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Abstract. We derive an estimate for the speed of convergence of deflation methods, based
on the idea of Nicolaides [9], for the iterative solution of linear systems of equations. This is done
by using results from classical algebraic multigrid theory. As a further result we obtain that many
prolongation operators from multigrid methods can be used to span the deflation subspace, which is
needed for deflation methods.
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1. Preliminaries. Consider solving the linear system of equations

Ax = b , (1.1)

where A ∈ Kn×n (K = R or K = C) is self-adjoint and positive definite and x, b ∈ Kn.
Furthermore we are interested in the case where the matrix A is large and sparse.
The conjugate gradient (cg) method [7, 11] is an iterative method which is often
well suited to solve these systems. Deflation methods have been successfully used
to improve the speed of convergence of the cg method [6, 9, 12]. These methods
need the construction of a deflation subspace. In this paper we show that many
prolongation operators from multigrid methods can be used to construct the deflation
subspace and derive a convergence estimate for this method. By doing so we are
able show that with the right choice of a deflation subspace, deflation methods have
convergence properties similar to multigrid methods without the need of constructing
an appropriate smoother.

The paper is structured as follows. The rest of this section introduces some basic
notation. Section 2 gives a short introduction into deflation methods. In section 3 we
analyse the convergence of deflation methods by analysing the condition of the matrix
A(I − πA(V )) ∈ Kn×n. Finally, we use some results from multigrid theory to derive
a lower bound for the smallest eigenvalue of the matrix in section 4 and 5. Section 6
shows how the prolongation operators from the classical algebraic multigrid method
for M -matrices can be used to obtain the deflation subspace. In section 7 we present
some numerical experiments confirming the theory.

Assume that x̃ ∈ Kn is an approximation to x. Then the residuum r ∈ Kn is
given by r = b−Ax̃, the error e = x− ẽ. Note that

Ae = r .

Since A is self-adjoint and positive definite we can define by

〈x, y〉A := 〈Ax, y〉 and ‖x‖A :=
√
〈x, x〉A

the A-inner product and the A-norm, respectively. We define Kk[X] as the set of
polynomials in the variable X whose degree is less than or equal to k. Let S ⊆ Kn be
a subspace then S⊥ is its orthogonal complement with respect to the 2-inner product
and S⊥A is its orthogonal complement with respect to the A-inner product.

2. Deflation Methods. Deflation methods are often used to speed up the con-
vergence of Krylov subspace methods such as the cg method. In this section we briefly
review the main idea of these methods.
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The mth Krylov subspace Km(A, v) corresponding to a matrix A ∈ Kn×n and a
vector v ∈ Kn is given by

Km(A, v) := span{v,Av,A2v, . . . , Am−1v} = {P (A)v : P ∈ Km−1[X]} .

The cg method is typically used as an iterative method, which generates the iterates
x1, x2, x3, . . . ∈ Kn for a given initial guess x0 ∈ Kn, where

xi = x0 + ẽi and ẽi ∈ Ki(A, r0)

such that the error ei = x− xi fulfills

‖ei‖A = ‖x− xi‖A = min
x̃∈x0+Ki

‖x− x̃‖A .

Note that since ei = x − xi = x − (x0 + ẽi) = e0 − ẽi especially e0 = x − x0 and
ẽ = x̃− x0 this is equivalent to

‖ei‖A = ‖e0 − ẽi‖A = min
ẽ∈Ki

‖e0 − ẽ‖A .

By definition of the Krylov subspace and since ẽi ∈ Ki we can write

ẽi = P̃ (A)r0 = P̃ (A)Ae0

with P̃ ∈ Ki−1[X] and thus

ei = e0 − ẽi = e0 − P̃ (A)Ae0 = P (A)e0 where P = 1−XP̃ . (2.1)

A polynomial P can be written in the form (2.1) if and only if P ∈ Ki[X] and
P (0) = 1. Hence

‖ei‖A = min
P∈Ki[X]
P (0)=1

‖P (A)e0‖A . (2.2)

Recall that the matrix A is self-adjoint positive definite. Hence there exists a
unitary matrix Q ∈ Kn×n, i.e. Q∗ = Q−1, and a corresponding diagonal matrix
Λ = diag(λ1, . . . , λn) ∈ Kn×n with λ1 ≥ λ2 ≥ · · · ≥ λn such that A = QΛQ∗. Then
the columns q1, . . . , qn ∈ Kn of Q form a basis of eigenvectors corresponding to the
eigenvalues λ1, . . . , λn.

Writing the initial error e0 as e0 = ξ1q1 + . . .+ ξnqn and using P (A)qi = P (λi)qi
equation (2.2) yields

‖ei‖2A = min
P∈Ki[X]
P (0)=1

‖
n∑
i=1

ξiP (A)e0‖2A = min
P∈Ki[X]
P (0)=1

n∑
i=1

|ξi|2|P (λi)|2λi . (2.3)

Thus the cg method constructs a polynomial such that the point (0, 1) is interpolated
and the points (λi, 0) are approximated. The approximation at λi is weighted by
|ξi|2λi. That means that the values |ξi|2λi represent the constraints applied to the
minimization. Weakening these constraints should increase the speed of convergence.
It would be desirable to set ξi = 0 for some i. However this is impractical since the
exact eigenvectors are usually not known. In addition due to roundoff errors ξi may
become nonzero during the algorithm. Fortunately it is sufficient to make ξi “small
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enough” for some i, such that the cg method to computes an approximation to the
solution which is good enough, before the weakened constraint is “considered” in the
minimization process.

The main idea of a deflation method is to split the error into two components.
Assume that we are given a subspace S ⊂ Kn which contains the error components
for the matrix A that are responsible for slow convergence, e.g. a space spanned by
some eigenvectors corresponding to the smallest eigenvalues of A. Let the columns of
V ∈ Kn×m be a basis of S. From now on let the initial guess be given by x−1 and the
initial error by e−1. We want to compute a vector ẽ0 that removes the troublesome
components from e−1. Thus we set x0 = x−1 + ẽ0 and obtain e0 = e−1 − ẽ0. Since

‖e−1 − ẽ0‖2A = ‖e0‖2A =

n∑
i=1

|ξi|2λi

is the sum over all weights, we want to choose ẽ0 ∈ S such that ‖e−1 − ẽ0‖A is
minimized. It is clear that ẽ0 is the A-orthogonal projection of e0 onto S which we
denote by πA(V )e−1. As

ẽ0 = πA(V )e−1 = V (V ∗AV )−1V ∗Ae−1 = V (V ∗AV )−1V ∗r−1

we can compute ẽ0 without knowledge of e−1. Additionally from

e−1 = πA(V )e−1 + (I − πA(V ))e−1 = ẽ0 + e0

and x = x−1 + e−1 we can compute the solution if we can compute (I − πA(V ))e−1
which is the A-orthogonal projection of e−1 onto S⊥A . Modifying the cg method to
restrict the search directions to the subspace S⊥A and thus minimizing the A-norm of
the error over the subspace S⊥A yields a method [9, 12] which computes the desired
projection.

Another viable approach is to solve

A(I − πA(V )) z = r0 (2.4)

and obtain the solution x = x0 + (I − πA(V ))z. This is indeed the solution because
Ae0 = r0 and e0 ∈ range(I − πA(V )) and thus e0 = (I − πA(V ))z. Note that the
matrix of (2.4) is singular. Using the relation

A(I − πA(V )) = A−AV (V ∗AV )−1V ∗A = (I − πA(V ))∗A

and the fact that (I − πA(V )) is a projection yields

A(I − πA(V )) = A(I − πA(V ))(I − πA(V )) = (I − πA(V ))∗A(I − πA(V )) . (2.5)

That is the matrix A(I − πA(V )) is self-adjoint positive semi-definite. In [8] it has
been shown that the cg method can be used to solve singular systems as well. Hence
we can apply the method to solve (2.4). In case we choose the initial guess x−1 = 0
we obtain the method presented in [6].

Since A(I − πA(V )) is self-adjoint positive semi-definite there exists a unitary
matrix U and a diagonal matrix D = diag(µ1, . . . , µn) such that A(I − πA(V )) =
UDU∗ and µ1 ≥ · · · ≥ µn ≥ 0. The values µ1, . . . , µn are eigenvalues of A(I−πA(V )).
Let ` ∈ N be the largest index such that µ` 6= 0. The speed of convergence can be
estimated by

‖ei‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖e0‖A for i = 0, 1, 2, . . .
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in both methods, where κ = µ1

µ`
[6, 12]. Hence we are interested in estimating the

largest and smallest nonzero eigenvalue of the matrix A(I − πA(V )).

3. Eigenvalue Bounds. In this section we derive an upper bound for the largest
eigenvalue and a representation for the smallest nonzero eigenvalue of A(I − πA(V )).
First of all note that due to the properties of the Rayleigh quotient we have

µ1 = max
x∈Kn\{0}

〈A(I − πA(V ))x, x〉
〈x, x〉

.

In addition from the fact that AπA(V ) = AV (V ∗AV )−1V ∗A is positive semi-definite
and thus

〈A(I − πA(V ))x, x〉 = 〈Ax, x〉 − 〈AπA(V )x, x〉 ≤ 〈Ax, x〉 ,

we obtain

µ1 ≤ max
x∈Kn\{0}

〈Ax, x〉
〈x, x〉

= λ1 = ‖A‖ . (3.1)

This gives a trivial upper bound for the largest eigenvalue. The following theorem
will later be used to derive a lower bound for the smallest eigenvalue. This is just a
simplification of the well known min-max (or Courant-Weyl) theorem.

Theorem 3.1. Let M ∈ Kn×n be self-adjoint. There exists a unitary matrix
U ∈ Kn×n and a diagonal matrix D = diag(µ1, . . . , µn) such that M = UDU∗ and
µ1 ≥ . . . ≥ µn. The columns u1, . . . , un of U are the eigenvectors corresponding to
the eigenvalues µ1, . . . , µn. Then

µk = min
x∈Kn\{0}

x⊥span{uk+1,...,un}

〈Mx, x〉
〈x, x〉

.

Proof. Let ei be the ith unit vector. Let x ∈ Kn\{0} and x ⊥ span{uk+1, . . . , un}.
We have

〈Mx, x〉 = 〈U∗DUx, x〉 = 〈DU∗x, U∗x〉 = 〈Dz, z〉

with z = U∗x. Since x ⊥ span{uk+1, . . . , un} we have zk+1 = zk+2 = · · · = zn = 0.
Thus

〈Dz, z〉 = 〈µ1z1e1 + . . .+ µkzkek, z〉 = µ1 〈z1e1, z〉+ . . .+ µk 〈zkek, z〉
≥ µk 〈z1e1, z〉+ . . .+ µk 〈zkek, z〉 = µk 〈z, z〉 ,

which yields

〈Mx, x〉 ≥ µk 〈z, z〉 = µk 〈x, x〉 .

The assertion follows from

〈Muk, uk〉 = 〈µkuk, uk〉 = µk 〈uk, uk〉 .

To find the smallest nonzero eigenvalue µ` of A(I−πA(V )) we need to determine
span{u`+1, . . . , un}. Since these are the eigenvectors corresponding to the eigenvalue
zero their span is the kernel of the matrix. Since the matrix A has full rank the kernel
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of A(I − πA(V )) is the kernel of (I − πA(V )). The kernel is the span of the columns
of V which we denoted by S. Thus

µ` = min
x∈S⊥\{0}

〈A(I − πA(V ))x, x〉
〈x, x〉

and due to (2.5)

µ` = min
x∈S⊥\{0}

〈(I − πA(V ))∗A(I − πA(V ))x, x〉
〈x, x〉

= min
x∈S⊥\{0}

〈A(I − πA(V ))x, (I − πA(V ))x〉
〈x, x〉

= min
x∈S⊥\{0}

‖(I − πA(V ))x‖2A
‖x‖22

. (3.2)

4. Weak Approximation Property. In this section we use some results from
the algebraic multigrid theory to obtain an estimate for µ`.

Algebraic multigrid methods [13] are based on the assumption that the error can
be split into highly oscillatory and slowly varying components. The smoother reduces
the highly oscillatory components while the coarse grid correction reduces the slowly
varying ones. In many application the highly oscillatory components are spanned by
the eigenvectors corresponding to large eigenvalues while the slowly varying compo-
nents are spanned by the eigenvalues corresponding to the small eigenvalues of the
matrix. In order to quantify those properties classical algebraic multigrid theory [2]
measures how well the coarse grid correction, defined by the prolongation operator,
is able to reduce the slowly varying error components. Due to the connection to the
eigenvectors corresponding to the small eigenvalues, we expect this theory to give a
lower bound for the eigenvalues of A(I − πA(V )).

We introduce and use the weak approximation property which can be found in a
slightly modified version in [3] and is a weaker requirement than the one formulated
in [2], as we will see in section 6.

Definition 4.1. An operator V ∈ Kn×m, m ≤ n, fulfills the weak approximation
property if there exists a function R : Kn → Km and a number K ≥ 0 such that

‖x− V R(x)‖22 ≤
K

‖A‖
‖x‖2A for all x ∈ Kn . (4.1)

Using this definition the following theorem gives an estimate for the smallest eigen-
value of the matrix A(I − πA(V )).

Theorem 4.2. Let V ∈ Kn×m be a matrix such that V has full rank and the
weak approximation property (4.1) is fulfilled. Then we can estimate the condition
κ = µ1

µ`
of the matrix A(I − πA(V )) by

κ ≤ K

ξ
where ξ := min

x∈S⊥\{0}

‖x− πA(V )x‖2A
‖x‖2A

. (4.2)

Proof. Let S ⊆ Kn be the subspace spanned by the columns of V and π(V ) be
the orthogonal projection onto S with respect to the 2-inner product. Then

‖x− π(V )x‖22 ≤ ‖x− y‖22 for all y ∈ S . (4.3)
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For x ∈ S⊥ we have π(V )x = 0 and thus due to (4.3) and (4.1)

‖x‖22 = ‖x− π(V ))x‖22 ≤ ‖x− V R(x)‖22 ≤
K

‖A‖
‖x‖2A for x ∈ S⊥ .

Furthermore due to (3.2) we obtain

µ` ≥
‖A‖
K

min
x∈S⊥\{0}

‖x− V R(x)‖2A
‖x‖2A

. (4.4)

The property of the A-orthogonal projection that

‖x− πA(V )x‖2A ≤ ‖x− y‖2A for all x ∈ S

yields ‖x− πA(V )‖2A ≤ ‖x− V R(x)‖2A . Thus we obtain due to (4.4) that

µ` ≥
‖A‖
K

min
x∈S⊥\{0}

‖x− πA(V )x‖2A
‖x‖2A

=
‖A‖
K

ξ . (4.5)

Hence we obtain by (3.1) and (4.5)

κ =
µ1

µ`
≤ ‖A‖‖A‖

K ξ
=
K

ξ
.

5. Strengthened Cauchy-Schwarz Inequality. From the above section we
see that to estimate the condition number κ we need to find an estimate for ξ. As
we show in this section, this can be estimated by the strengthened Cauchy-Schwarz
inequality. To do so, we use theory developed in [1] and [5].

For two subspaces H1, H2 ⊆ Kn with H1 ∩ H2 = {0} there exists a constant
γ ∈ [0, 1) such that

| 〈u, v〉 | ≤ γ
√
〈u, u〉

√
〈v, v〉 ∀u ∈ H1, ∀v ∈ H2 (5.1)

[4, theorem 2.1]. Equation (5.1) is called strengthened Cauchy-Schwarz inequality and
γ can be interpreted as the abstract angle between H1 and H2.

Let us assume that (5.1) is fulfilled and u ∈ H1, v ∈ H2. Since we have in general
|a1a2| ≤ 1

2 (a21 + a22) for a1, a2 ∈ R

| 〈u, v〉 | ≤ γ 〈u, u〉
1
2 〈v, v〉

1
2 ≤ γ

2 [〈u, u〉+ 〈v, v〉] .

Hence

(1− γ) [〈u, u〉+ 〈v, v〉] ≤ [〈u, u〉+ 〈v, v〉]− γ [〈u, u〉+ 〈v, v〉]
≤ [〈u, u〉+ 〈v, v〉]− 2 | 〈u, v〉 |
≤ [〈u, u〉+ 〈v, v〉]− 2 Re 〈u, v〉
= 〈u+ v, u+ v〉 .

Taking the infimum over all v ∈ H2 yields

(1− γ)‖u‖2 = inf
v∈H2

‖u+ v‖2 ∀u ∈ H1 . (5.2)

This general result is applied in the case where H1 = S⊥, H2 = S and 〈·, ·〉 is
the A-inner product. The A-orthogonal projection πA(V )u yields the vector which
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is closest to u in the A-norm and u ∈ S. Thus the infimum in (5.2) is obtained for
v = −πA(V )u and therefore

(1− γ)‖u‖2A ≤ ‖u− πA(V )u‖2A ∀u ∈ S⊥ . (5.3)

This yields the desired estimate for ξ since

ξ = min
x∈S⊥\{0}

‖x− πA(V )x‖2A
‖x‖2A

≥ (1− γ) . (5.4)

Thus we have proven our main theorem.
Theorem 5.1. Let V ∈ Kn×m be a matrix such that V has full rank and the

weak approximation property (4.1) is fulfilled. Let S ⊆ Kn be the subspace spanned by
the columns of V . Furthermore let γ ∈ [0, 1) be the smallest constant such that

| 〈u, v〉A | ≤ γ 〈u, u〉
1
2

A 〈v, v〉
1
2

A ∀u ∈ S⊥, ∀v ∈ S .

Then we can estimate the condition κ = µ1

µ`
of the matrix A(I − πA(V )) by

κ ≤ K

(1− γ)
. (5.5)

Proof. Follows from (4.2) and (5.4).

6. Deflation Subspaces for M-Matrices. The classical algebraic multigrid
method [10, 13] is constructed for the case that A ∈ Rn×n is a M -matrix, i.e. A is
symmetric positive definite and aij ≤ 0 for i 6= j. In this section we show that we can
use the prolongation operators constructed in the classical algebraic multigrid method
as the operator V which spans the deflation subspace S.

The construction of those operators is done by inspecting the graph G(A) of a
matrix A ∈ Kn×n which is given by

G(A) = (W,E) where W = {1, 2, . . . , n}
E = {(i, j) ∈W ×W : aij 6= 0, i 6= j} .

The neighborhood of a node i ∈W is given by

Ni := {j ∈W : (i, j) ∈ E} .

To construct the prolongation operator, or the deflation subspaces respectively, we
split the variables W in coarse and fine variables C and F , such that W = C ∪̇F
and Ni ∩ C 6= ∅ for i ∈ F . The coarse variables have a direct representation on the
coarse grid, or the deflation subspace respectively, while the fine variables interpolate
from the coarse ones. For simplicity of notation assume that the variables in C have
a smaller index than those in F , i.e. C = {1, 2, . . . ,m}, F = {m + 1,m + 2, . . . , n}.
For every fine variable i ∈ F choose a set of variables Pi ⊆ Ni ∩ C. The value for
the variable i is then interpolated from the variables in Pi. Defining the interpolation
weights

wik = αi
−aik
aii

with αi =

∑
k∈Ni

aik∑
k∈Pi

aik
for i ∈ F (6.1)
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yields the prolongation (or interpolation) operator V ∈ Rn×m by

(
V ec

)
i

=

{
eci for i ∈ C∑
k∈Pi

wike
c
k for i ∈ F

. (6.2)

Under the assumption that the C/F-splitting is reasonably well chosen the classi-
cal multigrid theory yields an estimate for the constant K of the weak approximation
property (4.1).

Theorem 6.1. Let A ∈ Rn×n be a symmetric weakly diagonally dominant M -
matrix, i.e. aij ≤ 0 for i 6= j and

∑
j aij ≥ 0 for all i. If for fixed τ ≥ 1 a C/F-splitting

exists such that for each i ∈ F there is a Pi ∈ C ∩Ni with∑
k∈Pi

|aik| ≥
1

τ

∑
j∈Ni

|aij | for i ∈ F (6.3)

then there exists a function R : Rn → Rm such that the operator V from (6.2) fulfills

‖e− V R(e)‖2D ≤ τ 〈Ae, e〉

where D = diagA is the diagonal matrix containing the diagonal values aii of A.
Proof. Define the function R : Rn → Rm as

eci =
(
R(e)

)
i

= ei for i ∈ C = {1, . . . ,m} .

then the result follows from [13, Theorem A.4.3].
Corollary 6.2. Under the same assumptions as in theorem 6.1 we have that V

fulfills the weak approximation property (4.1) with

K =
‖A‖

mini aii
τ .

Proof. Directly follows from the fact that (mini aii) ‖x‖22 ≤ ‖x‖2D for x ∈ Rn and
theorem 6.1.

Example 6.3. Let N ∈ N be odd. Consider the block tridiagonal matrix

A =


B C

C B
. . .

. . .
. . . C
C B

 ∈ RN
2×N2

(6.4)

with B,C ∈ RN×N ,

B =


8 −1

−1 8
. . .

. . .
. . . −1
−1 8

 and C =


−1 −1

−1 −1
. . .

. . .
. . . −1
−1 −1


The graph G(A) of A is a regular N × N grid with added diagonal connections, see
figure 6.1. We set C as the variables in odd rows and columns (�), F as the remaining
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Figure 6.1. The graph of A split into C and F .

A A(I − πA(V ))
λ1 0.0577 6.0708 µ1

λn 11.9616 11.9586 µ`
κ 207.3403 1.9698 κ
K 1.4915 K

Table 7.1
Condition of the linear systems for N = 25 − 1.

variables (�, • and ?).
The requirement (6.3) is equivalent to τ ≥ αi for i ∈ F . A straight forward

computation yields αi = 2 for i ∈ •, αi = 4 for i ∈ � and αi = 5
2 for i ∈ ?. Hence

τ = 4 fulfills (6.3). Due to Gershgorin’s circle theorem the eigenvalues λi of A fulfill
λi ∈ [0, 16] and thus ‖A‖ ≤ 16 and due to (6.2) the weak approximation property is
fulfilled for K = 8.

7. Numerical Experiments. We consider the matrix V from (6.2) with A, C
and F from example 6.3. If x, with ‖x‖ = 1, is an eigenvector corresponding to the
eigenvalue λ, equation (4.1) simplifies to ‖x− V R(x)‖22 ≤ (K/‖A‖)λ. Hence

K ≥ ‖A‖λ ‖x− V R(x)‖22 . (7.1)

We choose R(x) := xc such that ‖x − V xc‖22 is minimized and compute the right
hand side of (7.1) for all eigenvectors of the matrix A. The maximum value over all of
those right hand sides is our estimate for K. Furthermore we compute the largest and
smallest eigenvalues and the condition number of A and A(I − πA(V )) numerically.
The results for N = 25 − 1 are given in table 7.1. Equation (5.5) is equivalent to
γ ≥ (1− K

κ ). Thus we can estimate by the values from table 7.1 that γ ≥ 0.2428.
In example 6.3 we have seen that the constant K is independent of the grid size N .

Thus we expect the method to converge in a constant number of iterations under the
assumption that the abstract angle γ is independent of N . We choose a random right
hand side b such that the solution x fulfills ‖x‖ = 1. Then we run the deflated cg
method [12] until the residual ri of the ith iterate satisfies ‖ri‖ ≤ 10−6. The number
of iterations is listed in table 7.2 where we observe the expected behavior.

8. Conclusions. In this paper we derived a convergence estimate for deflation
methods based on algebraic multigrid theory. Furthermore we have shown that it is
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p Iterations Residual Error
4 8 5.64429 · 107 1.53486 · 107

5 8 8.4304 · 107 4.64197 · 107

6 9 5.27683 · 107 1.63928 · 106

7 9 6.11646 · 107 5.74174 · 106

8 9 6.36346 · 107 2.56345 · 105

9 9 6.57814 · 107 6.60374 · 105

Table 7.2
Number of iterations where N = 2p − 1.

possible to construct deflation based methods such that grid size independent conver-
gence is obtained. Thus, this major advantage of multigrid methods can be transferred
to deflation methods. Since deflation methods do not need the construction of an ap-
propriate smoother, they can be more advantageous than multigrid methods in the
case when there is no good smoother readily available.
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