Efficient Serial and Parallel Coordinate Descent
Methods for Huge-Scale Truss Topology Design

Peter Richtarik and Martin Takac (June 30, 2011)

Abstract In this work we propose solvinlguge-scale instances of the truss topology
design problem with coordinate descent methods. We develogefficient codes:
serial andparallel implementations afandomized andgreedy rules for the selection
of the variable (potential bar) to be updated in the nexatten. Both serial methods
enjoy anO(n/K) iteration complexity guarantee, wharés the number of potential
bars andk the iteration counter. Our parallel implementations, teritin CUDA
and running on a graphical processing unit (GPU), are cepafbépeedups of up
to two orders of magnitude when compared to their serial tavparts. Numerical
experiments were performed on instances with up to 30 mifliotential bars.

1 Introduction

In the process of designing mechanical structures suchlesacbridges, airplanes
or buildings, one faces the problem of designing a truss—steay of elastic bars of
varying volumes with endpoints at nodes, which are usualigrgby a 2D/3D grid,
and are either fixed (and cannot move) or free—capable ofweitiding a specified
vector of forces applied to the nodes in an “optimal way”.ekfthe forces are ap-
plied, the structure deforms (bars are stretched, freequoa®e) to an equilibrium
position, storing potential energy (compliance). Trussesmaller compliance are
more rigid. The goal of Truss Topology Design (TTD) is for aegi grid structure
of nodes and a vector of forces acting on them to construosa of at most a given
total volume havingminimum compliance.

Inrecentyears methods of mathematical programming haxedeplied to solve
various formulations of the TTD problem. For instance, akbrdoad TTD can be
cast as a linear program [5], robust TTD as a semidefiniterprodg1], TTD with

Peter Richtarik
School of Mathematics, University of Edinburgh, UK, e-m&éter.Richtarik@ed.ac.uk

Martin Takac
School of Mathematics, University of Edinburgh, UK, e-maakac.MT@gmail.com

2 Peter Richtarik and Martin Takac (June 30, 2011)

integer variables as an integer linear semidefinite prog8nwe refer to [9] for a
comprehensive survey.

Our work is motivated by the need to solfiege-scale TTD problems using
methods withprovable iteration complexity guarantees. These are problems on
which second order methods fail due to memory limitationd for which even
the evaluation of the gradient is time-consuming. We arbaécdoordinate descent
methods (CDM) are well suited for this task; these are sontkeofeasons:

1. CDMs in general haviow per-iteration memory andwork requirements, which
is an essential prerequisite for any method harboring htupsslve a huge-scale
problem.

2. This effect isextreme for TTD problems under formulation (1), which we pro-
pose in this paper, due ioherent super-sparsity of matrix A caused by each
bar being related to two 2D forces. Each column of maiwill have at most
4 nonzeros and one iteration of a (non-greedy) CDM will heordg needO(1)
memory and will performO(1) work, independently of the dimension of the prob-
lem.

3. CMDs can be easilparallelized, achievinghuge speedups when compared to
serial implementations.

For alternative heuristic approaches to huge-scale TTBlpnosee [2, 10].

2 Problem formulation

Consider ar x ¢ grid of nodesm being free (although due to space limitations we
only work with 2D trusses in this paper, the results are apple to the 3D case
as well). We allow, potentially, all pairs of nodes to be panby a bar, except we
require that no two potential bars intersect at more thanpoi®. By n we denote
the number of potential barg; > 0 is the weight of bar, the total weight of all
bars cannot exceed 1. The collection of 2D forces (loadhgdit the free nodes is
represented by € R?™; the collection of node displacement associated withi bar
after the load is applied is denoted &y R®™.

The compliance of a truss with weightsunder the load is equal to%dTv,
wherev is any solution of the equilibrium systey wiaia' v = d. The problem of
minimizing compliance subject toy ; w; = 1 can be equivalently written as the linear
program max{d"v : |a'v| <1, i=1,...,n}, the dual of which is equivalent to
ming{||x||1 : Ax=d}, whereA=[ay,...,a,]. For more detail about the construction
above we refer to Section 1.3.5 in [5]. In [7] a gradient meltl® described for
solving all the above problems simultaneously. In this pape will work with a
penalized (and scaled) version of the last problem:

min{[[Ax—d[3+A[xl}, A >0. (1)
xeR

Although this problem is unconstrained, our methods wosk &l the case of simple
lower and upper bounds on the variabtes

Efficient Coordinate Descent Methods for Huge-Scale Tragmlbgy Design 3

3 Iteration complexity of the serial methods

Consider now the problem

Fr Emin{F (9 = 100+ gux V) + -+ gn(x")}, @)
where f and{g;} satisfy these assumptions: (Af). R" — R is convex and has
coordinate-wise Lipschitz gradient, uniformly ¥ with constantd s, ...,Ly > 0O,
i.e., |0 f(x)— 0O f(x+te)| < Ljt] for all i andx,x+tg € domF, (A2) functions
g : R — RU{+~} are convex and closed. Problem (1) is a special case of (&) wit

f)=lax—dlz ax")=axY, Li=2al?, (3)

in which case Step 4 of Algorithm 1 can be computed in closeah fand is known
assoft-thresholding.

Algorithm 1 Serial Coordinate Descent
1: Choose initial poinky € R"
2: for k=0,1,... repeat
3: Choosé € {1,2,...,n} randomly o_rgreedily

4t =argminDif (%)t + Y24 g0 +1)
S
51 X=X+t

The following result gives iteration complexity guarargder randomized and
greedy version of Algorithm 1. The greedy selection ruleat i) coincides with
the one in [4]; the authors do not, however, provide any cexipl bounds.

Theorem 1.Let f and {g;} satisfy assumptions (A1), (A2) and choose xo € domF
and 0 < & < F(xo) — F*. Further let C = max{RZ(Xo), F (xo) — F*}, where R_ (xo) =
maxmMaxeex-{[|X— x| : F(X) < F(x0)}, XL = (37, Li(x1)2)2 and X* isthe
set of minimizers of (2).

(i) Random: Choose 0 < p < 1 and consider Algorithm 1, where in Step 3 each
coordinate is chosen with probability &. Then after K > 2¢(1+log) +2—
oo iterationswe have P[F (x<) — F(x) < &] > 1—p.

(ii) Greedy: Let f and {g;} beasin (3) and consider Algorithm 1, where in Step 3
coordinatei is chosen greedily asi = argmaxc1,...ny ak(j), where

Lj (s) rsiaqn) — siasd) o gy i) g
ak(j):{%(tj)hr/\xk (sign(x)’) —sign(x) +t1)), ifx)) +tr #0,

A - F(xt) — %t}*z, otherwise.
Then after K > 20¢ — % iterations we get F (xc) — F(x*) < €.

Proof. (Rough Sketch) Statement (i) is identical to part (i) of Tieen 5 in [8]. Part
(i) can be proved in an analogous way using the fact théf) = F(x) — F (X« +
tre) andF (xc+t'e) = ming F(x+te) < 5 F (% +tiej). O

4 Peter Richtarik and Martin Takac (June 30, 2011)

4 Numerical experiments

In this final section we numerically compare our serial mdth(BSR = Serial Ran-
dom, SG = Serial Greedy) described in Section 3 with their Gletklerated vari-
ants (PR = Parallel Random, PG = Parallel Greedy). All ators were run on
TTD instances of the form (1) with = 10~*. Due to space limitations we need to
limit our exposition to a sketch of two experiments only.

Implementation details.Our serial codes (SR, SG) were written in C++, the par-
allel ones (PR, PG) using a CUDA C/C++ compiler from NVIDIAIl Axperiments
were performed on a system with Intel Xeon CPU X5650@2.67®tzhave only
used one out of the 6 cores) and 48GB DDR2 PC3-1066 6.4GT/sonyeie
have used NVIDIA Tesla C2050 GPU device with 448 cores, peafopmance of
1.03Tflops for single precision and 3GB GDDR5 RAM. PG was enpénted us-
ing CUSPARSE and CUBLAS libraries; all linear algebra argl gheedy selection
rule were implemented in parallel. In case of PR we choosegaddently for each
thread a random coordinate and perform a single iteratioaAlgdrithm 1. Race
conditions were avoided using atomic operations.

Experiment 1. In Table 1 the threet / sec columns illustrate how the number
of iterations per second decreases with increasing prosiesfor methods SG, SR
and NEST (Nesterov’s accelerated full-gradient methojl [6]

time (it) ||it/sec| accell|it/seq accell| it/sec
rxc | 2m | n | [Alo=4n| SeDuMi | SG| PG | SR| PR |[INEST

20x20 80 48,93 195,736 61 (40) |5,101 0.6x[|2.4M|28.3x [| 53.05
30x30 | 1,80 246,69 986,760| 658 (10) NH|1,195 2.7x||2.2M|26.1x|| 9.01
40x40 | 3,20 779,074 3,116,29¢(8.6k (32) NR| 380 8.0x|(|1.9M(24.9x| 3.43
50x50 | 5,000 1,901,930 7,607,72(148.4k (4) NR| 15916.0x|[1.5M|27.2x|[1.41
80x80 [12,80012,454,678 49,818,71% X 26|42.3x||1.5M|(34.0x|[0.15
100x100{20,00Q30,398,894121,595,574 X 11{52.2x||1.2M|30.9x|| 0.05

Table 1 Comparison of performance of SeDuMi, SG, PG, SR, PR and NESI oI D instances
(A e R?™N NP=failure due to numerical problems, X=no iteration afi@ hours).

For instance, while increases by a factor of 621 when going from thex20
20 to the 100« 100 problem, the per-iteration speed of SR is merely haleéd (
with point 2 in the introduction). Thaccel columns indicate the acceleration
achieved by parallelization. Note that the speedup ine®asth problem size for
the greedy method (to 52 for the largest problem) and stays virtually constant
(=~ 30x) for the randomized method. Iterations of any second ordsthad (we
have used SeDuMi (v1.21)) become prohibitively expenssseiacreases. Indeed,
for the 80x80 problem SeDuMi is not able to perform a single iteratioh@rhours
while PR does 34 1.5 million iterations per second. Note that a similar, @lbeich
less pronounced, effect holds for NEST.

Experiment 2. In Figure 1 we run methods SR, PR, SG and PG on ax1000
“bridge” instance (with more than 30 million variables/pntial bars) for 20, 200
and 20,000 seconds.

Efficient Coordinate Descent Methods for Huge-Scale Tragmlbgy Design 5

20 seconds

20,000 seconds

u\“\\\\th‘.‘ﬁ

| Ih
.\1\\ i

4

(SR)k = 28,837M; f(x) = 0.423

(PR)k = 799M:; f(x) = 0.695

(PR)k = 8,052M; f (%) = 0.428

(PR)k = 799,386M; f(x,) = 0.408

(SG)k = 215; f(x) = 14132

(SG)k = 2,106; f (x) = 1.593

(SG)k = 213 682; f(x) = 0.474

(PG)k = 11,300; f (%) = 0.620

(PG)k = 110,600; f (%) = 0.513

(PG)k = 11M; f(x) = 0.451

Fig. 1 “Bridge” truss after 20s, 200s$3.34 minutes) and 20,000s:5.56 hours) of computation
time for algorithms SR, PR, SG and PG (rows in this order). Heinof iterations (“M” = millions)
and objective value is shown under each plot.

6 Peter Richtarik and Martin Takac (June 30, 2011)

There are 4 fixed nodes evenly spaced at the bottom (largei@etbdds), and
a unit downward force is applied at every node at height 7 ¢6ut00) above the
“ground” (at the small green diamonds). We have ugged 0 for which f (xg) = 49.
Note that the parallel methods have managed to push thetivjéenction down
from 49 to 0.695 (PR) and 0.620 (PG) after 20 seconds alrebebgite the size of
the problem. These trusses do not resemble a bridge yetftbutseb6 hours the
parallel methods do produce visibly bridge-like structure

Vanilla methods vs heuristics Note that while we have implemented our meth-
ods efficiently, further significant speedups are possiglintroducingheuristics.
For instance, note that in an optimal truss most of the pitidpdrs will have zero
weight. However, our methods, in the “vanilla” form appearin this paper (this
form enables us to prove rigorous iteration complexity m)nwill unnecessarily
consider these zero weight bars in each iteration. Thexefor instance in the case
of SR and PR, decreasing the probability of selecting zezwat bars will intro-
duce a speedup (segeshrinking strategy in [8]). We have not implemented this or
any other heuristics in this work as our goal was to demotestreat even vanilla
methods are able to solve huge-scale problems. Howeven)iing any practical
large TTD problem, we recommend introducing acceleratieuristics.

Acknowledgements The work of the first author was supported in part by EPSRCtgMathe-
matics for vast digital resources” (EP/1017127/1); botthats were also supported in part by the
Centre for Numerical Algorithms and Intelligent Softwafiended by EPSRC grant EP/G036136/1
and the Scottish Funding Council).

References

1. Ben-Tal, A., Nemirovski, A.: Robust truss topology desiga semidefinite programming,
SIAM Journal on Optimization 7, 991-1016 (1997)
2. Gilbert M., Tyas A.: Layout optimization of large-scali@{jointed frames, Engineering Com-
putations20 (8), 1044—-1064 (2003)
3. Kotvara, M.: Truss topology design with integer varggbinade easy, Opt. Online (2010)
4. Li, Y., Osher, S.: Coordinate descent optimization lfominimization with application to
compressed sensing; a greedy algorithm, Inverse Problechkraaging3, 487-503 (2009)
5. Nemirovski, A., Ben-Tal, A.: Lectures on Modern Convexti@pzation: Analysis, Algo-
rithms, and Engineering Applications. SIAM, Philadelpt®é, USA (2001)
6. Nesterov, Yu.: Gradient methods for minimizing comp®sibjective function. CORE Dis-
cussion Paper #2007/76 (2007)
7. Richtarik, P.: Simultaneously solving seven optimi@atproblems in relative scale. Opti-
mization Online (2009)
8. Richtarik, P., Takag, M.: Iteration complexity of domized block-coordinate descent meth-
ods for minimizing a composite function. Technical RepdR@EO 11-011 (2011)
9. Rozvany, G., Bendsge, M.P., Kirsch, U.: Layout optimarabf structures. Applied Mechan-
ics Reviews48(2), 41-119 (1995)
10. Sokét, T.: Topology optimization of large-scale tessising ground structure approach with
selective subsets of active bars. Extended Abstract, CanMethods in Mechanics (2011)

