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Abstract. Preconditioned iterative methods in nonstandard inner products for saddle point sys-
tems have recently received attention. Krzyżanowski (Numer. Linear Algebra Appl. 2011; 18:123–
140) identified a two-parameter family of preconditioners in this context and Stoll and Wathen (SIAM
J. Matrix Anal. Appl. 2008; 30:582–608) proposed combination preconditioning, where two differ-
ent preconditioners—for each of which the preconditioned saddle point matrix is self-adjoint with
respect to an inner product—can be blended to create additional preconditioners and associated
bilinear forms or inner products. If a preconditioned saddle point matrix is nonsymmetric but self-
adjoint with respect to a nonstandard inner product a MINRES-type method (W-PMINRES) can
be applied in the relevant inner product. If the preconditioned matrix is also positive definite with
respect to this inner product a more efficient CG-like method (W-PCG) can be used reliably. We
provide explicit expressions for the combination of certain Krzyżanowski preconditioners and prove
the rather counterintuitive result that the combination of two specific preconditioners for which only
W-PMINRES can be reliably used leads to a preconditioner for which, for certain parameter choices,
W-PCG is applicable. That is, the resulting preconditioned saddle point matrix is positive definite
with respect to an inner product. This combination preconditioner outperforms either of the two
preconditioners from which it is formed for a number of test problems.

1. Introduction. Consider the real symmetric saddle point system

Ax =
[
A BT

B −C

]
x = b, (1.1)

where A ∈ Rn×n is symmetric positive definite, C ∈ Rm×m is symmetric positive
semidefinite, B has full rank and m ≤ n. Under these assumptions A is invertible
[2, Theorem 3.1]. Saddle point systems of the form (1.1) arise in a vast number of
applications including constrained optimization, computational fluid dynamics and
mixed finite element discretizations of elliptic PDEs [2, Section 2]. Often A is large
and sparse and it is natural in these instances to solve the saddle point system by a
preconditioned Krylov subspace method.

Many preconditioners P ∈ R(n+m)×(n+m) for saddle point problems have been
proposed, surveys of which can be found in, for example, [2, 4]. If P is symmet-
ric positive definite the resulting system can be solved by preconditioned MINRES.
However, many effective preconditioners are nonsymmetric or symmetric indefinite.
Although it is possible to apply a nonsymmetric Krylov subspace method to the pre-
conditioned system, it may be appealing to turn instead to a Krylov method in a
nonstandard inner product on Rn+m,

〈x, y〉W = yTWx, (1.2)

where x, y ∈ Rn+m and W ∈ R(n+m)×(n+m) is symmetric positive definite.
For certain preconditioners, P−1A is self-adjoint with respect to a known inner

product 〈·, ·〉W , i.e.,

〈P−1Ax, y〉W = 〈x,P−1Ay〉W for all x, y ∈ Rn+m,

or, equivalently,

WP−1A = ATP−TW, (1.3)
1
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so that WP−1A is symmetric. The positive definiteness of W means that P−1A
is similar to a real symmetric matrix and so has real eigenvalues [21]. Moreover,
MINRES in 〈·, ·〉W (W-PMINRES) can be applied to the preconditioned system (see
[20] for details). If, additionally,

〈P−1Ax, x〉W > 0 (1.4)

for all nonzero x ∈ Rn+m we say that P−1A is positive definite with respect to 〈·, ·〉W .
It is straightforward to show that this condition is equivalent to positive definiteness
of WP−1A with respect to the Euclidean inner product. Moreover, if P−1A is self-
adjoint and positive definite with respect to an inner product its eigenvalues must be
real and positive [9, Chapter IX]. A conjugate gradient method in 〈·, ·〉W , W-PCG,
can be applied in this situation (see, for example, [1, 20]). The relative residuals of
W-PMINRES and the relative error vectors of W-PCG are bounded by polynomials
evaluated at the spectrum of P−1A (see, for example, [3, 15]). Although these bounds
are not necessarily tight, a sufficient condition for fast convergence is that P−1A has
nicely distributed eigenvalues.

Thus, when P−1A is self-adjoint (and potentially positive definite) with respect
to the inner product, we can apply a nonstandard Krylov subspace method that
minimizes the residual or error with respect to a norm and requires only three-term
recurrences. One potential disadvantage is that computations with 〈·, ·〉W must be
performed at each iteration. Often, however, the inner product depends on the same
(typically sparse) blocks as the preconditioner and computational savings can be made
by careful consideration of the operations involved [13]. We note that an alternative
Krylov subspace method when the preconditioned saddle point matrix is self-adjoint
with respect to a symmetric bilinear form (that is not positive definite) is SQMR [8].

Recently, Stoll and Wathen [20] showed that two preconditioners for which the
preconditioned coefficient matrix is self-adjoint could be combined to give a new pre-
conditioner for which the preconditioned saddle point matrix is self-adjoint with re-
spect to a symmetric bilinear form that can, in many cases, be made an inner product.
One might expect that if one or both of the original preconditioned linear systems is
positive definite with respect to an inner product then the combination preconditioner
could either inherit the positive definiteness property or lose it. What is perhaps more
surprising is that a combination preconditioner can be constructed from two precondi-
tioners for each of which P−1A is indefinite with respect to an inner product such that
the combination preconditioned saddle point matrix is positive definite with respect
to an inner product. This combination preconditioner is described and investigated
here. Although we focus on left preconditioning in this manuscript, it is also possible
to develop a combination from two right preconditioners when each preconditioned
saddle point matrix is self-adjoint with respect to a symmetric bilinear form.

The remainder of the paper is organized as follows. In Section 2 we examine cer-
tain preconditioners for which the preconditioned saddle point matrix is self-adjoint
with respect to an inner product. We focus in Section 3 on a combination of two of
these preconditioners, for each of which, separately, the preconditioned saddle point
matrix is indefinite with respect to an inner product, but for which the combination
preconditioned saddle point matrix can be made positive definite. Numerical exper-
iments with this second combination preconditioner are presented in Section 4 while
conclusions are made in Section 5. We note that this paper is a shorter version of
[16], where further details can be found.
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Preconditioner S̃ c d ε
Block diagonal (BD) S0 0 0 1
Bramble-Pasciak (BP) −I 1 0 −1
Bramble-Pasciak+ (BP+) S0 −1 0 1
Schöberl-Zulehner (SZ) −S0 1 1 1
Schöberl-Zulehner+ (SZ+) S0 −1 −1 1

Table 2.1
Krzyżanowski parameters for saddle point preconditioners. In all cases the approximation to

A in (2.1) is a symmetric positive definite matrix A0 and S0 is assumed to be symmetric positive
definite.

2. Preconditioners for saddle point matrices. There exist several precon-
ditioners for which the preconditioned linear system can be made self-adjoint with
respect to an inner product (see, for example, [5, 6, 14]). Most are instances of the
Krzyżanowski preconditioner [13]

P =
[

I 0
cBA−1

0 I

] [
A0 0
0 S̃

] [
I dA−1

0 BT

0 I

]
, (2.1)

where A0 ∈ Rn×n is a symmetric positive definite approximation of A and S̃ ∈
Rm×m is a symmetric definite approximation of the (negative) Schur complement
S = BA−1BT + C. As shown in [13], if A is the saddle point matrix in (1.1)
the Krzyżanowski preconditioned matrix P−1A is self-adjoint with respect to 〈·, ·〉W ,
where

W = ε

[
A0 − cA 0

0 S̃ + cdBA−1
0 BT + dC

]
(2.2)

and ε = ±1. Each of the preconditioners discussed below is a Krzyżanowski precon-
ditioner, with the choices of S̃, c and d for each given in Table 2.1

One of the best known Krylov subspace methods in a nonstandard inner product
for (1.1) is the Bramble-Pasciak (BP) preconditioned conjugate gradient method [5], a
block triangular preconditioner that was later modified to include a Schur complement
approximation [11]. An alternative is the Schöberl-Zulehner (SZ) constraint precondi-
tioner in [17, 22]. The major drawback of both the BP and SZ preconditioners is that
often A0 must be scaled for W to define an inner product. This typically requires an
approximation to the smallest eigenvalue of A−1

0 A, the computation of which can be
costly. However, when W defines an inner product, P−1A is self-adjoint with respect
to this inner product and W-PCG can be applied to the BP- or SZ-preconditioned
saddle point matrix [5, 17].

For other preconditioners positive definiteness of A0 and S0—the approximations
of A and the Schur complement—are sufficient to ensure that W in (2.2) is positive
definite. Perhaps the simplest is the block diagonal (BD) preconditioner [10, 12, 19]

P =
[
A0 0
0 S0

]
. (2.3)

Indeed, the self-adjointness requirement (1.3) is trivially satisfied since WP−1A = A,
the original symmetric saddle point matrix. The indefiniteness of A, however, means
that P−1A is indefinite with respect to 〈·, ·〉W (see (1.4)).
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A second preconditioner that does not require scaling in order that W in (2.2)
defines an inner product is the Bramble-Pasciak+ (BP+) preconditioner [20],

P =
[
A0 0
−B S0

]
(2.4)

for which the preconditioned saddle point matrix is again self-adjoint but indefinite
with respect to 〈·, ·〉W . The Schöberl-Zulehner preconditioner can be similarly modi-
fied [13, Table 3]

P =
[

I 0
−BA−1

0 I

] [
A0 0
0 S0

] [
I −A−1

0 BT

0 I

]
. (2.5)

We call this the Schöberl-Zulehner+ (SZ+) preconditioner. However, although 〈·, ·〉W
always defines an inner product, the following theorem shows that the preconditioned
saddle point matrix is never positive definite with respect to an inner product.

Theorem 2.1. Let A in (1.1), with C = 0, be left preconditioned by the SZ+

preconditioner (2.5). Then P−1A is indefinite with respect to 〈·, ·〉W , where W is
defined by

W =
[
A+A0

BA−1
0 BT + S0

]
. (2.6)

Since the BD-, BP+- and SZ+-preconditioned saddle point matrices are all self-
adjoint but indefinite with respect to inner products we can always useW-PMINRES
to solve these preconditioned systems but cannot reliably apply W-PCG. In the next
section we see that the BD and BP+ preconditioners can be combined to give a
preconditioner for which, for certain parameter choices, W-PCG can be applied.

3. Combination preconditioning. Combination preconditioning [20] allows
two preconditioners, for each of which the preconditioned coefficient matrix is self-
adjoint with respect to a symmetric bilinear form, to be blended. The result is a new
preconditioner and a symmetric bilinear form with respect to which the combination
preconditioned coefficient matrix is self-adjoint. The process is controlled by two pa-
rameters, for certain choices of which the combination preconditioner is more effective
than either of the original preconditioners and is no more costly to apply than the
more expensive of the two. The process of combination preconditioning is described
in Lemma 3.5 in [20] which we reproduce below using our notation.

Lemma 3.1. If P1 and P2 are left preconditioners for the symmetric matrix A
for which symmetric matrices W1 and W2 exist with P−1

1 A self-adjoint in 〈·, ·〉W1 and
P−1

2 A self-adjoint in 〈·, ·〉W2 and if

αP−T1 W1 + βP−T2 W2 = P−T3 W3

for some matrix P3 and some symmetric matrix W3, then P−1
3 A is self-adjoint in

〈·, ·〉W3 .
To combine preconditioners described in the previous section, we first apply

Lemma 3.1 to two different Krzyżanowski preconditioners, for each of which S̃ = S0.
Thus,

P1 =
[

I 0
c1BA

−1
0 I

] [
A0 0
0 S0

] [
I d1A

−1
0 BT

0 I

]
(3.1)
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and

P2 =
[

I 0
c2BA

−1
0 I

] [
A0 0
0 S0

] [
I d2A

−1
0 BT

0 I

]
(3.2)

with bilinear forms defined by

W1 = ε1

[
A0 − c1A 0

0 S0 + c1d1BA
−1
0 BT + d1C

]
(3.3)

and

W2 = ε2

[
A0 − c2A 0

0 S0 + c2d2BA
−1
0 BT + d2C

]
. (3.4)

The following theorem shows that under certain conditions a combination precon-
ditioner can be constructed from (3.1) and (3.2) that retains the structure of a
Krzyżanowski preconditioner.

Theorem 3.2. Let P1, W1, P2 andW2 be defined by (3.1), (3.3), (3.2) and (3.4),
respectively, where A,A0 ∈ Rn×n and S0 ∈ Rm×m are symmetric positive definite,
C ∈ Rm×m is symmetric positive semidefinite, B ∈ Rm×n has full rank and n ≥ m.
Then, if c1 = c2 = c,

P =
[

I 0
cBA−1

0 I

] [ 1
αδ1+βδ2

A0 0
0 S0

] [
I (αδ1d1 + βδ2d2)A−1

0 BT

0 I

]
is a combination preconditioner formed from P1 and P2 for which P−1A is self-adjoint
with respect to the symmetric bilinear form defined by

W =
[
(A0 − cA) 0

0 (αδ1 + βδ2)S0 + (αδ1d1 + βδ2d2)(cBA−1
0 BT + C)

]
.

Alternatively, if d1 = d2 = 0, the combination preconditioner

P =
[

I 0
(αδ1c1 + βδ2c2)BA−1

0 I

] [
A0 0
0 1

αδ1+βδ2
S0

]
,

formed from P1 and P2, is such that P−1A is self-adjoint with respect to the symmetric
bilinear form defined by

W =
[
(αδ1 + βδ2)A0 − (αδ1c1 + βδ2c2)A 0

0 S0

]
.

Stoll and Wathen [20] introduced a BP-BP+ combination preconditioner and a
BP-SZ combination preconditioner, the former of which takes β = 1−α and the latter
of which differs from the preconditioner that would be obtained by Theorem 3.2. This
highlights that combination preconditioners are not uniquely defined, although the
above characterization certainly makes it straightforward to construct combinations
of preconditioners that satisfy the conditions of the theorem.

We are interested in combining preconditioners for which the preconditioned co-
efficient matrix is indefinite with respect to an inner product to obtain a combination
preconditioned matrix can be made definite with respect to an inner product. The
SZ+ and BP preconditioners cannot be combined using Theorem 3.2 and we have not
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found a practical way of combining these preconditioners. The BP+ and SZ+ precon-
ditioners can be combined but the resulting combination preconditioned saddle point
matrix is never positive definite with respect to an inner product, as we might expect
(see [15, Theorem 7]). However, the BP+ and BD preconditioners can be combined
using Theorem 3.2 so that, for certain parameter values, P−1A is positive definite
(and self-adjoint) with respect to an inner product. In this case, we can apply W-
PCG to the preconditioned system rather than W-MINRES and the eigenvalues of
P−1A are all real and positive.

3.1. The BP+-BD combination preconditioner. Theorem 3.2 applied to
the BP+ preconditioner (2.4) and the BD preconditioner (2.3), with c1 = −1, c2 = 0,
d1 = d2 = 0 and ε1 = ε2 = 1, gives that

P =
[

A0 0
− α
α+βB

1
α+βS0

]
(3.5)

and

W =
[
α(A+A0) + βA0 0

0 S0

]
. (3.6)

As we shall see, for this choice of P and W there exist α and β for which P−1A
is positive definite with respect to an inner product.

Theorem 3.3. Let (1.1), where A ∈ Rn×n is symmetric positive definite, B ∈
Rm×n has full rank, C ∈ Rm×m is symmetric positive semidefinite and n ≥ m, be left
preconditioned by the BP+-BD combination preconditioner (3.5), where A0 ∈ Rn×n
and S0 ∈ Rm×m are symmetric positive definite, so that P−1A is self-adjoint with
respect to 〈·, ·〉W , where W is defined by (3.6).

When
I. α > 0 and α+β < 0, W defines an inner product, with respect to which P−1A

is positive definite, if and only if

A0 < −
α

α+ β
A;

II. α > 0 and α+ β > 0, W defines an inner product with respect to which P−1A
is indefinite;

III. α < 0 and α+ β > 0, W defines an inner product if and only if

A0 > −
α

α+ β
A

but P−1A is indefinite with respect to this inner product;
IV. α < 0 and α+ β < 0, W does not define an inner product.

The pivotal result of Theorem 3.3 is that when α+β < 0 with α > 0 it is possible
to obtain from the BP+ and BD preconditioners—for each of which the preconditioned
saddle point matrix is indefinite with respect to an inner product—a combination
preconditioner for which P−1A is self-adjoint and positive definite with respect to
a nonstandard inner product. One of the advantages of positive definiteness is that
W-PCG may be reliably applied instead of W-PMINRES. Even for W-PMINRES,
the eigenvalues of a W-positive definite preconditioned saddle point matrix lie on
the positive real line and, if clustered, might lead to faster convergence than can be
achieved for an indefinite system. Indeed, we shall see below that for these parameters
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convergence of the combination preconditioner for both W-PMINRES and W-PCG
is rapid.

Regardless of whetherW-PMINRES orW-PCG is applicable, convergence for the
BP+-BD preconditioned system depends heavily on the eigenvalues of P−1A. These
can be bounded when C = 0, as the following theorem shows.

Theorem 3.4. Let (1.1), where A ∈ Rn×n is symmetric positive definite, B ∈
Rm×n has full rank, C ∈ Rm×m is symmetric positive semidefinite and n ≥ m, be left
preconditioned by the BP+-BDW combination preconditioner (3.5), where A0 ∈ Rn×n
and S0 ∈ Rm×m are symmetric positive definite. Also, let W in (3.6) be positive
definite, so that P−1A is self-adjoint with respect to an inner product. We assume
that

0 < δ ≤ ψ =
uTA0u

uTAu
≤ ∆ (3.7)

and

0 ≤ ω =
uTBTS−1

0 Bu

uTAu
≤ Φ (3.8)

and that [ uT , vT ]T is an eigenvector of P−1A. Then, if Bu = 0, the corresponding
eigenvalue of P−1A, λ+, is positive and satisfies

1
∆
≤ λ+ ≤ 1

δ
.

Otherwise, when
I. α > 0 but α+ β < 0 the remaining eigenvalues λ+, which are all positive, satisfy

1
∆
≤ λ+ ≤

(1 + αΦ) +
√

(1 + αΦ)2 + 4δΦ(α+ β)
2δ

or

0 < λ+ ≤
(1 + αΦ)−

√
(1 + αΦ)2 + 4δΦ(α+ β)

2δ
; (3.9)

II. α+ β > 0, the remaining positive eigenvalues λ+ of P−1A satisfy

1
∆
≤ λ+ ≤

(1 + αΦ) +
√

(1 + αΦ)2 + 4δΦ(α+ β)
2δ

while negative eigenvalues λ− are bounded by

(1 + αΦ)−
√

(1 + αΦ)2 + 4δΦ(α+ β)
2δ

≤ λ− < 0. (3.10)

Remark Neither (3.9) nor (3.10) bound the eigenvalues of P−1A away from the origin,
with the difficulty caused by (3.8). However, it may be possible to bound these
eigenvalues for certain applications.

If it is possible to obtain bounds of the form (3.7) and (3.8) without too great
an expense we can ascertain a priori the eigenvalue distribution of P−1A. This often
determines the convergence of both W-PMINRES and W-PCG. Moreover, it may be
possible to use these bounds to choose α and β (and scale A0 and S0 if necessary) to
obtain good eigenvalues.
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Problem h BP+ BD Comb (α, β) % reduction

Channel flow 2−4 59 57 43 (1.7,-2) 25
2−5 95 95 86 (0.7,-0.6) 9

Backward step 2−4 88 83 69 (1.4,-1.6) 17
2−5 147 148 140 (1.2,-1) 5

Regularized cavity 2−4 52 48 40 (1.2,-1.5) 17
2−5 88 81 73 (1.9,-2) 10

Colliding flow 2−4 46 41 34 (0.8,-1) 17
2−5 72 71 56 (1.4,-1.5) 21

Table 4.1
Iteration counts for the BP+ preconditioner, the BD preconditioner and best possible BP+-

BD combination preconditioner for W-PMINRES. Also included is the percentage reduction in the
number of iterations required by the combination preconditioner compared with the better performing
of the BP+ and BD preconditioners.

4. Numerical examples. The four test problems to which we apply the BP+-
BD combination preconditioner are the Stokes problems in [7, Chapter 5], discretized
by Taylor-Hood (Q2-Q1) finite elements by the Matlab package IFISS [18]. Since
Taylor-Hood elements are stable, C = 0 in (1.1). The approximation A0 is a no-fill
incomplete Cholesky factorization, computed by the ichol command in Matlab while
the Schur complement approximation is the pressure mass matrix computed by Ifiss.
Since P−1

combA can be made positive definite with respect to an inner product, we apply
bothW-PMINRES andW-PCG to the combination preconditioned system, whileW-
PMINRES is used to solve separately the BP+ and BD preconditioned systems.

The termination criterion for both methods it that the preconditioned residual is
reduced by a factor of 10−6 in the Euclidean norm. We run W-PMINRES and W-
PCG on the combination preconditioned systems for all (α, β) pairs in [−2, 2]×[−2, 2],
excluding α = β = 0. From these choices we select, in Tables 4.1 and 4.2, an (α, β)
pair that gives the lowest number of iterations and for which W defines an inner
product (with respect to which P−1A is positive definite in the case of W-PCG). For
most problems this count is obtained by multiple choices of α and β.

It is clear from Tables 4.1 and 4.2 that the combination preconditioner offers su-
perior performance to either the BP+ preconditioner or the BD preconditioner. The
relative reduction in the number of iterations required by the combination precondi-
tioner, in comparison to the better performing of the BD and BP+ preconditioners,
is 19.8% on average for W-PMINRES and 20.3% on average for W-PCG. We addi-
tionally remark that in many cases the optimal choices of α and β for W-PMINRES
and W-PCG coincide and the number of iterations for each method is close. This
suggests that W-PMINRES performs best when P−1A is Wcomb-positive definite. It
also appears that for these problems the cheaper W-PCG method is preferable to
W-PMINRES.

Convergence plots for the backward step and regularized cavity flows with h = 2−4

for the values of α and β listed in Table 4.1 are shown in Figure 4.1. We observe that
the W-PCG and W-PMINRES curves are very similar and decrease more rapidly
than those of BP+ and BD preconditioned W-MINRES.

5. Conclusions. The Krzyżanowski preconditioner provides a useful framework
for examining preconditioners that render a symmetric saddle point matrix self-
adjoint with respect to an inner product. Expressions for combinations of certain
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Problem h BP+ BD Comb (α, β) % reduction

Channel flow 2−4 59 57 43 (1.6,-1.9) 25
2−5∗ 94 92 80 (1.9,-2) 13

Backward step 2−4 88 83 70 (1.4,-1.6) 16
2−5† 145 155 118 (1.7,-1.8) 19

Regularized cavity 2−4 52 48 40 (1.2,-1.5) 17
2−5 88 81 73 (1.4,-1.5) 10

Colliding flow 2−4 46 41 35 (1.2,-1.5) 15
2−5 72 71 58 (1.5,-1.6) 18

∗ For positive definiteness of P−1A with respect to 〈·, ·〉W it was nec-
essary to scale A0 by 0.9. Thus, A0 = 0.9LLT , where L is the incom-
plete Cholesky factor computed by ichol in Matlab.
† For positive definiteness of P−1A with respect to 〈·, ·〉W it was nec-

essary to scale A0 by 0.7.
Table 4.2

Iteration counts for the BP+ preconditioner, the BD preconditioner and best pos-

sible BP+-BD combination preconditioner for W-PCG. Also included is the percent-
age reduction in the number of iterations required by the combination preconditioner
compared with the better performing of the BP+ and BD preconditioners.
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(a) backward step
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(b) regularized cavity

Fig. 4.1. Convergence plots for the BP+-BD combination preconditioner with W-PMINRES
and W-PCG for (a) the backward step flow with α = 1.4 and β = −1.6 and (b) for regularized cavity
flow with α = 1.2 and β = −1.5.

Krzyżanowski preconditioners have been derived. From these we constructed the
BP+-BD preconditioner. Although, separately, the BP+ and BD preconditioned sad-
dle point matrices were not positive definite with respect to inner products, surpris-
ingly the BP+-BD combination preconditioned saddle point matrix is positive definite
with respect to an inner product for certain parameter choices. This means that a
W-PCG method may be applied to the preconditioned system, iterations of which
are cheaper than those of W-PMINRES. More importantly, it highlights the power of
combination preconditioning, which constructs a preconditioner P from two precon-
ditioners, P1 and P2, such that P−1A can be made positive definite with respect to
an inner product when neither P−1

1 A nor P−1
2 A are.

The BP+-BD combination preconditioner can, additionally, be more efficient than
either the BP+ or BD preconditioners and performs well when the combination pre-
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conditioned saddle point matrix is self-adjoint and positive definite with respect to
an inner product. It would be interesting to determine other combinations for which
positive definiteness can be achieved and to develop efficient ways of selecting good α
and β values.
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