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Abstract. Stationary inner-iteration preconditioners are applied to Krylov subspace methods
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1. Introduction. Consider solving large sparse linear least squares problems

min
x∈Rn

‖b−Ax‖2, (1.1)

where A ∈ Rm×n, b ∈ Rm, and A is not necessarily of full rank. The least squares
problem (1.1) is equivalent to the following normal equation

ATAx = ATb. (1.2)

Direct and iterative methods for solving the problem (1.1) are described in Bjorck
[6]. The standard iterative methods are the (preconditioned) CGLS [20] and LSQR

methods [25]. However, since κ2(A
TA) = κ2(A)

2
, iterative methods may be slow

to converge. Here, κ2(A) = σmax/σmin is the condition number, where σmax and
σmin are the largest and smallest positive singular values of A. Hence, when iterative
methods are used, good preconditioners are necessary to achieve better convergence.
For this purpose, there are preconditioners such as [22, 27, 36, 4, 5, 9, 37, 19, 10] for
the iterative solution of least squares problems.

For solving systems of linear equations, inner iterations can be applied inside
the Krylov subspace methods instead of preconditioning matrices explicitly. Such
techniques are called inner-outer iteration methods [3, 28, 33, 13, 12, 14, 16, 24, 31,
1, 35, 15, 26]. General Krylov subspace inner-outer methods were analysed in [30].

As for least squares problems, the preconditioned generalized conjugate residual
(GCR) method preconditioned by successive overrelaxation (SOR)-like inner itera-
tions and applied to singular systems was proposed in [2]. However, this method is
not theoretically guaranteed to work, and there are indeed examples for which the
method does not converge.

∗This work was supported by the Grants-in-Aid for Scientific Research (C) of the Ministry of

Education, Culture, Sports, Science and Technology, Japan.
†Department of Informatics, School of Multidisciplinary Sciences, The Graduate Univer-

sity for Advanced Studies, Sokendai, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
(morikuni@nii.ac.jp).

‡National Institute of Informatics, and Department of Informatics, School of Multidisciplinary
Sciences, The Graduate University for Advanced Studies, Sokendai, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo, 101-8430, Japan (hayami@nii.ac.jp).

1



2 K. MORIKUNI AND K. HAYAMI

In this paper, we propose using Jacobi overrelaxation and SOR-type iterative
methods specifically designed for least squares problems, as inner-iteration precondi-
tioners for CGLS and the generalized minimal residual method (GMRES). A signifi-
cant advantage of such inner-iteration preconditioners is that one can avoid explicitly
computing and storing the preconditioning matrix.

The main motivation for proposing the new preconditioners is to reduce CPU time
and memory significantly, and to broaden the scope of problems that can be solved.
Note that, previously, GMRES preconditioned by the robust incomplete factorization
(RIF) [5] was comparable with, but not definitely superior to, reorthogonalized CGLS
with RIF in terms of CPU time for ill-conditioned problems [19]. Moreover, RIF for
least squares problems [5] will break down for rank-deficient matrices. We aim to
improve on these points.

The rest of the paper is organized as follows. In Section 2, we describe the precon-
ditioning framework for solving least squares problems using Krylov subspace meth-
ods with stationary inner iterations. In Section 3, we present the stationary iterative
methods used for the inner iteration preconditioning. In Section 4, we present numer-
ical results comparing the new preconditioners with conventional methods. Section 5
concludes the paper.

Throughout this paper, we use bold letters for column vectors. ej denotes the
jth column of an identity matrix. We denote quantities for inner iterations with a
superscript with brackets, e.g., x(k), and for outer iterations with a subscript without
brackets, e.g., xk.

2. Preconditioning framework for inner iteration. We present frameworks
for applying inner stationary-iteration preconditioning to the Krylov subspace meth-
ods for least squares problems.

Without loss of generality, the initial approximate solution x0 for the Krylov
subspace methods is set to zero in the remaining sections. The initial residual is
therefore r0 = b.

2.1. Stationary inner-iteration BA-GMRES method. The left-precondi-
tioned GMRES method for least squares problems proposed in [19] is called the BA-
GMRES method. It applies GMRES to min

x∈Rn
‖Bb−BAx‖2, where B ∈ Rn×m denotes

the preconditioning matrix. Conditions for the preconditioner B for BA-GMRES were
given in [19]. Let R(A) denote the range space of A.

Theorem 2.1. min
x∈Rn

‖b−Ax‖2 and min
x∈Rn

‖Bb−BAx‖2 are equivalent for all

b ∈ Rm if and only if R(A) = R(BTBA).

Theorem 2.2. If R(A) = R(BT), then BA-GMRES determines a least squares
solution of min

x∈Rn
‖b−Ax‖2 for all b ∈ Rm and x0 ∈ Rn without breakdown if and

only if R(AT) = R(B).

Here, we give a new condition for the preconditioning matrix B for BA-GMRES
for the consistent system from [18, Theorem 2.8].

Theorem 2.3. BA-GMRES determines a solution for all Bb ∈ R(BA), x0 ∈ Rn

if and only if R(BA) ∩ N (BA) = {0}.
Moreover, due to [19, Theorem 3.15], Theorem 2.3 gives the following.

Theorem 2.4. Suppose R(A) = R(BT). Then, BA-GMRES determines a solu-
tion of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm and x0 ∈ Rn if and only

if R(B) ∩N (A) = {0}.
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Note that R(A) = R(BT) implies Bb ∈ R(BA), and also guarantees the equiva-
lence between min

x∈Rn
‖b−Ax‖2 and min

x∈Rn
‖Bb−BAx‖2 for all b ∈ Rm [19].

In [19], RIF [5] was used to construct factors of the preconditioner B. RIF is
guaranteed to work for full-rank matrices. The preconditioning matrices are explicitly
constructed, saved, and applied at each step of GMRES.

Instead of forming an explicit preconditioning matrix B, we propose applying
several steps of a certain stationary iterative method inside GMRES whenever B is
needed in BA-GMRES. Therefore, our strategy can be considered as a preconditioned
GMRES with an implicit B, i.e., B is not formed or stored explicitly.

2.1.1. Outer iteration. We consider applying stationary inner iterations to
BA-GMRES [19]. Algorithm 2.1 shows the general framework for this approach,
where p is the restart cycle. In the following and hereafter, (a, b) denotes the inner
product aTb between real vectors a and b, and ε denotes the threshold for stopping
the outer iteration.

Algorithm 2.1 Stationary inner-iteration BA-GMRES(p) method.
1 . Roughly solve ATAz = ATr0 to obtain z � r̃0 = Br0 by using an iterative

method.
2 . Compute β = ‖r̃0‖2, v1 = r̃0/β
3 . For k = 1, 2, . . . , p, Do
4 . Roughly solve ATAz = ATAvk to obtain z � wk = BAvk by using an iterative

method.
5 . For l = 1, 2, . . . , k, Do
6 . hl,k = (wk,vl), wk = wk − hl,kvl

7 . EndDo
8 . hk+1,k = ‖wk‖2, vk+1 = wk/hk+1,k

9 . Find y ∈ Rk that minimizes ‖βe1 − H̄ky‖2 = ‖Brk‖2.
10 . xk = x0 + [v1,v2, . . . ,vk]yk

11 . If ‖AT(b−Axk)‖2 < ε‖ATb‖2, then stop.
12 . EndDo
13 . x0 = xp, r0 = b−Ax0 and go to 1
Here, H̄k ≡ {hpq} ∈ R(k+1)×k. If xk is a least squares solution, the method termi-
nates, and we do not have a breakdown. (In general, xk may or may not be a least
squares solution).

The idea behind line 1 is as follows. First consider the problem

min
z∈Rn

‖r0 −Az‖2, (2.1)

where r0 is given. This problem is equivalent to

ATAz = ATr0, or AT(r0 −Az) = 0, or r0 −Az ∈ N (AT) = R(A)⊥, (2.2)

which, in turn, is equivalent to

BAz = Br0, or B(r0 −Az) = 0, or r0 −Az ∈ N (B) = R(BT)⊥, (2.3)

if R(A) = R(BT). Hence, if we roughly solve (2.1) to obtain ATAz̃ � ATr0 and set
z̃ := Br0, (2.1) gives

‖r0 −ABr0‖2 = ‖r0 −Ar̃0‖2 � min
z∈Rn

‖r0 −Az‖2
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so that B will serve as a preconditioner for solving (2.1)–(2.3). The idea behind line
4 can be explained similarly by replacing r0 by Avk, where vk is given.

When B is fixed for all outer iterations, the method determines an approxi-
mation xk in Kk(BA, r̃0) minimizing ‖Brk‖2, and is guaranteed to give a least
squares solution if the conditions R(A) = R(BT) and R(AT) = R(B) of Theo-
rem 2.2 are satisfied, where the Krylov subspace at the kth step is Kk(BA, r̃0) =
span

{
r̃0, BAr̃0, . . . , (BA)k−1r̃0

}
, and r̃0 = Br0.

On the other hand, when B is not fixed for each outer iteration, the method
tries to minimize ‖Bkrk‖2, where Bk is different for each outer iteration, and the
approximate solution x is sought in

x0 + span {B0r0, (B1A)B0r0, (B2A)(B1A)B0r0, . . . , (BkA)(Bk−1A) · · ·B0r0} ,
which is no longer a Krylov subspace. In fact, numerical experiments showed that
the method failed to converge when B was changed for each iteration by changing the
number of inner iterations for each outer iteration, cf. FGMRES [28] and GMRESR
[33]. We keep B constant in the remaining sections.

2.1.2. Stationary inner iterations. For the rough solution in lines 1 and 4 in
Algorithm 2.1.1, we consider using a stationary iterative method for solving the normal
equation ATAx = ATb. Here, we denote b instead of r0 or ATvk for convenience. Let
ATA = M −N , where M is nonsingular. Then, we have a class of stationary iterative
methods of the form

xk+1 = M−1Nxk +M−1ATb, k = 0, 1, . . . . (2.4)

Define the iteration matrix by H = M−1N . Tanabe [32] defined the following.
Definition 2.5. H is convergent if lim

l→∞
H l exists, and divergent otherwise.

Then, we obtain the following theorem for stationary inner-iteration BA-GMRES.
Theorem 2.6. Assume that H is convergent. Then, BA-GMRES with the

inner-iteration preconditioning of the form (2.1) determines a least squares solution
of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm.

In section 3, we will introduce concrete iterative methods satisfying the condition
in Theorem 2.6.

2.1.3. Convergence bound for stationary inner-iteration BA-GMRES.
The preconditioned matrix with (l+1) stationary inner iterations is given by B(l)A =
I − H l+1. Let ν be an eigenvalue of H, and let μ(l) = 1 − νl+1. Assume that H
is convergent and r = rankA. Then, B(l)A has r eigenvalues such that |1 − μ(l)| ≤
ρ(H)l+1 < 1, and (n−r) zero eigenvalues. Hence, the r eigenvalues of B(l)A approach
1 as l increases.

If A has full-column rank, then the field of values of B(l)A is contained in a circle
{z ∈ C : |z−1| ≤ ρ(H)l+1}. Thus, from Greenbaum [17, p. 56], we have the following
theorem.

Theorem 2.7. Assume that H is convergent. If A has full column rank, then
the stationary inner-iteration BA-GMRES residual satisfies

‖B(l)rk‖2/‖B(l)r0‖2 ≤ 2ρ(H)k×(l+1),

where k is the number of outer iterations, and l is that of inner iterations.
Theorem 2.7 implies that the convergence bound on the stationary inner-iteration

BA-GMRES residual depends on the spectral radius of the iteration matrix. Moreover,
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if the stopping criterion for the kth outer iteration is ‖B(l)rk‖2/‖B(l)r0‖2 < ε, then
the required number of outer iterations is at most min{n, �logρ(H)

ε
2/(l + 1)	}.

2.2. Stationary inner-iteration CGLS method. We can also apply symmet-
ric inner-iteration preconditioners to CGLS [29] as follows.

Algorithm 2.2 Stationary inner-iteration PCGLS method.

1 . Roughly solve ATAz = ATr0 to obtain z̃0 = PATr0 by using an iterative method.
2 . p0 = z̃0, s0 = ATr0, γ0 = (s0, z̃0)
3 . For k = 0, 1, . . . , Do
4 . qk = Apk

5 . αk = γk/(qk, qk)
6 . xk+1 = xk + αkpk

7 . If ‖AT(b−Axk+1)‖2 < ε‖ATb‖2 , then stop.
8 . rk+1 = rk − αkqk

9 . sk+1 = ATrk+1

10 . Roughly solve ATAz = ATrk+1 to obtain z̃k+1 = PATrk+1 by using an itera-
tive method.

11 . γk+1 = (sk+1, z̃k+1)
12 . βk = γk+1/γk
13 . pk+1 = z̃k+1 + βkpk

14 . EndDo

In lines 1 and 10, the normal equations may be roughly solved using a symmetric
iterative method. Here, the preconditioning matrix P is a symmetric positive definite
matrix. The normal equation in lines 1 and 10 is solved symmetrically, if necessary,
as follows {

x(k+ 1
2 ) = M−1Nx(k) +M−1ATb,

x(k+1) = M−TNTx(k+ 1
2 ) +M−TATb,

k = 0, 1, . . .

3. Inner stationary-iteration preconditioning. In this section, we introduce
iterative methods that can be used to perform the stationary inner-iteration precon-
ditioning for the outer solvers discussed in Section 2.

In the following, assume that A has no zero columns, and the initial approximate
solution for inner iterations x(0) is set to zero. Let aj denote the jth column of A.
We denote a component of a vector by a non-bold letter with a subscript.

Kaczmarz [23] and Cimmino [8] designed stationary iterative methods for solving
the normal equation AATu = b, x = ATu avoiding the explicit formation of AAT

in the case of a square matrix. Bjorck and Elfving [7] relates Kaczmarz’s method to
the SOR, and symmetric SOR methods for the normal equation ATAx = ATb in the
case of a rectangular matrix. Cimmino’s method can be generalized to the Jacobi
overrelaxation method also for the normal equation. We call the methods the NR-
SOR, NR-SSOR, and Cimmino-NR methods, respectively, from Saad [29]. According
to Dax [11], the above methods give a convergent iteration matrix. Consequently,
letting ATA = L+D + LT , where L is a strictly lower triangular matrix, and D is a
diagonal matrix, we have the following theorems.

Theorem 3.1. Assume that the overrelaxation parameter ω for Cimmino-NR
satisfies 0 < ω < 2/ρ(D−1/2ATAD−1/2). Then BA-GMRES with the inner-iteration
preconditioning determines a least squares solution of min

x∈Rn
‖b−Ax‖2 without break-

down for all b ∈ Rm.
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Theorem 3.2. Assume that the overrelaxation parameter ω for NR-SOR satisfies
0 < ω < 2. Then BA-GMRES with the inner-iteration preconditioning determines a
least squares solution of min

x∈Rn
‖b−Ax‖2 without breakdown for all b ∈ Rm.

Note that we do not assume A to be full rank in Theorems 3.1 and 3.2.

4. Numerical experiments. Inner-iteration preconditioned BA-GMRES and
CGLS with Cimmino-NR, NR-SOR, and NR-SSOR in sections 2 and 3 were compared
with the methods preconditioned with the diagonal scaling (diag) and RIF precondi-
tioners1 in numerical experiments. Note that, theoretically, the RIF preconditioner
may break down for rank-deficient problems. In addition, BiCGSTAB applied to
the system B(l)Ax = B(l)b preconditioned with NR-SOR inner iterations was also
compared.

The stopping criterion for the kth outer iteration was∥∥AT(b−Axk)
∥∥
2
< 10−6

∥∥ATb
∥∥
2
. (4.1)

The CPU time for checking (4.1) was excluded from the total CPU time. The initial
solution for the inner and outer iterations was set to zero. No restarts were used for
BA-GMRES.

All zero columns and zero rows of the test matrices were deleted in advance.
The elements of b were randomly generated using the Fortran built-in subroutine
random_number. Therefore, the test problems were not necessarily consistent, i.e., b
may not be in R(A).

All computations were done on a PC workstation with an Intel Xeon X5492 3.4
GHz CPU, 16 GB RAM, Scientific Linux 6.1, and double precision floating-point
arithmetic. All programs for the iterative methods in our tests were coded in Fortran
95 and compiled by Intel Fortran Version 12.1.0. For the direct methods, we used
Matlab 2011b.

4.1. Comparisons of CPU time. We compare the CPU time for each method
for test problems. Table 4.1 gives information on the test matrices. “nnz” is the
number of nonzero elements, “dens” is the density of the nonzero elements. In the last
two columns, D time and ‖ATr‖2/‖Tb‖2 are the CPU time and the resulting relative
residual for the direct method. The rank and condition number were computed using
the Matlab functions spnrank and svd. “-” means the corresponding numerical
values could not be computed due to insufficient memory. HIRLAM is from [21], and
was used in [5]. Maragal 8 was transposed so that m > n.

Table 4.2 gives the least CPU time for the iterative methods to achieve the con-
dition (4.1) for each problem. The first row in each cell gives the number of (outer)

Table 4.1

Information on the test matrices.

Matrix m n nnz dens. [%] rank κ2(A) D time ‖ATr‖2/‖ATb‖2
Maragal 6 21,251 10,144 537,694 0.25 8,331 2.91× 106 355.46 1.13× 10−1

Maragal 7 46,845 26,525 1,200,537 0.10 20,843 8.98× 106 474.88 6.38× 10−2

Maragal 8 33,093 60,845 1,308,415 0.06 – – 67.60 1.34× 10−9

HIRLAM 1,385,270 452,200 2,713,200 0.0004 – – 242.31 1.18× 10−15

LargeRegFile 2,111,154 801,374 4,944,201 0.00029 – – 10.66 8.03× 10−15

1The RIF code developed by Professors Michele Benzi and Miroslav Tůma, available online at
http://www2.cs.cas.cz/~tuma/sparslab.html, was employed.
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Table 4.2

Comparisons of the CPU time.

Solver CGLS BA-GMRES BiCGSTAB
Precond. diag RIF NR-SSOR diag RIFCimmino-NR NR-SOR NR-SOR

Maragal 6 11,645 � 2,249 (1, 0.6)1,817 � 720 (7, 0.4)318 (6, 1.5) �
� 354.46 27.83 15.2942.20 17.43 * 4.93
Maragal 7 2,822 � 146 (2, 0.9) 652 � 395 (3, 0.2) 99 (4, 1.3) 71 (3, 1.2)
� 474.88 18.84 4.3917.67 12.71 * 2.45 * 2.45
Maragal 8 > 105 �38,497 (1, 0.7)5,376 � 2781 (5, 0.4)969 (6, 1.2) �

67.60 847.67 757.911,181 416.42 * 71.88
HIRLAM 121 49 (0.2) 19 (1, 1.8) 121 35 (0.1) 58 (2, 0.9) 15 (9, 1.8) 7 (8, 1.6)
242.31 6.924.44 (1.34) * 2.3123.28 5.55 (2.21) 9.30 4.01 3.26

LargeRegFile 60 54 (0.8) 24 (1, 1.0) 60 46 (0.4) 33 (2, 0.7) 7 (5, 1.4) 9 (3, 1.3)
10.66 4.677.99 (3.66) 5.2113.2312.65 (3.76) 7.27 * 3.09 4.12

First row: Number of (outer) iterations (number of inner-iterations, preconditioning parameter)
Second row: Total CPU time [seconds] (preconditioning time [seconds])

iterations outside brackets, and the number of inner iterations and the best parameter
value for each method in brackets. The second row gives the total CPU time including
the preconditioning time in seconds outside brackets, and the time in seconds to set
up the preconditioning matrix of RIF in brackets.

The drop tolerance of RIF, number of inner iterations, and overrelaxation pa-
rameter ω were experimentally optimized to achieve the least CPU time. We used
k × 10−l for the drop tolerance for RIF, where k = 1, 2, . . . , 9 and l = 1, 2, 3. We
used l = 0.1, 0.2, . . . , 1.9 for the overrelaxation parameter for Cimmino-NR and NR-
SOR. For convenience, the CPU time for the direct method is given below the name
of each matrix. The � in the first column indicates that the direct method did not
achieve the accuracy in (4.1). The � indicates that the RIF preconditioner broke
down with all the values for the tolerance we tested for Maragal 6–8. The � indicates
that BiCGSTAB with NR-SOR failed to converge with all the values of parameters.
The ∗ indicates the fastest method for each problem.

CGLS with NR-SSOR gave the least CPU time for HIRLAM, BA-GMRES and
BiCGSTAB with NR-SOR for Maragal 7, and BA-GMRES with NR-SOR for other
problems. The CPU time for BA-GMRES with NR-SOR was less than that for the
direct method except for Maragal 8. CGLS with diag did not converged within 105

iterations for Maragal 8. On the other hand, the reorthogonalized CGLS method [19]
preconditioned with these methods was also tested but did not give less CPU time
than the least CPU time for each problem.

Figure 4.1 shows the relative residual ‖ATrk‖2/‖ATb‖2 vs. CPU time (right) for
LargeRegFile. BA-GMRES with NR-SOR is shown to converge quickly. Whereas the
convergence graphs for CGLS-type methods are oscillatory and slow to converge. The
convergence curve for CGLS with RIF is shifted to the right by the time required to
construct the preconditioner.

Figure 4.2 plots the CPU time required to achieve relative residual (4.1) vs. the
overrelaxation parameter ω for BA-GMRES with NR-SOR for LargeRegFile. l de-
notes the number of inner iterations. The optimum values for the parameter ω and
the number of inner iterations l with respect to the CPU time were ω = 1.4 and l = 5,
respectively.
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4.2. Automatic parameter tuning for NR-SOR. NR-SOR has two param-
eters, the number of inner iterations nin and the overrelaxation parameter ω. As seen
in Figures 4.2, the CPU time for BA-GMRES with NR-SOR varies with the values of
these parameters. Hence, it is desirable to determine the parameters automatically for
any given problem. The theoretical determination of the optimum overrelaxation pa-
rameter for SOR for some kinds of square matrices is described in [38], [34]. However,
techniques for the determination for general matrices including rectangular matrices
seem scarce. We propose the following procedure, which should be performed before
starting the outer iteration. The idea is to perform some test runs of NR-SOR alone
beforehand in order to determine the near optimal nin and ω.

1. Set ω := 1.
2. Starting from nin := 0, find the minimum nin that satisfies

‖x(nin) − x(nin+1)‖∞ ≤ η‖x(nin+1)‖∞.

3. Find ωopt that minimizes ‖r(nin)‖2.
Here, η is an parameter, and ωopt is the optimum overrelaxation parameter that min-
imizes the residual nin Let ωl’s be candidates for ωopt. In the following experiments,
we used ωopt = 10−l, where l = 0.5, 1.0, 1.5, 2.0. The tuned nin and ωopt would not
be absolutely optimum but would be nearly optimum. Since x(k) and r(k) appear in
NR-SOR, the cost for this automatic tuning is marginal.

Table 4.3 gives the numerical results for BA-GMRES with NR-SOR with parame-
ters automatically tuned by the above procedure for the problems presented in Section
4.1. The first row in each cell gives the number of outer iterations outside brackets,
and the automatically tuned number of inner iterations and overrelaxation parameter
in brackets. The second row gives the total CPU time including the tuning time in
seconds outside brackets, and the parameter tuning time in seconds in brackets. The
∗ indicates the fastest case for each problem.

The CPU time for BA-GMRES with NR-SOR with automatically tuned parame-
ters was close to those with optimum parameters given in Table 4.2. In addition, the
CPU time given for η = 10−1.5, 10−1, 10−0.5 was less than CGLS and BA-GMRES
with the diagonal scaling (See Table 4.2). Moreover, the CPU time required for
tuning the parameter was marginal compared to the total CPU time. The values
η = 10−0.5, 10−1 for the tuning gave (nearly) optimum parameters.
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Table 4.3

Results with automatically tuned parameters for the test problems.

η 10−2 10−1.5 10−1 10−0.5 Optimum

Maragal 6 151 (105, 1.9) 222 (50, 1.9) 259 (9, 1.6) 355 (5, 1.4) 318 (6, 1.5)
27.78 (0.55) 19.78 (0.26) 5.14 (0.09) * 5.00 (0.07) 4.93

Maragal 7 102 (46, 1.9) 144 (13, 1.7) 165 (7, 1.5) 99 (4, 1.3) 99 (4, 1.3)
21.84 (0.62) 9.68 (0.29) 6.71 (0.22) * 2.61 (0.16) 2.45

Maragal 8 438 (140, 1.6) 721 (20, 1.6) 1,223 (4, 1.3) 1,781 (2, 1.1) 969 (6, 1.2)
334.80 (4.46) 100.27 (0.64) * 89.82 (0.19) 150.77 (0.12) 71.88

First row: Number of outer iterations (number of inner iterations, overrelaxation parameter)
Second row: Total CPU time [seconds] (parameter tuning time [seconds])

5. Conclusions. We studied stationary inner-iteration preconditioned Krylov
subspace methods for solving least squares problems. For the inner iterations, Ja-
cobi overrelaxation, SOR, and SSOR-type methods for least squares problems were
employed. For the outer iterations, CG and GMRES-type methods were used.

The inner iterations are efficient in terms of memory, and they also serve as pow-
erful preconditioners effective also for ill-conditioned and rank-deficient least squares
problems. Theoretical justifications for using the inner iterations as preconditioners
were also presented. We showed the stationary inner-iteration BA-GMRES residual
bound.

Numerical experiments including ill-conditioned, rank-deficient, and practical
problems, showed that the NR-SOR inner iterations combined with the left-precon-
ditioned (BA) GMRES method is, in terms of CPU time, the most effective method,
which outperforms conventional methods.
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[6] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
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