
solving all the above problems simultaneously. In this paper we will work with a
penalized (and scaled) version of the last problem:

min
x∈Rn

{‖Ax− d‖2
2+λ‖x‖1}, λ > 0. (1)

Although this problem is unconstrained, our methods work also in the case of simple
lower and upper bounds on the variablesx.

Efficient Coordinate Descent Methods for Huge-Scale Truss Topology Design 3

3 Iteration complexity of the serial methods

Consider now the problem

F∗ def
= min

x∈Rn
{F(x)≡ f (x)+ g1(x

(1))+ · · ·+ gn(x
(n))}, (2)

where f and{gi} satisfy these assumptions: (A1)f : Rn → R is convex and has
coordinate-wise Lipschitz gradient, uniformly inx, with constantsL1, . . . ,Ln > 0,
i.e., |∇i f (x)−∇i f (x+ tei)| ≤ Li|t| for all i andx,x+ tei ∈ domF , (A2) functions
gi : R → R∪{+∞} are convex and closed. Problem (1) is a special case of (2) with

f (x) = ‖Ax− d‖2
2, gi(x

(i)) = λ |x(i)|, Li = 2‖ai‖
2
2, (3)

in which case Step 4 of Algorithm 1 can be computed in closed form and is known
assoft-thresholding.

Algorithm 1 Serial Coordinate Descent
1: Choose initial pointx0 ∈ Rn

2: for k = 0,1, . . . repeat
3: Choosei ∈ {1,2, . . . ,n} randomly or greedily

4: t∗i = argmin
t∈R

∇i f (xk)t +
Li
2 t2+gi(x

(i)
k + t)

5: xk+1 := xk + t∗i ei

The following result gives iteration complexity guarantees for randomized and
greedy version of Algorithm 1. The greedy selection rule in part (ii) coincides with
the one in [4]; the authors do not, however, provide any complexity bounds.

Theorem 1.Let f and {gi} satisfy assumptions (A1), (A2) and choose x0 ∈ domF
and 0< ε < F(x0)−F∗. Further let C = max{R2

L(x0),F(x0)−F∗}, where RL(x0) =

maxx maxx∗∈X∗{‖x− x∗‖L : F(x) ≤ F(x0)}, ‖x‖L = (∑n
i=1 Li(x(i))2)

1
2 and X∗ is the

set of minimizers of (2).

(i) Random: Choose 0 < ρ < 1 and consider Algorithm 1, where in Step 3 each
coordinate is chosen with probability 1

n . Then after K ≥ 2nC
ε (1+ log 1

ρ) + 2−
2nC

F(x0)−F∗ iterations we have P[F(xK)−F(x∗)≤ ε]≥ 1−ρ.

(ii) Greedy: Let f and {gi} be as in (3) and consider Algorithm 1, where in Step 3
coordinate i is chosen greedily as i = argmaxj∈{1,...,n} αk(j), where

αk(j) =

{

L j
2 (t

∗
j)

2+λ x(j)
k (sign(x(j)

k)− sign(x(j)
k + t∗j)), if x(j)

k + t∗j 6= 0,

λ |x(j)
k |−∇ j f (xk)t∗j −

L j
2 t∗j

2, otherwise.

Then after K ≥ 2nC
ε − 2nC

F(x0)−F∗ iterations we get F(xK)−F(x∗)≤ ε.

Proof. (Rough Sketch) Statement (i) is identical to part (i) of Theorem 5 in [8]. Part
(ii) can be proved in an analogous way using the fact thatαk(j) = F(xk)−F(xk +
t∗j e j) andF(xk + t∗i ei) = mint,i F(xk + tei)≤

1
n ∑ j F(xk + t∗j e j). ⊓⊔

4 Peter Richtárik and Martin Takáč (June 30, 2011)

4 Numerical experiments

In this final section we numerically compare our serial methods (SR = Serial Ran-
dom, SG = Serial Greedy) described in Section 3 with their GPU-accelerated vari-
ants (PR = Parallel Random, PG = Parallel Greedy). All algorithms were run on
TTD instances of the form (1) withλ = 10−4. Due to space limitations we need to
limit our exposition to a sketch of two experiments only.

Implementation details.Our serial codes (SR, SG) were written in C++, the par-
allel ones (PR, PG) using a CUDA C/C++ compiler from NVIDIA. All experiments
were performed on a system with Intel Xeon CPU X5650@2.67GHz(we have only
used one out of the 6 cores) and 48GB DDR2 PC3-1066 6.4GT/s memory. We
have used NVIDIA Tesla C2050 GPU device with 448 cores, peak performance of
1.03Tflops for single precision and 3GB GDDR5 RAM. PG was implemented us-
ing CUSPARSE and CUBLAS libraries; all linear algebra and the greedy selection
rule were implemented in parallel. In case of PR we choose independently for each
thread a random coordinate and perform a single iteration ofAlgorithm 1. Race
conditions were avoided using atomic operations.

Experiment 1. In Table 1 the threeit/sec columns illustrate how the number
of iterations per second decreases with increasing problemsize for methods SG, SR
and NEST (Nesterov’s accelerated full-gradient method [6]).

time (it) it/sec accel it/sec accel it/sec
r× c 2m n ‖A‖0 = 4n SeDuMi SG PG SR PR NEST

20×20 800 48,934 195,736 61 (40) 5,101 0.6× 2.4M 28.3× 53.05
30×30 1,800 246,690 986,760 658 (10) NP 1,195 2.7× 2.2M 26.1× 9.01
40×40 3,200 779,074 3,116,296 8.6k (32) NP 380 8.0× 1.9M 24.9× 3.43
50×50 5,000 1,901,930 7,607,720 48.4k (4) NP 159 16.0× 1.5M 27.2× 1.41
80×80 12,80012,454,678 49,818,712 X 26 42.3× 1.5M 34.0× 0.15

100×100 20,00030,398,894121,595,576 X 11 52.2× 1.2M 30.9× 0.05

Table 1 Comparison of performance of SeDuMi, SG, PG, SR, PR and NEST on 6 TTD instances
(A ∈ R2m×n, NP=failure due to numerical problems, X=no iteration after 10 hours).

For instance, whilen increases by a factor of 621 when going from the 20×
20 to the 100× 100 problem, the per-iteration speed of SR is merely halved (cf.
with point 2 in the introduction). Theaccel columns indicate the acceleration
achieved by parallelization. Note that the speedup increases with problem size for
the greedy method (to 52× for the largest problem) and stays virtually constant
(≈ 30×) for the randomized method. Iterations of any second order method (we
have used SeDuMi (v1.21)) become prohibitively expensive as n increases. Indeed,
for the 80×80 problem SeDuMi is not able to perform a single iteration in10 hours
while PR does 34×1.5 million iterations per second. Note that a similar, albeit much
less pronounced, effect holds for NEST.

Experiment 2. In Figure 1 we run methods SR, PR, SG and PG on a 100×100
“bridge” instance (with more than 30 million variables/potential bars) for 20, 200
and 20,000 seconds.

Efficient Coordinate Descent Methods for Huge-Scale Truss Topology Design 5

20 seconds 200 seconds 20,000 seconds

(SR)k = 31M; f (xk) = 3.362 (SR)k = 251M; f (xk) = 1.448 (SR)k = 28,837M; f (xk) = 0.423

(PR)k = 799M; f (xk) = 0.695 (PR)k = 8,052M; f (xk) = 0.428 (PR)k = 799,386M; f (xk) = 0.408

(SG)k = 215; f (xk) = 14.132 (SG)k = 2,106; f (xk) = 1.593 (SG)k = 213,682; f (xk) = 0.474

(PG)k = 11,300; f (xk) = 0.620 (PG)k = 110,600; f (xk) = 0.513 (PG)k = 11M; f (xk) = 0.451

Fig. 1 “Bridge” truss after 20s, 200s (≈3.34 minutes) and 20,000s (≈5.56 hours) of computation
time for algorithms SR, PR, SG and PG (rows in this order). Number of iterations (“M” = millions)
and objective value is shown under each plot.

6 Peter Richtárik and Martin Takáč (June 30, 2011)

There are 4 fixed nodes evenly spaced at the bottom (large red diamonds), and
a unit downward force is applied at every node at height 7 (outof 100) above the
“ground” (at the small green diamonds). We have usedx0 = 0 for which f (x0) = 49.
Note that the parallel methods have managed to push the objective function down
from 49 to 0.695 (PR) and 0.620 (PG) after 20 seconds already;despite the size of
the problem. These trusses do not resemble a bridge yet, but after 5.56 hours the
parallel methods do produce visibly bridge-like structures.

Vanilla methods vs heuristics.Note that while we have implemented our meth-
ods efficiently, further significant speedups are possible by introducingheuristics.
For instance, note that in an optimal truss most of the potential bars will have zero
weight. However, our methods, in the “vanilla” form appearing in this paper (this
form enables us to prove rigorous iteration complexity bounds), will unnecessarily
consider these zero weight bars in each iteration. Therefore, for instance in the case
of SR and PR, decreasing the probability of selecting zero-weight bars will intro-
duce a speedup (seeq-shrinking strategy in [8]). We have not implemented this or
any other heuristics in this work as our goal was to demonstrate that even vanilla
methods are able to solve huge-scale problems. However, in solving any practical
large TTD problem, we recommend introducing acceleration heuristics.

Acknowledgements The work of the first author was supported in part by EPSRC grant “Mathe-
matics for vast digital resources” (EP/I017127/1); both authors were also supported in part by the
Centre for Numerical Algorithms and Intelligent Software (funded by EPSRC grant EP/G036136/1
and the Scottish Funding Council).

References

1. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming,
SIAM Journal on Optimization 7, 991–1016 (1997)

2. Gilbert M., Tyas A.: Layout optimization of large-scale pin-jointed frames, Engineering Com-
putations20 (8), 1044–1064 (2003)

3. Kočvara, M.: Truss topology design with integer variables made easy, Opt. Online (2010)
4. Li, Y., Osher, S.: Coordinate descent optimization forl1 minimization with application to

compressed sensing; a greedy algorithm, Inverse Problems and Imaging3, 487–503 (2009)
5. Nemirovski, A., Ben-Tal, A.: Lectures on Modern Convex Optimization: Analysis, Algo-

rithms, and Engineering Applications. SIAM, Philadelphia, PA, USA (2001)
6. Nesterov, Yu.: Gradient methods for minimizing composite objective function. CORE Dis-

cussion Paper #2007/76 (2007)
7. Richtárik, P.: Simultaneously solving seven optimization problems in relative scale. Opti-

mization Online (2009)
8. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent meth-

ods for minimizing a composite function. Technical Report ERGO 11-011 (2011)
9. Rozvany, G., Bendsøe, M.P., Kirsch, U.: Layout optimization of structures. Applied Mechan-

ics Reviews,48 (2), 41–119 (1995)
10. Sokół, T.: Topology optimization of large-scale trusses using ground structure approach with

selective subsets of active bars. Extended Abstract, Computer Methods in Mechanics (2011)

