
A preconditioner for CG that does not need symmetry

P. van Slingerland∗†and C. Vuik†

December 8, 2011

Extended summary

Although it is common to use a symmetric preconditioner for the conjugate gradient method, in
this paper, we demonstrate that a non-symmetric preconditioning strategy can be significantly
more efficient. The focus, motivation and conclusions of this research can be summarized as
follows.

Focus This work is focused on an effective preconditioning strategy to increase the efficiency of
the Conjugate Gradient (CG) method for Symmetric and Positive-Definite (SPD) linear systems
resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) discretizations for
diffusion problems with extreme contrasts in the coefficients, such as those encountered in oil
reservoir simulations.

Motivation A discontinuous Galerkin discretization can be thought of as a finite volume method
that uses (discontinuous) piecewise polynomials of degree p rather than piecewise constants. As
such, it combines the best of both classical finite element methods and finite volume methods,
and it is particularly suitable for handling non-matching grids and designing hp-refinement strate-
gies. However, a relevant drawback is that its resulting linear system is often ill-conditioned and
relatively large due to the large number of unknowns per mesh element. In search of suitable
iterative solution techniques, much attention has been paid to subspace correction methods, such
as Schwarz domain decomposition [1]; geometric (h-)multigrid [2]; spectral (p-)multigrid [6]; and
algebraic multigrid [7]. In particular, Dobrev et al. [4] have proposed a spectral two-level precon-
ditioner that makes use of coarse corrections based on the solution approximation with polynomial
degree p = 0. It has been shown theoretically that this preconditioner yields uniform convergence
of the CG method (independent of the mesh element diameter) for a large class of problems.
Another nice property is that the use of only two levels offers an appealing simplicity. More im-
portantly, the coefficient matrix that is used for the coarse correction is quite similar to a matrix
resulting from a central difference discretization, for which very efficient solution techniques are
readily available.

However, two main issues remain when using this preconditioner for a SIPG matrix A: First,
two smoothing steps must be applied during each iteration, and the smoother needs to satisfy an
inconvenient criterion to ensure that the preconditioning operator is SPD. The second issue is that
the SIPG method involves a stabilizing penalty parameter, whose influence on both A and the
preconditioner is not well understood for problems with strongly varying coefficients. On the one
hand, this parameter needs to be chosen suffciently large to ensure that the SIPG method is stable
and convergent, and that A is SPD. At the same time, it needs to be chosen as small as possible
to avoid an unnecessarily large condition number. Known computable theoretical lower bounds
[5] are based on the ratio between the global maximum and minimum of the diffusion coefficient,
and are therefore impractical for our application.

∗Email: p.vanslingerland@tudelft.nl
†Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

1

To eliminate one of the two smoothing steps and the inconvenient restriction on the smoother
at the same time, we have cast the spectral two-level preconditioner into the deflation framework
[11]. Additionally, we have studied the potential of a penalty parameter that is based on local
values of the diffusion coefficient, instead of the usual strategy to use one global constant for the
entire domain.

This paper discusses how and why the proposed spectral two-level deflation method can be
incorporated in a CG algorithm in the form of an asymmetric preconditioning operator. Fur-
thermore, it demonstrates numerically how the resulting iterative scheme performs for diffusion
problems with strongly varying coefficients, for both a constant and a diffusion-dependent penalty
parameter. More background information is provided in technical report [10].

Conclusions Our main findings are illustrated in Figure 1: by reformulating the spectral two-
level preconditioner as a deflation method and using a diffusion-dependent penalty parameter, the
SIPG convergence is significantly better, and the CG method can become over 100 times faster,
while retaining uniform convergence (independent of the mesh element diameter).

Altogether, the efficiency of a symmetric two-level preconditioner can be significantly improved
by switching to an asymmetric deflation variant. Furthermore, the SIPG penalty parameter can
best be chosen diffusion-dependent for problems with extreme contrasts in the coefficients.

Figure 1: Illustration for a diffusion problem on a square domain with five layers, in which the
diffusion coefficient K is either 1 or 10−3. By reformulating the spectral two-level preconditioner
as a deflation method and using a diffusion-dependent penalty parameter (σ = 20K rather than
σ = 20), the SIPG convergence is significantly better, and the CG method can become over 100
times faster. Also cf. Section 3.1 later on for more details (p = 3, uniform Cartesian mesh).

1 Discretization

1.1 Introducing the SIPG method and the resulting linear systems

SIPG method The SIPG approximation for a diffusion problem −∇·(K∇u) = f can be defined
in the following manner. For a given mesh, define the test space V , which contains each function
that is a polynomial of degree p or lower within each mesh element, and that may be discontinuous
at the element boundaries. The SIPG approximation uh is now defined as the unique element in
this test space that satisfies the relation

B(uh, v) = L(v), for all test functions v ∈ V, (1)

where B and L are certain (bi)linear forms that characterize the SIPG method [9].

2

Monomial basis functions In order to compute the SIPG approximation defined by (1), it
needs to be rewritten as a linear system. To this end, we choose monomial basis functions φ

(i)
k

for the test space V . For instance, for a one-dimensional uniform mesh with element size h and
polynomial degree p = 2, the basis functions are zero in the entire domain, except in mesh element
i with center xi, where they read:

φ
(i)
1 (x) = 1, φ

(i)
2 (x) =

x− xi
1
2h

, φ
(i)
3 (x) =

(
x− xi

1
2h

)2

.

Two-dimensional monomial basis functions are defined similarly [9]. Next, we express uh as a
linear combination of the basis functions:

uh =
N∑

i=1

m∑
k=1

u
(i)
k φ

(i)
k , (2)

where m := p+1 for one-dimensional problems, and m := (p+1)(p+2)
2 for two-dimensional problems.

Linear system The new unknowns u
(i)
k in (2) can be determined by solving a linear system

Au = b of the form: 
A11 A12 . . . A1N

A21 A22

...
...

. . .
AN1 . . . ANN




u1

u2

...
uN

 =


b1

b2

...
bN

 , (3)

where the blocks all have dimension m, and where, for all i, j = 1, ..., N :

Aji =


B(φ(i)

1 , φ
(j)
1) B(φ(i)

2 , φ
(j)
1) . . . B(φ(i)

m , φ
(j)
1)

B(φ(i)
1 , φ

(j)
2) B(φ(i)

2 , φ
(j)
2)

...
...

. . .
B(φ(i)

1 , φ
(j)
m) . . . B(φ(i)

m , φ
(j)
m)

 , ui =


u

(i)
1

u
(i)
2
...

u
(i)
m

 , bj =


L(φ(j)

1)
L(φ(j)

2)
...

L(φ(j)
m)

 . (4)

This system is obtained by substituting the expression (2) for uh and the basis functions φ
(j)
` for

v into (1). A concrete matrix example is provided in Section 2.1 later on. Once the unknowns u
(i)
k

are solved from the system Au = b, the final SIPG approximation uh can be obtained from (2).

1.2 Switching to a diffusion-dependent penalty parameter

Penalty parameter The SIPG method discussed in the previous section involves a penalty
parameter σ, which enforces stability by penalizing inter-element discontinuities. On the one hand,
this parameter needs to be chosen suffciently large to ensure that the SIPG method converges and
the coefficient matrix A is SPD. At the same time, it needs to be chosen as small as possible, since
the condition number of A increases rapidly with the penalty parameter [3].

Theoretical bounds Computable theoretical lower bounds have been derived for a large variety
of problems by Epshteyn and Riviere [5]. For one-dimensional diffusion problems, they propose:

σ ≥ k2
1

k0
p2, for interior edges,

σ ≥ 2k2
1

k0
p2, for boundary edges, (5)

where k0 and k1 are the global lower and upper bounds for the diffusion coefficient K (and p is
the polynomial degree). However, while these lower bounds are sufficient to ensure stability and
convergence, lower values of σ are usually applied in practice for diffusion problems with strongly
varying coefficients [4, 8]. A common choice is σ = 10 or σ = 20.

3

Illustration To illustrate why the lower bounds (5) are unpractical for problems with strongly
varying coefficients, consider the one-dimensional diffusion problem −(Ku′)′ = 0 on the domain
[0, 1] with a large jump in the diffusion coefficient:

K(x) =

{
1, for x ≤ 1

2 ,

0.001, else.
(6)

For this problem, the penalty parameter σ needs to be chosen close to 10 000 according to (5),
which would lead to an inconveniently large condition number of the coefficient matrix. The
question is whether this is really necessary: when the domains [0, 1

2) and [12 , 1] are considered
separately, a value close to σ = 10 is reasonable in the first domain, and a value close to σ = 0.01
is suitable in the second. This reasoning advocates to apply (5) using local values of the diffusion
coefficient (e.g. σ = 10K) instead of global ones (e.g. σ = 10 000). Indeed, we demonstrate in
Section 3 later on that this local adaptation to the underlying physics leads to smaller condition
numbers and faster convergence of both the SIPG and CG method.

2 Preconditioning

2.1 Introducing the original spectral two-level preconditioner

Coarse correction operator To solve the SPD linear systems discussed in the previous section,
we focus on the CG method in combination with the uniform spectral two-level preconditioner
introduced by Dobrev et al. [4]. This preconditioner is defined in terms of a coarse correction
operator Q ≈ A−1 that switches from the test space V to a coarse subspace, then performs a
correction that is now simple in this coarse space, and finally switches back to the original test
space. In this case, the coarse subspace consists of all piecewise constants. More specifically, the
coarse correction operator Q reads:

Q := RT︸︷︷︸
prolongation

A−1
0︸︷︷︸

coarse correction

R︸︷︷︸
restriction

,

where the so-called restriction operator R is defined such that A0 := RART is the SIPG matrix
with polynomial degree zero. The matrix A0 is also referred to as the Galerkin matrix, or coarse
matrix.

Matrix example For example, for a two-dimensional Laplace problem with p = 1, a uniform
Cartesian mesh with 2× 2 elements, and penalty parameter σ = 10 we have:

A =

26666666666666666664

40 1 1 −10 9 0 −10 0 9 0 0 0
1 25 −0 −9 8 0 0 −3 −0 0 0 0
1 −0 25 0 −0 −3 −9 0 8 0 0 0

−10 −9 0 40 −1 1 0 0 0 −10 0 9
9 8 −0 −1 25 0 0 0 0 0 −3 0
0 0 −3 1 0 25 0 0 0 −9 0 8

−10 0 −9 0 0 0 40 1 −1 −10 9 0
0 −3 0 0 0 0 1 25 0 −9 8 0
9 −0 8 0 0 0 −1 0 25 0 0 −3
0 0 0 −10 0 −9 −10 −9 0 40 −1 −1
0 0 0 0 −3 0 9 8 0 −1 25 0
0 0 0 9 0 8 0 0 −3 −1 0 25

37777777777777777775

,

A0 =

2664
40 −10 −10 0

−10 40 0 −10

−10 0 40 −10
0 −10 −10 40

3775 ,

R =

2664
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

3775 .

4

Observe that every element in A0 is also present in the upper left corner of the corresponding block
in the matrix A. This is because the piecewise constant basis functions φ

(i)
1 are in any monomial

basis. As a consequence, the matrix R contains elements equal to 0 and 1 only, and does not need
to be stored explicitly: multiplications with R can be implemented by simply extracting elements
or inserting zeros.

Spectral two-level preconditioner Now that the coarse correction operator Q has been de-
fined, we can formulate the spectral two-level preconditioner. The result y = Mprecr of applying
this preconditioner to a vector r can be computed in three steps:

y(1) := M−1r (pre-smoothing),

y(2) := y(1) + Q(r −Ay(1)) (coarse correction),

y := y(2) + M−T (r −Ay(2)) (post-smoothing), (7)

where M−1 ≈ A−1 is an invertible smoother, for which we typically use block Jacobi. The
preconditioning operator Mprec can also be written explicitly as (cf. e.g. [11]):

Mprec = M(M + MT −A)−1MT + (I −M−T A)Q(I −AM−1). (8)

For a large class of problems, it can be shown that this preconditioner is uniform [4], assuming
that M + MT −A is SPD. The same requirement implies that the operator Mprec is SPD [12].

2.2 Switching to deflation

Spectral two-level deflation There are two relevant drawbacks of the spectral two-level pre-
conditioner: the first is that two smoothing steps are required. The second is that the smoother
must be chosen such that M + MT − A is SPD. Unfortunately, for large problems, it is usually
not easy to verify this requirement. Furthermore, it is typically not satisfied for standard Jacobi
smoothing. To eliminate one of the two smoothing steps and the inconvenient restriction on the
smoother at the same time, we propose to cast the spectral two-level preconditioner into the de-
flation framework. This is achieved by skipping the last smoothing step in (7). In other words,
the result y = Mdeflr of applying the spectral two-level deflation technique to a vector r can be
computed as:

y(1) := M−1r (pre-smoothing),

y := y(1) + Q(r −Ay(1)) (coarse correction). (9)

The operator Mdefl can also be written explicitly as (cf. [11]):

Mdefl = PT M−1 + Q, P := I −AQ.

Asymmetric implementation The operator Mdefl is not symmetric in general. Interestingly,
it can still be implemented successfully in a PCG algorithm in its current asymmetric form, for
any SPD smoothing operator M−1, as long as the starting vector x0 is preprocessed in one cheap
step:

x0 7→ Qb + PT x0. (10)

Indeed, it was shown in [11] that the standard PCG algorithm with (10) produces the same iterates
when using either one of the following two preconditioning operators:

1. Mdefl,

2. MBNN := PT M−1P + Q, which is SPD as long as the coarse matrix A0 and the smoother
M−1 are SPD. The latter is well-known and can be shown using e.g. the more abstract
analysis in [12].

This explains why the deflation operator Mdefl does not need symmetry.

5

Flops Now that both spectral two-level methods have been defined, it is interesting to compare
them in terms of computational costs. To this end, we consider a two-dimensional diffusion
problem on a uniform Cartesian mesh with N = n2 mesh elements. Furthermore, we define
m := (p+1)(p+2)

2 , where p is the polynomial degree. Using the spectral two-level preconditioner,
the CG method then requires per iteration (30m2 +14m)N flops, plus the costs for two smoothing
steps and one coarse solve. Using the spectral two-level deflation method, the CG method requires
per iteration (20m2 + 12m)N flops, plus the costs for one smoothing step and one coarse solve.
This is significantly cheaper, especially when the smoothing costs are high.

3 Numerical experiments

3.1 Experimental setup

Model setup To validate the performance of the proposed deflation technique and diffusion-
dependent penalty parameter, we consider four test cases, which are defined and illustrated in
Figure 2. Three of these problems have strong variations in the coefficients, resulting in ill-
conditioned systems that are challenging to solve. Similar problems were studied in [4, 8, 13].

(a) Smooth problem

K = 1

K = 10−3

K = 1

K = 10−3

K = 1

(b) Five layers

K = 1

K = 10−1

(c) Bowl

Figure 2: Test cases: we consider four diffusion problems −∇ · (K∇u) = f on the domain [0, 1]2:
a smooth problem (K(x, y) = 0.5005 + 0.4995 sin(2πx) sin(2πy)), a problem with five layers (of
the same thickness), and a problem with two layers (of the same thickness) in a ‘bowl’. For
comparison, we also consider a standard Poisson problem (K = 1). Homogeneous Neumann
boundary conditions are applied at the black edges for the bowl problem. Dirichlet boundary
conditions are applied everywhere else, and these and the source term f are chosen such that the
exact solution reads u(x, y) = cos(2πx) cos(aπy), where a = 5 for problem with five layers, and
a = 2 for the other cases.

SIPG Setup All model problems are discretized by means of the SIPG method as discussed
in Section 1. We use a uniform, Cartesian, lexicographically ordered mesh with n × n elements,
where n = 10, 20, 40, 80. Furthermore, we use monomial basis functions with polynomial degree
up to p = 1, 2, 3. The penalty parameter is chosen diffusion-dependent, σ = 20K (using the largest
limit value of K at the location of the discontinuities), as motivated in Section 1.2. Although it is
common to use only one value for σ per edge in the mesh, we choose to let σ follow the diffusion
coefficient naturally along the edge. For comparison, we also consider a common constant value,
σ = 20.

CG Setup The linear systems resulting from the SIPG discretizations are solved by means of the
(deflated) PCG method as discussed in Section 2. Besides the original spectral two-level precon-
ditioner (referred to as TL prec.) and the proposed deflation variant (TL defl.), we also consider
standard diagonal preconditioning (Diagonal prec.) and basic Block Jacobi (BJ) preconditioning
with blocks of order m := (p+1)(p+2)

2 . Block Jacobi is also used for the smoothing operator M−1 in

6

both spectral two-level methods: twice for the preconditioning variant, and once for the deflation
variant. Coarse systems, involving the SIPG matrix A0 with polynomial degree p = 0, are solved
directly. However, we also provide a more efficient coarse solution strategy in Section 3.2 below.
Diagonal scaling is applied as a preprocessing step in all cases, and the same random start vector
x0 is used for all problems of the same size. Preprocessing of the starting vector (10) is applied
for the deflation technique only. For the stopping criterion we use:

‖rk‖2
‖b‖2

≤ TOL, (11)

where TOL = 10−7, and rk = b−Axk is the residual after the kth iteration. Finally, we measure
the condition number of the (diagonally-scaled) matrix A as the ratio between the largest and the
smallest eigenvalue.

3.2 Numerical results

Constant penalty parameter For a constant penalty parameter σ = 20, the outcome of the
numerical experiments specified in the previous section are displayed in Table 1. For the ba-
sic Poisson problem, as expected, the convergence for the two basic preconditioners slows down
rapidly for larger meshes. At the same time, both spectral two-level methods yield fast uniform
convergence, independent of the mesh element diameter (for sufficiently fine meshes). Interest-
ingly, for the large problems, the deflation variant requires fewer iterations, even though it is less
expensive due to lower smoothing costs, and more practical due to the absence of restrictions on
the smoother. For the other test cases, for which the coefficients vary strongly, the results are
more or less similar, but more extreme: the number of iterations is typically much larger than for
the Poisson problem. Additionally, it can be seen that the spectral two-level deflation method can
converge up to six times faster than the preconditioning variant.

Diffusion-dependent penalty parameter Table 2 displays the result of repeating the exper-
iments in Table 1 for a diffusion-dependent penalty parameter σ = 20K. This local adjustment
to the underlying phyiscs leads to smaller condition numbers and significantly faster convergence
of the CG method. The numbers of iterations are now of the same order as those for the Poisson
problem (cf. Table 1). Furthermore, uniform convergence of both spectral two-level methods is
clearly established in all cases. As before, the deflation variant tends to converge faster for large
problems, and even when the deflation variant requires more iterations, we have found that it is
still faster in terms of the total computational time in seconds, due to its lower smoothing costs.
Altogether, the combination of the spectral two-level deflation method and a diffusion-dependent
penalty parameter can make the CG method over 100 times faster, compared to the original
preconditioning variant together with a common constant penalty parameter (cf. Figure 1).

Although the use of a diffusion-dependent penalty parameter has been shown to be an effective
strategy to increase the efficiency of the CG method, it still needs to be verified that this approach
does not reduce the accuracy the SIPG discretization. In Table 3 (also cf. Figure 1 for an
illustration) it can be seen that a diffusion-dependent penalty parameter actually leads to better
SIPG convergence, both in order and in absolute value.

Efficient coarse solves To obtain the results in Table 1 and Table 2, a direct solver was used
for the coarse systems with coefficient matrix A0. In practice, this is usually not feasible, since
A0 is a large N ×N matrix, where N is the number of mesh elements. For this reason, we have
investigated the cheaper alternative of applying the CG method again in an inner loop with the
standard incomplete Cholesky preconditioner without fill-in. The results are displayed in Table
4: this table displays the number of outer iterations required for converge of the CG method with
the spectral two-level deflation technique, using a diffusion-dependent penalty parameter. Both
the outer and the inner loop use stopping criterion (11). For the inner loop, several values for
TOL are considered. For comparison, the results for a direct coarse solver are also displayed. The

7

maximum number of iterations is set to 300. We observe that low accuracy in the inner loop is
sufficient for high accuracy in the outer loop: the inner tolerance can be 105 times as large as the
outer tolerance.

References

[1] P. F. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners for discon-
tinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math.
Model. Numer. Anal., 41(1):21–54, 2007.

[2] S. C. Brenner and J. Zhao. Convergence of multigrid algorithms for interior penalty methods.
Appl. Numer. Anal. Comput. Math., 2(1):3–18, 2005.

[3] P. Castillo. Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci.
Comput., 24(2):524–547, 2002.

[4] V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski, and L. T. Zikatanov. Two-level preconditioning
of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear
Algebra Appl., 13(9):753–770, 2006.

[5] Y. Epshteyn and B. Rivière. Estimation of penalty parameters for symmetric interior penalty
Galerkin methods. J. Comput. Appl. Math., 206(2):843–872, 2007.

[6] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p-Multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J.
Comput. Phys., 207(1):92–113, 2005.

[7] F. Prill, M. Lukáčová-Medviďová, and R. Hartmann. Smoothed aggregation multigrid for the
discontinuous Galerkin method. SIAM J. Sci. Comput., 31(5):3503–3528, 2009.

[8] J. Proft and B. Rivière. Discontinuous Galerkin methods for convection-diffusion equations
for varying and vanishing diffusivity. Int. J. Numer. Anal. Model., 6(4):533–561, 2009.

[9] B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equations, vol-
ume 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2008. Theory and implementation.

[10] P. van Slingerland and C. Vuik. Spectral two-level deflation for DG: a preconditioner for CG
that does not need symmetry. Technical Report 11-12, Delft University of Technology, 2011.

[11] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level precondition-
ers derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput.,
39(3):340–370, 2009.

[12] P. S. Vassilevski. Multilevel block factorization preconditioners. Springer, New York, 2008.
Matrix-based analysis and algorithms for solving finite element equations.

[13] C. Vuik, A. Segal, and J.A. Meijerink. An efficient preconditioned CG method for the so-
lution of a class of layered problems with extreme contrasts in the coefficients. Journal of
Computational Physics, 152:385–403, 1999.

8

degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 2.1e+03 8.4e+03 3.2e+04 1.2e+05 5.3e+03 1.8e+04 6.7e+04 2.6e+05 7.0e+03 2.4e+04 8.6e+04 3.3e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 103 221 435 826 190 359 684 1198 215 385 667 1330
Block Jacobi (BJ) 103 221 435 826 120 233 428 779 122 229 432 805
TL prec., 2x BJ 31 37 39 40 39 42 44 45 45 58 61 62
TL defl., 1x BJ 36 41 42 43 36 38 39 39 39 41 42 43

(a) Poisson problem, constant σ = 20
degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 3.9e+03 1.7e+04 7.1e+04 3.0e+05 1.4e+04 6.4e+04 2.6e+05 1.0e+06 2.7e+04 1.0e+05 4.1e+05 1.5e+06
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 157 336 714 1311 337 677 1262 2432 419 766 1427 2514
Block Jacobi (BJ) 157 336 714 1311 224 424 823 1466 232 477 833 1482
TL prec., 2x BJ 41 57 83 116 82 147 275 487 102 214 375 615
TL defl., 1x BJ 51 76 107 147 108 205 350 523 128 240 416 594

(b) Smooth problem, constant σ = 20
degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 4.5e+03 2.8e+04 2.2e+05 2.2e+06 3.4e+05 1.6e+06 5.7e+06 2.1e+07 8.7e+05 2.6e+06 7.9e+06 2.7e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 165 392 1125 2773 600 2218 5916 12249 1000 3353 6684 12630
Block Jacobi (BJ) 165 392 1125 2772 425 1157 3007 6905 692 1785 3999 7710
TL prec., 2x BJ 51 91 188 348 186 490 1471 3022 504 1316 2603 5229
TL defl., 1x BJ 61 127 273 462 152 276 461 598 365 547 769 864

(c) Five layers, constant σ = 20
degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 1.2e+05 4.8e+05 1.9e+06 7.6e+06 2.2e+05 8.6e+05 3.4e+06 1.4e+07 3.1e+05 1.2e+06 4.8e+06 1.9e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 300 763 1640 2967 600 1339 2618 4753 764 1430 2739 5200
Block Jacobi (BJ) 273 683 1447 2635 417 845 1558 2906 423 800 1460 2857
TL prec., 2x BJ 84 116 125 134 146 196 227 238 191 295 408 517
TL defl., 1x BJ 90 111 120 129 106 112 116 119 123 126 129 131

(d) Bowl, constant σ = 20

Table 1: Comparison of preconditioning strategies in terms of the number of CG iterations required
for convergence using a constant penalty parameter σ = 20.

degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 2.5e+03 1.0e+04 3.9e+04 1.5e+05 6.1e+03 2.1e+04 7.6e+04 2.9e+05 8.9e+03 2.9e+04 1.1e+05 4.0e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 122 236 461 889 206 400 721 1362 237 410 729 1393
Block Jacobi (BJ) 116 239 469 885 130 248 438 845 129 244 446 847
TL prec., 2x BJ 32 38 40 41 40 43 44 45 46 56 62 63
TL defl., 1x BJ 36 41 43 44 38 39 39 39 40 41 43 43

(a) Smooth problem, diffusion-dependent σ = 20K
degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 3.1e+04 4.5e+04 7.6e+04 2.5e+05 1.6e+05 1.7e+05 2.3e+05 5.1e+05 3.0e+05 2.8e+05 3.3e+05 6.7e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 300 690 948 1264 600 1247 1469 1876 1000 1665 1913 2317
Block Jacobi (BJ) 123 249 485 883 144 259 490 932 144 255 492 870
TL prec., 2x BJ 35 41 42 42 46 52 49 49 49 62 64 65
TL defl., 1x BJ 43 46 51 52 51 51 54 54 53 56 57 58

(b) Five layers, diffusion-dependent σ = 20K
degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 9.5e+04 3.7e+05 1.5e+06 5.9e+06 1.8e+05 7.2e+05 2.8e+06 1.1e+07 2.5e+05 9.7e+05 3.9e+06 1.5e+07
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000

Diagonal prec. 233 454 895 1654 366 633 1222 2423 434 735 1443 2729
Block Jacobi (BJ) 194 394 779 1446 219 415 785 1514 214 423 795 1496
TL prec., 2x BJ 41 44 45 45 52 51 52 52 63 67 67 68
TL defl., 1x BJ 49 50 55 56 50 53 54 54 56 57 57 58

(c) Bowl, diffusion-dependent σ = 20K

Table 2: Comparison of preconditioning strategies in terms of the number of CG iterations required
for convergence using a diffusion-dependent penalty parameter σ = 20K.

9

p=1 p=2 p=3
mesh error order error order error order

N = 102 4.12e-01 - 9.36e-02 - 9.47e-03 -
N = 202 2.48e-01 0.73 2.32e-02 2.01 1.20e-03 2.98
N = 402 1.54e-01 0.69 4.90e-03 2.25 1.13e-04 3.40
N = 802 1.10e-01 0.48 6.91e-04 2.82 7.50e-06 3.92

(a) Five layers, fixed σ = 20

p=1 p=2 p=3
mesh error order error order error order

N = 102 3.02e-01 - 1.93e-02 - 1.90e-03 -
N = 202 1.15e-01 1.40 1.92e-03 3.33 1.16e-04 4.04
N = 402 3.43e-02 1.74 2.13e-04 3.17 7.11e-06 4.02
N = 802 9.12e-03 1.91 2.55e-05 3.06 4.42e-07 4.01

(b) Five layers, diffusion-dependent σ = 20K

Table 3: SIPG convergence for both a constant and diffusion-dependent penalty parameter: a
diffusion-dependent penalty parameter yields better SIPG accuracy, both in order and in absolute
value.

degree p=1 p=2 p=3
mesh N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802 N=102 N=202 N=402 N=802

condition number 3.1e+04 4.5e+04 7.6e+04 2.5e+05 1.6e+05 1.7e+05 2.3e+05 5.1e+05 3.0e+05 2.8e+05 3.3e+05 6.7e+05
size A 300 1200 4800 19200 600 2400 9600 38400 1000 4000 16000 64000
exact 43 46 51 52 51 51 54 54 53 56 57 58

TOL = 10−4 43 46 51 52 51 51 54 54 53 56 57 58
TOL = 10−3 43 47 50 53 51 51 54 54 53 56 57 58
TOL = 10−2 44 47 53 55 51 51 53 55 53 56 56 58
TOL = 10−1 300 300 300 300 68 81 118 300 67 79 93 141

(a) Five layers, inexact coarse solves, σ = 20K

Table 4: Solving coarse systems for the spectral two-level deflation technique more efficiently by
applying CG again in an inner loop with a standard IC preconditioner: low accuracy in the inner
loop is sufficient for high accuracy in the outer loop.

10

