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Abstract. We introduce a simple method to accelerate the convergence of iterative solvers of the frequency-domain
Maxwell’s equations. The method modifies the original Maxwell’s equations to eliminate the high multiplicity of near-zero
eigenvalues that exists in the original operator. The impact of the modified eigenvalue spectrum on the accelerated convergence
is explained by visualizing the components of the residual vector with respect to the eigenvector basis at each iteration step. A
comparison with the previous approach that is similar to our method is also presented.
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1. Introduction. To understand electromagnetic (EM) and optical phenomena, it is essential to solve
Maxwell’s equations efficiently. In the frequency domain, assuming a time dependence e+i ω t and nonmag-
netic materials, the equations are

∇×E = −i ω µ0 H, (1.1)

∇×H = i ω εE + J, (1.2)

where ε is the electric permittivity; µ0 is the magnetic permeability of a vacuum; ω is the angular frequency;
E, H, and J are the electric field, magnetic field, and the electric current source density, respectively. To
obtain the solutions E and H of the equations for a given J, the main equation to solve is

∇×∇×E− ω2 µ0 εE = −i ω µ0 J, (1.3)

which is formulated by eliminating H from (1.1) and (1.2); once E is obtained from (1.3), it is substituted
into (1.1) to recover H.

To solve (1.3) numerically, a large system of linear equations

Ax = b, (1.4)

where A is a coefficient matrix, x is an unknown column vector representing E, and b is a column vector
representing −i ω J, is constructed by a method such as the finite-difference frequency-domain (FDFD)
method or finite-element method (FEM). The coefficient matrix A is sparse (with only 13 elements per row)
and typically very large (often with more than 10 million rows and columns), especially for 3-dimensional
(3D) problems. To solve a system with such a large and sparse coefficient matrix, iterative methods are
usually preferred to direct methods [8].

However, it is well-known that convergence is quite slow when the iterative methods are directly applied
to (1.4) constructed from (1.3) in the “low-frequency” regime; the low-frequency regime arises in geophysics
and deep-subwavelength nanophotonics, for example, where the wavelengths used are much greater than the
geometric features in problem domains. The huge null space of the operator ∇×∇× was proved to be the
origin of the slow convergence, and several techniques to improve the convergence speed have been suggested.

Most of the techniques are based on the Helmholtz decomposition, which decomposes the E-field as
E = Ψ + ∇φ for a divergence-free vector field Ψ and a scalar function φ. Thanks to the divergence-free
nature of Ψ, (1.3) is written as

−∇2Ψ− ω2 µ0 ε (Ψ +∇φ) = −i ω µ0 J, (1.5)

where the operator ∇×∇× with a huge null space is replaced with the negative Laplacian −∇2. However,
these techniques require solving an extra equation for the extra unknown φ, which can be time-consuming.

∗Department of Electrical Engineering, Stanford University, Stanford, CA, 94305 USA (wsshin@stanford.edu).
†Department of Electrical Engineering, Stanford University, Stanford, CA, 94305 USA (shanhui@stanford.edu).

1



2

A less explored technique is to modify (1.3) using the continuity equation

∇ · (εE) =
i

ω
∇ · J. (1.6)

By dividing (1.6) by ε and then taking the gradient, we obtain

∇
[
ε−1∇ · (εE)

]
=

i

ω
∇
[
ε−1∇ · J

]
. (1.7)

Because (1.6) is derived from (1.3) by taking the divergence, the solution of (1.3) always satisfies (1.7).
Moreover, (1.7) has the same physical unit as (1.3). Therefore, we can freely add any multiple of (1.7)
to (1.3) to obtain a new equation with the same solution E. The new equation may conform to iterative
methods better than (1.3), without the penalty of introducing an extra unknown like the techniques based
on the Helmholtz decomposition.

When this technique was first explored in [1], the authors added (1.7) to (1.3), hoping the operator of
the resulting equation to be positive-definite, because a positive-definite operator is well-suited to iterative
methods in general. Even though they were not able to prove whether the operator was positive-definite or
not, they observed much faster convergence of iterative methods for the new equation than for (1.3).

In this paper, we re-examine the technique that uses (1.7) to accelerate the convergence of iterative
methods in the low-frequency regime. We show that adding (1.7) to (1.3) as described in [1] accelerates
the convergence only during the initial stage of iteration, but eventually stagnates the convergence. On the
contrary, we find that subtracting (1.7) from (1.3) maintains accelerated convergence speeds throughout the
entire iteration.

It turns out that our method accelerates the convergence by engineering the eigenvalue spectrum of
the operator into a form that is more preferable to iterative methods. We provide a detailed analysis to
establish the relation between the convergence behavior and eigenvalue spectrum. There have been already
many studies pointing out the dependence of the convergence behavior on the eigenvalue spectrum, but
they mostly consist of mathematical proofs. In contrast, by visualizing the residual vector and residual
polynomial at each iteration step, we develop a graphical mean to understand the impact of the eigenvalue
spectrum on the convergence behavior. Such a graphical analysis provides a more intuitive understanding on
the deterioration of the convergence speed caused by an eigenvalue cluster near zero and indefinite coefficient
matrix.

The rest of this paper is organized as follows. In Sec. 2, we formally introduce our equation and the
equation solved in [1]. In Sec. 3, we solve a wide range of realistic 3D problems to compare the convergence
behavior of an iterative method for the two equations as well as for the original equation (1.3). To understand
the different convergence behavior for the different equations, in Sec. 4 we investigate the eigenvalue spectra
of the operators used in the three equations for a simple homogeneous system. In Sec. 5, we relate the
eigenvalue spectra to the convergence behavior of an iterative method, and we conclude in Sec. 6.

2. Modified equations. In this section, we formally describe the modified equations we investigate.
When (1.7) is scaled by an arbitrary scale factor s and added to (1.3), we obtain

∇×∇×E + s∇
[
ε−1∇ · (εE)

]
− ω2 µ0 εE = −i ω µ0 J + s

i

ω
∇
[
ε−1∇ · J

]
. (2.1)

As mentioned in Sec. 1, (2.1) has the same solution E as (1.3). However, because the operator on
the left-hand side and the term on the right-hand side change with s, (2.1) produces a different system of
linear equations of the form (1.4) with different A and b depending on s. Since the convergence behavior of
iterative methods strongly depends on the properties of the coefficient matrix A, we can expect a different
performance of iterative methods to solve (1.4) for different s.

In the following sections, we investigate three cases: s = 0,−1,+1; note that s = 0 corresponds to
the original equation (1.3), and s = +1 corresponds to the equation solved in [1]. In the next section, we
demonstrate the different convergence behavior of an iterative method for different s by solving (2.1) for 3D
systems.
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Fig. 3.1. Three inhomogeneous systems for which (2.1) is solver for s = 0,−1,+1 by QMR: (a) a slot waveguide bend
formed in a thin silver film (Slot), (b) a straight silicon waveguide (Diel), and (c) an array of gold pillars (Array). In the
figures in the first row, the dimensions and materials of the structures are specified. The directions of wave propagation are
shown by red arrows, beside which the vacuum wavelengths used are indicated. In the figures in the second row, the convergence
behavior of QMR is plotted. Note that for all three systems QMR converges fastest for s = −1, whereas it barely converges for
s = +1.

Slot Diel Array
Nx ×Ny ×Nz 192× 192× 240 220× 220× 320 220× 220× 130

∆x,∆y,∆z (nm) 2 ∼ 20 10 5, 5, 20
Table 3.1

The specification of the finite-difference grids used for the three simulated systems described in Figures 3.1. The number
of grid cells in each system is NxNyNz, which results in 3NxNyNz of unknowns in a column vector x, where the extra factor
3 accounts for the three Cartesian components of the E-field. Slot uses a nonuniform grid with smoothly varying grid edge
lengths.

3. Convergence behavior of QMR for 3D inhomogeneous systems. In this section, we solve
(2.1) for 3D inhomogeneous systems by an iterative method, and compare the convergence behavior for
s = 0,−1,+1.

The three inhomogeneous systems we consider are illustrated in the first row of Fig. 3.1. We enclose
each system by the perfectly matched layer (PML) boundary condition appropriately to simulate an infinite
space. For each system, we construct three systems of linear equations of the form (1.4) corresponding
to s = 0,−1,+1 by the FDFD method. The number of the grid cells in the finite-difference grid used to
discretize each system is shown in Table 3.1, together with the grid edge lengths in the x-, y-, z-directions.
Note that the the grid edge lengths are much smaller than the vacuum wavelengths λ0 indicated in the first
row of Fig. 3.1 so that the problems are in the low-frequency regime.

The constructed systems of linear equations are solved by the quasi-minimal residual (QMR) iterative
method [4]. At the m-th step of the QMR iteration, an approximate solution xm is generated. As m increases,
xm eventually converges to the exact solution of the system of linear equations Ax = b. We assume that
convergence is achieved when the residual vector

rm = b−Axm (3.1)

satisfies ‖rm‖/‖b‖ < τ , where ‖ · ‖ is the 2-norm of a vector and τ is a user-defined small positive number.
In practice, τ = 10−6 is sufficient for accurate solutions.

The second row of Fig. 3.1 shows the convergence behavior of QMR for the three systems. Note that
for all three systems s = −1 induces in the fastest convergence, and s = +1 barely results in convergence.
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The three systems tested in this section are chosen deliberately to include geometries with different
degrees of complexities, and different materials such as dielectrics and metals. Therefore, Fig. 3.1 suggests
that s = −1 and s = +1 lead to faster and slower convergence speeds than s = 0, respectively, for a wide
range of EM systems. Moreover, the result is not specific to QMR; we have observed the same behavior for
other iterative methods, such as the biconjugate gradient (BiCG) method [6]. Hence, we conclude that the
different convergence speeds for s = 0,−1,+1 originate from the difference in the fundamental properties of
the operator in (2.1) for different s.

In the next section, we consider a simple homogeneous system, and show that different s induces a very
different eigenvalue spectrum of the operator. Such a different eigenvalue spectrum is used to explain the
different convergence speed for different s later.

4. Eigenvalue spectra of the operators for a homogeneous system. In this section, we examine
the operator in (2.1) for a homogeneous system to investigate the properties of the operator for different s.

For a homogeneous system where ε is constant, the both sides of (1.7) are simplified as

∇
[
ε−1∇ · (εE)

]
= ∇(∇ ·E) ,

i

ω
∇
[
ε−1∇ · J

]
=

i

ω ε
∇(∇ · J). (4.1)

Substituting (4.1), (2.1) reduces to

∇×∇×E + s∇(∇ ·E)− ω2 µ0 εE = −i ω µ0 J + s
i

ω ε
∇(∇ · J). (4.2)

The convergence behavior of iterative methods to solve (4.2) strongly depends on the eigenvalue spectrum
of its operator

T = ∇× (∇× ) + s∇(∇· )− ω2 µ0 ε. (4.3)

Since we consider a constant ε in this section, the term −ω2 µ0 ε in (4.3) only shifts the eigenvalue spectrum
of the operator

T0 = ∇× (∇× ) + s∇(∇· ) (4.4)

by −ω2 µ0 ε, which is a small amount in the low-frequency regime. Therefore, the eigenvalue spectrum of T
can be approximated very well by the eigenvalue spectrum of T0.

In Appendix A, we show that

λ = 0 , |k|2 , |k|2 (4.5)

and

λ = −|k|2 , 0 , 0 (4.6)

are the eigenvalues of the operators ∇ × (∇× ) and ∇(∇· ), respectively, where k is the wavevector of
spatially harmonic eigenfunctions. Moreover, we also show in Appendix A that (4.5) and (4.6) correspond
to the same set of eigenfunctions. Therefore, the operator T0 has

λ = −s |k|2 , |k|2 , |k|2 (4.7)

as three eigenvalues for each wavevector k.
The eigenvalues (4.7) predict very different eigenvalue spectra of T0’s for the different values of s we

consider. If s = 0, (4.7) reduces to (4.5). Because (4.5) has 0 as an eigenvalue for each k, T0 has a very
high multiplicity of the eigenvalue 0. In addition, the three values in (4.7) are all nonnegative, so T0 is
positive-semidefinite for s = 0.

If s = −1, the high multiplicity of the eigenvalue 0 occurred for s = 0 is removed, but the multiplicity of
the eigenvalue |k|2 increases by 1.5 times for each k. Note that T0 for s = −1 is also positive-semidefinite.

If s = +1, the multiple eigenvalue 0 occurred for s = 0 spreads into different eigenvalues −|k|2 for
different k. As a result, (4.7) has both positive and negative values, so T0 becomes an indefinite operator
for s = +1.
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Fig. 4.1. A 2D square domain filled with a vacuum for which the eigenvalue spectrum of T0 is calculated numerically
for s = 0,−1,+1. The domain is homogeneous in the z-direction, whereas its x- and y-boundaries are subject to the periodic
boundary conditions. The square domain is discretized on a finite-difference grid with grid edge length ∆ = 2 nm. The domain
is composed of 50× 50 grid cells, which lead to 7500 eigenvalues in total.
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(b) Spectrum of A0 for s = −1
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(c) Spectrum of A0 for s = +1

Fig. 4.2. The eigenvalue spectrum of A0 discretized from T0 for (a) s = 0, (b) s = −1, and (c) s = +1 for the vacuum-
filled domain illustrated in Fig. 4.1. The height of each bar is equal to the number of eigenvalues contained in the bin indicated
by the base of the bar. All 7500 eigenvalues λ of A0 are calculated for each s, and categorized into 41 bins in the horizontal
axis. The unit of the horizontal axes is nm−2, and −2 nm−2 ≤ λ ≤ 2 nm−2. In (b) and (c), black dots indicate the eigenvalue
spectrum for s = 0 shown in (a). The vertical axes are broken to save space for the extremely high peak at λ ' 0 in the
eigenvalue spectrum for s = 0. The three spectra are essentially the eigenvalue spectra of A discretized from T .

We verify the above predictions on the eigenvalue spectra by numerically calculating the spectra for a
simple 2-dimensional (2D) domain filled with a vacuum (Fig. 4.1). The domain is discretized on a finite-
difference grid with Nx ×Ny = 50 × 50 grid cells. Therefore, the coefficient matrix A0 discretized from T0
has 3NxNy = 7500 rows and columns, where the extra factor 3 accounts for the three Cartesian components
of the E-field.

The spectra of the numerically calculated eigenvalues of the coefficient matrices A0 for s = 0,−1,+1 are
shown in Fig. 4.2. The spectra precisely agree with the predictions made above. In the spectrum for s = 0
(Fig. 4.2a), a very high peak exists at λ ' 0. Moreover, the peak is about 2500, which corresponds to a third
of the total number of eigenvalues; this makes sense because one of the three eigenvalues (4.7) is 0 for each
k when s = 0. In the spectrum for s = −1 (Fig. 4.2b), a peak does not exist at λ ' 0, but the heights of the
remaining bars are increased by about 1.5 times. The spectrum for s = +1 (Fig. 4.2c) does not have a peak
at λ ' 0, either, but it has negative eigenvalues. We also note that A0 is positive-semidefinite for s = 0,−1,
whereas it is indefinite for s = +1.

In the next section, we put an electric dipole current source in the homogeneous system illustrated in
Fig. 4.1, and numerically solve (4.2) for the system by an iterative method to understand the impact of the
different eigenvalue spectra studied in this section on the convergence behavior of the iterative method.

5. Impact of the eigenvalue spectrum on the convergence behavior of GMRES. In this
section, we put an x-polarized electric dipole current source at the center of the system illustrated in Fig. 4.1,
and solve the resulting equation (4.2) numerically for s = 0,−1,+1 by an iterative method. By closely
investigating the evolution of the residual vector generated by the iterative method, we understand the
impact of the eigenvalue spectrum of the coefficient matrix to the convergence behavior.
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Fig. 5.1. Convergence behavior of GMRES for the vacuum-filled domain illustrated in Fig. 4.1. Three systems of linear
equations discretized from (4.2) for s = 0,−1,+1 are solved by GMRES, while monitoring the relative residual norms ‖rm‖/‖b‖
at each iteration step m. Note the the plot for s = 0 stagnates initially. Also note that the plot for s = +1 does not stagnate
initially, but stagnates later on for a long iteration period.

The iterative method of choice in this section is the generalized minimal residual (GMRES) method [7].
Fig. 5.1 shows ‖rm‖/‖b‖ versus the iteration step m for the three values of s, where rm is the residual vector
(3.1) generated at each iteration step. As can be see in the figure, the convergence behavior is quite different
for different s.

The overall trend of the convergence behavior is consistent with the well-known theories of the Krylov
subspace methods [8]. More specifically, it is known that GMRES stagnates initially if the coefficient matrix
A has many eigenvalues λ close to 0 [3]. In addition, the convergence of the Krylov subspace methods is
known to be generally much slower for indefinite A than for definite A [2]. The initial stagnation for s = 0
and slow convergence for s = −1 in Fig. 5.1 are consistent with these theories, because as shown in Fig. 4.2,
our A has a very high multiplicity near λ = 0 for s = 0, and is indefinite for s = −1. However, a more
concrete and intuitive analysis of the convergence behavior can be given by using the residual polynomial as
follows.

We first review the residual polynomial of GMRES briefly. For any Krylov subspace method, the residual
vector rm generated by the method is expressed as [8]

rm = pm(A) r0, (5.1)

where pm is called the residual polynomial of degree at most m that satisfies

pm(0) = 1. (5.2)

Different Krylov subspace methods construct pm differently. GMRES, as can be inferred from its name,
construct pm so that it minimizes ‖rm‖ while satisfying (5.2), where ‖ · ‖ is the 2-norm of a column vector.

Now, consider the coefficient matrix A ∈ Cn×n discretized from T of (4.2). Because T is a Hermitian
operator, A is a Hermitian matrix. Thus the eigenvalues λi of A are all real, and we can find an orthonormal
set of eigenvectors {v1, . . . , vn}. Hence, A can be decomposed as

A = V ΛV †, (5.3)

where

Λ =

 λ1
. . .

λn

 , V =
[
v1 · · · vn

]
(5.4)

and V † is the conjugate transpose of V ; note that V is unitary, i.e., V V † = I.
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Fig. 5.2. Initial evolution of r̄m for (a) s = 0 and (b) s = −1. Bars whose heights are hmj of (5.9) are plotted for the
three iteration steps m = 0, 2, 8. In the figures for m = 2 and m = 8, the residual polynomials pm are also plotted as solid
curves. The values of pm are scaled appropriately to show the oscillation and roots of the polynomials clearly. Note that in
(b) the vertical axis is gradually zoomed in with increasing m. Also notice that the peak at λ ' 0 persists in (a).

We define

r̄m ≡ V † rm, (5.5)

which is the representation of rm with respect to the orthonormal eigenvector basis. Because the unitary
transformation V preserves the 2-norm of a vector, we have

‖rm‖ = ‖r̄m‖. (5.6)

In addition, using (5.1), (5.3), and (5.5) we obtain

r̄m = V † rm = V † pm(A) r0 = V † V pm(Λ)V † r0 = pm(Λ) r̄0, (5.7)

which relates i-th components of r̄m and r̄0:

r̄mi = pm(λi) r̄0i. (5.8)

Eqs. (5.6) and (5.8) indicate that the evolution of ‖rm‖ in the iterative process can be monitored by observing
r̄m, and r̄m is directly related to the residual polynomial.

In Fig. 5.2, we visualize r̄m for s = 0 and s = −1 at three initial iteration steps m = 0, 2, 8. The bins of
each histogram is the same as those used in Fig. 4.2, but the height above the j-th bin Bj at the iteration
step m is

hmj = 1
‖b‖

√∑
λi∈Bj

|r̄mi|2 = 1
‖b‖

√∑
λi∈Bj

|pm(λi) r̄0i|2. (5.9)

The quantity (5.9) is the norm of the projection of rm/‖b‖ onto the space spanned by the eigenvectors vi

corresponding to λi ∈ Bj . Therefore, ‖rm‖/‖b‖ =
√∑

j |hmj |
2
. Note that if the bin Bj contains a root of

the residual polynomial pm, the bar height (5.9) almost vanishes because pm(λi) ' 0 for λi ∈ Bj .
Fig. 5.2 shows that r̄0’s for s = 0 and s = −1 have components only for λ & 0, which is in agreement

with the eigenvalue spectra for the two s shown in Fig. 4.2. As the iteration step m increases, GMRES
constructs the residual polynomials pm (shown by the solid curves in the figures1) so that they have roots in
the interval [0, 2] where the components of r̄0 are nonzero. The second column in Fig. 5.2 clearly shows that

1The residual polynomials shown in Figs. 5.2 and 5.4 are calculated by solving optimization problems using CVX [5].
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Fig. 5.3. Residual polynomials pm of degree 6 with different locations of the roots. Solid lines represent residual polyno-
mials. Black dots on the horizontal axis indicate the locations of the roots. The residual polynomials always satisfy pm(0) = 1.
In (a) and (b), the roots are all positive, but the smallest root is closer to zero in (b) than in (a); the locations of the other
five roots are the same for the two cases. Note that the lines tangential to the polynomials at the roots become steeper as the
smallest root moves toward zero, and thus the variation of the residual polynomial becomes more rapid. In (c), the residual
polynomial with both positive and negative roots is illustrated. The amplitudes of the oscillation of the residual polynomial is
much larger in (c) than in (a) and (b).

the bars almost vanish at the roots of the residual polynomials. As the iteration step m increases, GMRES
puts more and more roots of pm in the interval [0, 2], and the components of r̄m decrease in magnitude
overall.

However, it is noticeable in Fig. 5.2a that the peak at λ ' 0 does not decrease with increasing m for
s = 0. This is because the penalty for the residual polynomial’s having a root very close to zero is too
expensive as explained intuitively below. Because the residual polynomial pm satisfies the condition (5.2),
it is factored as

pm(x) =
∏dm
i=1(1− x/ζi), (5.10)

where dm ≤ m is the degree of pm and ζi’s are the roots of pm. The first derivative of pm(x) is

p′m(x) = −
∑dm
j=1

1
ζj

∏
i 6=j(1− x/ζi), (5.11)

and thus the slope of the tangential line to the polynomial at a root ζk is

p′m(ζk) = − 1
ζk

∏
i6=k(1− ζk/ζi). (5.12)

Now, suppose that 0 < ζ1 < · · · < ζdm . We can easily show that |p′m(ζk)| increases when ζ1 decreases
toward zero. In other wards, for a given residual polynomial whose roots are all positive, if we make the
smallest root even smaller, then the variation of the polynomial at the roots becomes more rapid. This
situation is illustrated in Figs. 5.3a and 5.3b for a residual polynomial of degree 6.

The above discussion means that the peak at λ ' 0 in Fig. 5.2a can be resolved by the residual polyno-
mials only at the price of making the other bars higher. Therefore, the peak remains unresolved until the
other bars become sufficiently small. This makes ‖rm‖/‖b‖ for s = 0 stagnates during the initial GMRES
iteration as shown in Fig. 5.1, because the peak at λ ' 0 constitutes a significant portion of the initial
residual norm ‖r0‖/‖b‖ as indicated in the m = 0 figure in Fig. 5.2a. In fact, the bar at λ ' 0 remains
unresolved also for s = −1, but this does not stagnates ‖rm‖/‖b‖, because the bar constitutes only a small
portion of ‖r0‖/‖b‖ as can be seen in the m = 0 figure in Fig. 5.2b.

We next visualize r̄m for s = +1 at several iteration steps m in Fig. 5.4. It looks like r̄0/‖b‖ has
components only for λ . 0 as shown in the m = 0 figure, which seems contradictory to the eigenvalue
spectrum for s = +1 shown in Fig. 4.2c. In fact, r̄0/‖b‖ has components for λ & 0, but they are much
smaller than the components for λ . 0 and invisible in the m = 0 figure. Because most components of
r̄0 correspond to λ . 0, initially GMRES resolves these components by placing the roots of the residual
polynomials in the interval [−2, 0] as shown in the m = 2 figure.
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Fig. 5.4. Evolution of r̄m for s = +1. Bars whose heights are hmj of (5.9) are plotted for the six iteration steps
m = 0, 2, 7, 11, 80, 120. In the figures for m = 2, 7, 11, the residual polynomials pm are also plotted as solid curves. The values
of pm are scaled appropriately to show the oscillation and roots of the polynomials clearly. Notice that the peak at λ ' 0 in
the m = 80 figure has barely decreased after 40 steps in the m = 120 figure.

However, such polynomials have very large values in the [0, 2] interval, so the components of r̄m/‖b‖
corresponding to λ & 0 are gradually amplified as the iteration proceeds as indicated in the m = 7 figure.
Eventually, the components of r̄m/‖b‖ for λ & 0 become so amplified that they cannot be ignored, and
GMRES starts to place the roots of the residual polynomials in the [0, 2] interval as well.

As the iteration proceeds, GMRES places more and more roots on both the [−2, 0] and [0, 2] intervals.
However, as can be seen in the m = 80 and m = 120 figures, the components of r̄m/‖b‖ corresponding to
λ ' 0 persist even after long iteration. This persistent components has the same origin as the persisting
peak at λ ' 0 we had in Fig. 5.2a; in other words, the components of r̄m/‖b‖ at λ ' 0 cannot be resolved
easily because such resolution makes the other components of r̄m/‖b‖ larger.

Moreover, since the eigenvalue spectrum for s = +1 spans to both positive and negative values as shown
in Fig. 4.2c, the roots of the residual polynomial need to be placed very close to zero on both positive and
negative sides to fully resolve the components corresponding to λ ' 0. Therefore, the penalty for resolving
the components of r̄m/‖b‖ corresponding to λ ' 0 is even more expensive for an indefinite operator than a
definite operator (see Fig. 5.3c). Hence, the peak at λ ' 0 is harder to resolve for s = +1 than for s = −1.
As a result, ‖rm‖/‖b‖ for s = +1 stagnates in the GMRES iteration process for a far extended period than
it does for s = 0 as demonstrated in Fig. 5.1.

In summary of this section, we have shown that there are two kinds of stagnation of the GMRES
convergence: one caused by a high multiplicity of eigenvalues near zero and the other caused by an indefinite
coefficient matrix. We have also shown that the latter kind of stagnation takes much longer iteration than
the first kind. The two kinds of stagnation explain the reason s = −1 induces faster convergence than s = 0
and s = +1.

6. Conclusion. We have introduced a new method to accelerate the convergence of iterative solvers of
the frequency-domain Maxwell’s equations in the low-frequency regime. The method solves a new equation
that is modified from the original Maxwell’s equations using the continuity equation.

The operator of the newly formulated equation does not have the high multiplicity of the near-zero
eigenvalues that stagnates the convergence for the original operator. Especially, unlike the previously
known approach that similarly removes the high multiplicity, our method leaves the operator nearly positive-
semidefinite as the original operator, which results in a better performance than the previous approach.

Because our method achieves the accelerated convergence by formulating a new equation, the method can
be easily combined with other acceleration techniques such as preconditioning or different iterative methods.

Appendix A. Using the k-space representations of the operators, here we derive the eigenvalues (4.5)
of ∇× (∇× ) and (4.6) of ∇(∇· ) as well as their corresponding eigenfunctions.

Because both ∇×(∇× ) and ∇(∇· ) are translationally invariant operators, their eigenfunctions vary
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harmonically in space, and thus have the form

Fk e
−ik·r, (A.1)

where r is a position variable, k = x̂ kx+ŷ ky+ẑ kz is a real constant wavevector, and Fk = x̂F xk +ŷF yk +ẑF zk
is a vector that is constant for a given k.

Substituting (A.1) for F in the eigenvalue equations ∇×(∇×F) = λF and ∇(∇·F) = λF, we represent
the equations in the k-space. For ∇× (∇× ) we have k2y + k2z −kxky −kxkz

−kykx k2z + k2x −kykz
−kzkx −kzky k2x + k2y

 Fx
Fy
Fz

 = λ

 Fx
Fy
Fz

 , (A.2)

and for ∇(∇· ) we have

−

 k2x kxky kxkz
kykx k2y kykz
kzkx kzky k2z

 Fx
Fy
Fz

 = λ

 Fx
Fy
Fz

 . (A.3)

The matrices on the left-hand sides of (A.2) and (A.3) are the k-space representations of the operators
∇× (∇× ) and ∇(∇· ).

By solving (A.2) and (A.3) for a given k, we obtain

λ = 0 , |k|2 , |k|2 (A.4)

and

λ = −|k|2 , 0 , 0 (A.5)

as the eigenvalues (4.5) of ∇× (∇× ) and (4.6) of ∇(∇· ), respectively. It turns out that the two sets of
the eigenvalues correspond to the same set of eigenfunctions in the form of (A.1) with

Fk =

 kx
ky
kz

 ,
 kz

0
−kx

 ,
 −kykx

0

 . (A.6)

We note from (A.4) and (A.5) that ∇ × (∇× ) and ∇(∇· ) are positive-semidefinite and negative-
semidefinite, respectively.
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