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Abstract

A novel method for the 3-D diffusive electromagnetic (EM) forward problem is developed and
tested. A Lorentz-gauge, Schelkunoff complex vector potential is used to represent the EM field in the
frequency domain and the nodal finite element method is used for numerical simulation. The potential
allows for three degrees of freedom per node, instead of four if Coulomb-gauge vector and scalar poten-
tials are used. Unlike the finite-difference method, which minimizes error at discrete points, the finite
element method minimizes error over the entire domain cell volumes and may easily adapt to complex
topography. Existence and uniqueness of this continuous Schelkunoff potential is proven, boundary
conditions are found and a governing equation satisfied by the potential in weak form is obtained.
This approach for using a Schelkunoff potential in the finite element method differs from others found
in the literature. If the standard weak form of the Helmholtz equation is used, the obtained solution
is continuous and has continuous normal derivative across boundaries of regions with different physi-
cal properties; however, continuous Schelkunoff potential components do not have continuous normal
derivative, divergence of the potential divided by (complex) conductivity and magnetic permeability
is continuous instead. Two weak forms of the governing equation are tried. Both of them produce a
system matrix that is ill-conditioned and as a result iterative schemes do not converge. A different
idea is tried next, instead of representing electric field by a Schelkunoff potential, magnetic field is rep-
resented in a similar way. When it is assumed that magnetic permeability µ is constant, a convenient
weak form of the governing equation is obtained. This form is tested numerically on a simple model
of a conducting prism in a resistive whole space and the code gives a similar results to an independent
finite difference code.

1 Introduction

A purpose of this work is to develop a fast and stable method for calculating electromagnetic (EM) fields
in a diffusive environment using Finite Element Method (FEM) based on representation of the field by a
Schelkunoff potential. The stability of the iterative methods used to solve a linear system resulting from
FEM is strongly related to properties of the variational problem used in the formulation. We show that
existing variational formulation for Schelkunoff potential [4] does not produce the correct solution to this
problem. The present paper develops a new variational formulation, proper in a sense that it leads to a
linear system, for which iterative methods are stable.

A motivation for this work is a pursue after a fast algorithm for forward Magnetotelluric (MT)
problem. Such problem has to be solved hundreds of times in a 3d inverse MT problem. Nowadays
inversion of MT data often need supercomputers, if not, the computations last days or even weeks. The
developed theory may find application in every situation when calculation of EM field is needed in a
diffusive environment. Although the approach presented here is formulated for Maxwell’s equations in
frequency domain, the method may be extended to the time domain.

The advantade of using Finite Elements Method (FEM) in comparison with other techniques is that it
may be easily adapted to complex boundaries between regions of constant electromagnetic properties, and
to topography which is important for magneto-telluric imaging applications. The Schelkunoff potential
can provide an appropriate representation of EM field, since the potential is supposed to be continuous
[5] and to satisfy Helmholtz equation, with weak form, for which the associated bilinear form is strongly
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coercive. This approach could result in a linear system which is well-posed or not very ill-conditioned
and can be efficiently solved with iterative methods. Moreover if the potential is continuous, there is no
need for edge elements, simple nodal shape functions can be used.

Unfortunately, to the best knowledge of the authors, there are no results available on existence,
uniqueness, and boundary conditions for Schelkunoff potential. Moreover, as we show in the current
paper, previous attempts [4] to use Schelkunoff potential for FEM calculation of the EM fields based on
weak form of Helmholtz equation, should not produce correct solution.

The present paper develops mathematical foundations of the variational formulation of FEM based on
Schelkunoff potential for the purpose of constructing an efficient algorithm for calculation of the EM fields
in a diffusive environment or fields propagating in a dissipating medium. In the next section, after giving
definition of the electric Schelkunoff potential, we prove the existence and uniqueness theorem using
a sequence of lemmas. In the third section two weak forms of the governing equations are suggested.
They have been implemented in a FEM algorithm, but unfortunately they produce a system with a very
ill-conditioned matrix. Therefore, in the following section, we define the magnetic Schelkunoff potential
and introduce a weak form of the governing equation. We show that the bilinear form associated with
this equation is strongly coercive, and the matrix is symmetric. In the last section, results of numerical
simulations are presented. We show that the iterative scheme used to solve the linear equation converges.
The numerical test uses the developed magnetic Schelkunoff potential approach to calculate the field
generated by a conductive prism in a resistive whole space. Comparison of the results with calculations
done by an independent Finite Difference code, shows very good agreement which provides a verification
of the proposed method.

2 Schelkunoff Potential in the literature

Schelkunoff potential, or electric Schelkunoff potential is a vector potential F used to represent the electric
field E ([5],[2],[4]) in a form:

E = −iωF −∇ϕ (1)

where a relationship between F and ϕ, called Lorentz Gauge, is imposed:

∇
(∇ · F

σ̂µ

)
= −∇ϕ (2)

As a result the electric field is represented as:

E = −iωF +∇
(∇ · F

σ̂µ

)
(3)

Let’s consider the electromagnetic field satisfying Maxwell’s equations in the frequency domain with
the electric source J imp:

{
∇× E = −iωµH

∇×H = J imp + σ̂E , σ̂ = σ + iωǫ
(4)

Substituting the first equation to the second one, and if (1) is used to represent electric field E, in the
region of constant properites σ̂, µ we obtain:

∇× (−∇× 1

iωµ
(−Fiω)) = J imp + σ̂(−Fiω −∇ϕ)

∇× (∇× 1

µ
F ) = J imp − σ̂iωF − σ̂∇ϕ

If a well known vector identity (7) is used: the result is:

∇(∇ · 1
µ
F ))−∇ · (∇(

1

µ
F )) = −J imp − σ̂iωF − σ̂∇ϕ

and if the equation is multiplied by −σ̂µ (it is assumed that σ̂, µ are constant), the Lorentz Gauge (2) is
used, the following Helmholtz equation is obtained:

∆F − iσ̂µωF = µJ imp (5)
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Weak form of Helmholtz equation (5) was used in FEM simulations of EM field ([4]) in a situation of
piecewise constant σ̂, µ for calculation of electric Schelkunoff potential F .

∀j=1,2,3∀Aj∈H1(Ω)

∫

Ω
∇Aj · ∇Fj + iω

∫

Ω
σ̂µFj ·Aj = −

∫

Ω
µJ

imp
j ·Aj (6)

Nevertheless this equation imposes conditions on the boundaries between regions of different σ̂, µ listed
below:

1. ∀j=1,2,3 Fj is continuous

2. ∀j=1,2,3
∂
∂n

Fj is continuous

Investigation of existance and uniqueness of Schelkunoff potential satisfying those conditions is the
purpose of this work. As it turns out, with some reasonable assumptions, a continuous Schelkunoff
potential (condition 1. is satisfied) exists, yet the condition 2. is not satisfied. As a result there is no
Schelkunoff potential that satisfies weak form of Helmholtz equation (6). This result is explained in detail
in the next section.

3 Existence and uniqueness of continuous electric Schlekunoff potential

F

Let us consider an open bounded set Ω ⊂ R3, which is divided into a finite number of disjoint open sets
Vj , j ∈ I, such that ⋃

j∈I

Vj ⊂ Ω ⊂
⋃

j∈I

V j

It is assumed that the properties σ̂, µ are constant in each Vj . We may say that the properties σ̂, µ are
piecewise constant in Ω.

It is assumed further that all functions considered are C∞(Vj) for j ∈ I, yet the functions may have
jumps in value or derivatives across boundaries between sets Vj . It is assumed not only that Maxwell’s
equations (4) are satisfied in strong sense in each Vj but also that they are satisfied in weak sense in Ω.

Three vector identities will be used. K,L : R3 → R3, u : R3 → R

∇×∇×K = ∇(∇ ·K)−∇ · (∇K) (7)

∫

Ω
(∇×K) · L =

∫

Ω
K · (∇× L) +

∫

∂Ω
(n×K) · L (8)

∫

Ω
∇u ·K = −

∫

Ω
u∇ ·K +

∫

∂Ω
u(K · n) (9)

As a definition of a Schelkunoff potential we will take a vector field that is properly defined in each
region Vj , no matter what are the boundary conditions between regions Vj .

Definition 3.1 An electric Schelkunoff potential is any vector field F ∈ C∞(Vj) for all j ∈ I satisfying

E = −iωF +∇
(∇ · F

σ̂µ

)
in Vj ∀j∈I (10)

where E is electric field satisfying Maxwell’s Equations (4) in weak sense in Ω.

It turns out that if we assume that the source J imp is piecewise divergence free, then electric field E

multiplied by a constant is an electric Schelkunoff potential, which is expressed in the following theorem:
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Lemma 3.2 If ∇ · J imp = 0 in Vj for all j ∈ I, then ∇ · E = 0 in Vj for all j ∈ I and

FE = − 1

iω
E (11)

is an electric Schelkunoff potential, as defined in Definition 3.1

Proof As Maxwell’s Equations (4) are satisfied in strong sense in each of Vj , then the following equation
is satisfied in strong sense:

∇× (− 1

iωµ
∇× E) = J imp + σ̂E

in each Vj . Taking divergence of both sides, it is obtained:

∇ · J imp = −∇ · (σ̂E) = −σ̂∇ · E

and the last equality holds as σ̂ is constant. As a result if ∇ · J imp = 0, then

∇ · E = 0

in each of Vj . If we define FE according to (11), then

∇ · FE = ∇ · (− 1

iω
E) = − 1

iω
∇ · (E) = 0

so the equation (10), defining electric Schelkunoff potential, is satisfied as

−iωFE +∇
(∇ · FE

σ̂µ

)
= −iωFE + 0 = −iω(− 1

iω
E) = E

the equation above is satisfied in strong sense in each of Vj only, but it is enough for FE to be electric
Schelkunoff potential according to Definition 3.1.

The fact that the equation (11) defining electric Schelkunoff potential is linear allows us to state the
conditions for the vector field F to be an electric Schelkunoff potential as a condition on the difference
F − FE . This is expressed in the following theorem.

Lemma 3.3 If ∇ · Jimp = 0 in each Vj, then F is a Schelkunoff potential if and only if K = F − FE =
F + 1

iω
E satisfies the equation:

−iωK +∇(∇ · K

σ̂µ
) = 0 (12)

in strong sense in each Vj.
And if and only if there exists scalar field ϕ such that K = ∇ϕ in strong sense in each Vj and the

following equation is satisfied
∆ϕ− iωσ̂µϕ = 0 (13)

in strong sense in each Vj.

Proof As both F and FE satisfy the equation (10) defining electric Schelkunoff potential, if those equa-
tions are substracted the equation (12) is obtained for K.

Moreover if (12) is investigated one can see that in each Vj , K is a gradient of some function,
K = ∇(− 1

iωσ̂µ
∇ ·K) = ∇ϕ̃. If the latter is plugged into (12), we obtain:

−iω∇ϕ̃+∇(∇ · ∇ϕ̃

σ̂µ
) = 0

so also

∇
(
−iωϕ̃+ (∇ · ∇ϕ̃

σ̂µ
)

)
= 0
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multiplying by σ̂µ and using the fact that σ̂, µ are constant, the following is obtained:

∇ (∇ · ∇ϕ̃− iωσ̂µ ϕ̃) = 0

which proves that for each j ∈ I there exists a constant Cj such that

∇ · ∇ϕ̃− iωσ̂µ ϕ̃ = Cj

in each Vj , so also

∇ · ∇ϕ̃− iωσ̂µ

(
ϕ̃− Cj

iωσ̂µ

)
= 0

Let us define ϕ = ϕ̃− Cj

iωσ̂µ
. Because in each Vj , Cj , σ̂, µ are constant, we have that in each Vj , ∇ϕ̃ = ∇ϕ,

so K = ∇ϕ and (13) is satisfied in strong sense in each Vj . We have proven that if F is a Schelkunoff
potential, K = F − FE = ∇ϕ for some ϕ satysfying (13).

Let us now assume that F = FE +∇ϕ and ϕ satisfies (13). To prove that F is a Schelkunoff potential
it is enough to prove that K = ∇ϕ satisfies (12), which is obtained if gradient of the equation (13) is
taken.

Is there a continuous electric Schelkunoff potential?
Let us investigate what boundary conditions on ϕ it would impose. let us consider two regions V1, V2

and a boundary between those regions ∂V1 ∩ ∂V2. Let F1, F2 be potentials in V1, V2 respectively. Let n
be a vector normal to the boundary, pointing towards V2. Let us split continuity of F into continuity of
tangential components and continuity of normal components of F :

n× F1 = n× F2 (14)

n · F1 = n · F2 (15)

If F is a Schelkunoff potential, then according to Lemma 3.3, F = FE + K = − 1
iω
E + K. As the

tangential component of electric field is continuous, in order for (14) to be satisfied, it is needed that K
has continuous tangential components.

n×K1 = n×K2 ⇐⇒ n×∇ϕ1 = n×∇ϕ2

The last equation states that the derivative in the tangential direction is the same on both sides of the
boundary.

∂ϕ1

∂t
=

∂ϕ2

∂t
(16)

where
∂ϕj

∂t
is the tangential derivative. The derivative in (any) tangential direction. The equation (16) is

understood as satisfied for all tangential directions.
We obtain that (14) is equivalent to continuity of the tangential derivative of ϕ as expressed in the

equation (16).
Let us now focus on a condition more difficult to satisfy – continuity of the normal component, the

equation (15). Unfortunately the normal component of the electric field is not continuous.
Representing the potential in a form F = − 1

iω
E +K one may see that (15) is equivalent to

n · (− 1

iω
E1 +K1) = n · (− 1

iω
E2 +K2)

which is equivalent to

n · (K1 −K2) = n · ( 1
iω

E1 −
1

iω
E2)

what can be expressed as

n · (∇ϕ1 −∇ϕ1) = n · ( 1
iω

E1 −
1

iω
E2) (17)

Or using a different notation:
∂ϕ1

∂n
− ∂ϕ2

∂n
= n · ( 1

iω
E1 −

1

iω
E2) (18)

We obtain that the continuity of the normal component of F , (15) is equivalent to a jump in the
normal derivative of ϕ, dictated by values of E1 and E2, the jump is given in (18).

Armed with those results we are ready to prove the main theorem of this paper:

5



Theorem 3.4 If the following assumptions are satisfied:

• Maxwell’s Equations (4) are satisfied for E,H in weak sense in an open, bounded region Ω

• σ̂, µ are constant in each Vj, σ̂ is real and

0 < σmin ≤ σ̂j ≤ σmax, 0 < µmin ≤ µj ≤ µmax for all j ∈ I

• ∇ · J imp = 0 inside each Vj

Then there exists a continuous Schelkunoff potential satysfying

E = −iωF +∇
(∇ · F

σ̂µ

)
(19)

∇ · F
σ̂µ

is continuous across boundaries between sets Vj (20)

so (19) is satisfied in the sense of distributions. Moreover if

∇ · F |∂Ω = 0 (21)

then electric Schelkunoff potential F is unique. If

∂

∂n
(∇ · F )

∣∣∣∣
∂Ω

= 0 (22)

then electric Schelkunoff potential F is unique.

Proof Let us consider a Schlkunoff potential F , so the vector field such that F = FE +K = FE +∇ϕ

and (13) is satisfied in strong sense in each Vj . Because F = FE +∇ϕ = − 1
iω
E +∇ϕ and ∇ · E = 0 in

Vj , then we have

∇ · F = ∇ · (− 1

iω
E +∇ϕ) = ∇ · ∇ϕ (23)

so using the equation (13)
∇ · F
σ̂µ

=
∇ · ∇ϕ

σ̂µ
= iωϕ (24)

As a result, ϕ being continuous is equivalent to ∇·F
σ̂µ

being continuous. and as we want (20) to be satisfied,

we will consider ϕ continuous, so ϕ ∈ H1(Ω).
Let us now find a weak equation for ϕ that will result in a continuous Schelkunoff potential F . We

want to find ϕ such that (13), (16), (18) is satisfied.
It is useful to notice that (16) will be satisfied if only ϕ1 = ϕ2 on ∂V1 ∩ ∂V2, so as ϕ is a continuous

function in Ω then (16) is satisfied. Let’s multipy (13) by a conjugated test function and integrate by
parts: ∑

j∈I

∫

Vj

∆ϕξ − iω
∑

j∈I

∫

Vj

σ̂µ ϕ ξ = 0

−
∑

j∈I

∫

Vj

∇ϕ · ∇ξ +
∑

j∈I

∫

∂Vj

(
∂

∂nj
ϕj)ξ − iω

∑

j∈I

∫

Vj

σ̂µ ϕ ξ = 0

where nj denotes a unit outward normal on ∂Vj . Let us now analyze the term with integration on ∂Vj

∑

j∈I

∫

∂Vj

(
∂

∂nj
ϕj)ξ =

∑

j1∈I, j2∈I,j1 6=j2

∫

∂Vj1
∩∂Vj2

(
∂

∂nj1

ϕj1 +
∂

∂nj2

ϕj2

)
ξ +

∫

∂Ω
(
∂

∂n
ϕ)ξ

and using (18), the latter equals:

=
∑

j1∈I, j2∈I,j1 6=j2

∫

∂Vj1
∩∂Vj2

1

iω
(nj1 · Ej1 + nj2 · Ej2) ξ +

∫

∂Ω

∂

∂n
ϕξ
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Let’s define a function

f =
1

iω
(nj1 · Ej1 + nj2 · Ej2)

on the set D =
⋃

j1∈I, j2∈I,j1 6=j2
∂Vj1 ∩ ∂Vj2 consisting of boundaries between Vj1 and Vj2 , the equation

for ϕ is obtained: ∫

Ω
∇ϕ · ∇ξ + iω

∫

Ω
σ̂µ ϕ ξ =

∫

D

fξ +

∫

∂Ω
(
∂

∂n
ϕ)ξ (25)

If we assume ∂
∂n

ϕ = 0 on ∂Ω, then the term
∫
∂Ω(

∂
∂n

ϕ)ξ disappears.

If we assume ϕ, ξ ∈ H1
0 (Ω), so ξ = 0 on ∂Ω, the term

∫
∂Ω(

∂
∂n

ϕ)ξ disappears.

For both Dirichlet (ϕ|∂Ω = 0) and Neumann ( ∂
∂n

ϕ|∂Ω = 0) boundary conditions for ϕ, the weak
equation for ϕ is: ∫

Ω
∇ϕ · ∇ξ + iω

∫

Ω
σ̂µ ϕ ξ =

∫

D

fξ (26)

For Dirichlet boundary conditions ϕ, ξ ∈ H1
0 (Ω) and for Neumann boundary conditions ϕ, ξ ∈ H1(Ω).

Let us analyze the equation (26).
With our simplifying assumption that all the functions are C∞(Vj) for all j ∈ I, function f defined

by values of E is continuous on D and as D is bounded, so is f . As a result f ∈ L2(D), and if ξ ∈ H1(Ω),
then ξ|D ∈ L2(D), so ξ →

∫
D
fξ is a bounded linear functional on H1(Ω) (and on H1

0 (Ω)).
Let us analyze the left hand side of equation (26). It is a bilinear form B(ϕ, ξ), which is bounded

|B(ϕ, ξ)|2 =
∣∣∣∣
∫

Ω
∇ϕ · ∇ξ + iω

∫

Ω
σ̂µ ϕ ξ

∣∣∣∣
2

≤ 2

(∫

Ω
|∇ϕ| |∇ξ|

)2

+ 2ω2σ2
maxµ

2
max

(∫

Ω
|ϕ| |ξ|

)2

≤ 2||∆ϕ||20 ||∆ξ||20 + 2ω2σ2
maxµ

2
max||ϕ||20 ||ξ||20

≤ (2 + 2ω2σ2
maxµ

2
max)

(
||∆ϕ||20 ||∆ξ||20 + ||ϕ||20 ||ξ||20

)

≤ (2 + 2ω2σ2
maxµ

2
max)

(
||∆ϕ||20 + ||ϕ||20)(||∆ξ||20 + ||ξ||20

)

= (2 + 2ω2σ2
maxµ

2
max)||ϕ||21||ξ||21

Moreover this bilinear form is coercive:

|B(ξ, ξ)| =
∣∣∣∣
∫

Ω
∇ξ · ∇ξ + iω

∫

Ω
σ̂µ ξ ξ

∣∣∣∣ =
∣∣∣∣
∫

Ω
|∇ξ|2 + iω

∫

Ω
σ̂µ |ξ|2

∣∣∣∣

And because the first term is purely real and the second term is purely imaginary (ω, σ̂, µ ∈ R), then

≥ 1√
2

(∫

Ω
|∇ξ|2 + ω

∫

Ω
σ̂µ |ξ|2

)
≥ 1√

2

(∫

Ω
|∇ξ|2 + ωσminµmin

∫

Ω
|ξ|2

)

≥ 1√
2
min(1, ωσminµmin)

(∫

Ω
|∇ξ|2 +

∫

Ω
|ξ|2

)
=

1√
2
min(1, ωσminµmin)||ξ||21

To sum up, the left hand side of the equation (26) is a bounded coercive bilinear form on H1(Ω)×H1(Ω)
(and on H1

0 (Ω)×H1
0 (Ω)), the right hand side is a bounded linear functional on H1(Ω) (and on H1

0 (Ω)),
so from Lax-Milgram theorem there exists a (unique) ϕ ∈ H1(Ω) (or ϕ ∈ H1

0 (Ω)) satisfying equation
(26).

It is an easy exercise to prove that if ϕ ∈ C∞(Vj) for all j ∈ I and ϕ ∈ H1(Ω) satisfy equation (26)
for all ξ ∈ H1

0 (Ω) then (13), (16), (18) is satisfied.
Let us now relate boundary conditions (21) (22) with boundary conditions ϕ|∂Ω = 0 and ∂

∂n
ϕ|∂Ω = 0

respectively. From (24)
∇ · F |∂Ω = 0 ⇔ ϕ|∂Ω = 0 (27)

and because σ̂, µ are constant in each Vj we obtain

∂

∂n
∇ · F |∂Ω = 0 ⇔ ∂

∂n
ϕ|∂Ω = 0 (28)
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To sum up the existence and uniqueness of ϕ ∈ H1
0 (Ω) satisfying (25) for all ξ ∈ H1

0 (Ω) is equivalent
to existence and uniqueness of a continuous electric Schelkunoff potential satisfying (20) and (21).

Existence and uniqueness of ϕ ∈ H1(Ω) satisfying (25) for all ξ ∈ H1(Ω) is equivalent to existence
and uniqueness of a continuous Schelkunoff potential satisfying (20) and (22).

4 Proper weak forms of the governing equation for the electric Schelkunoff

potential F

To be able to use Finite Element Method for calulation of EM field, a weak form of the governing
equation satisfied by the electric Schelkunoff potential is needed. Two such equations, which impose
proper conditions on the solution on the boundaries between regions of different σ̂, µ, are proposed.

F ∈ (H1(Ω))3, n× F |∂Ω = (− 1
iω
E), φ ∈ H1(Ω), φ|∂Ω = 0

∀A∈(H1(Ω))3, n×A|∂Ω

∫
Ω

1
µ
(∇× F ) · (∇×A) + iω

∫
Ω σ̂F ·A+

∫
Ω σ̂∇φ ·A =

∫
Ω J imp ·A

∀a∈H1(Ω), a|∂Ω=0

∫
Ω a · 1

σ̂µ
∇ · F = −

∫
Ω φa

And the second equation is
F ∈ ⋃

j C
2(Vj), n× F |∂Ω = (− 1

iω
E)

∀A∈(H1(Ω))3, n×A|∂Ω

∫
Ω

1
µ
(∇× F ) · (∇×A) +

∫
Ω

1
µ
(∇ · F )(∇ ·A) + iω

∫
Ω σ̂F ·A

−∑
j 6=k

∫
∂Vj∩∂Vk

1
2

[
∇·Fj

σ̂jµj
+ ∇·Fk

σ̂kµk

]
(σ̂jA · nj + σ̂kA · nk) =

∫
Ω J imp ·A

Both equations were implemented and unfortunately both of them produce a system matrix that is
not symmetric and very ill-conditioned. Preconditioners tried (ILU0, ILUT, ILUTP) are not stable, and
although a couple of different algorithms were tried (GMRES, QMR, CGNR, BICG, BICGSTAB), the
iterative schemes do not converge to the solution of a linear system.

Because of this difficulty a different approach has been proposed.

5 Magnetic Schelkunoff Potential G

Instead of representing E field by (3) a similar representation for magnetic field H may be used, namely
with a magnetic Schelkunoff potential G. This representation is mentioned in [5], yet according to the
knowledge of the authors, no numerical simulations were done using this potential.

H = G−∇
(∇ ·G
σ̂µiω

)
(29)

A similar theorem to Theorem 3.4 of existence and uniqueness of continuous magnetic Schelkunoff po-
tential G for which ∇·G

σ̂µ
is continuous may be forumlated and prove. This time a condition ∇ ·H = 0 in

each Vj (similar to ∇ · E = 0 in each Vj) is naturally satisfied due to lack of magnetic monopoles.
The weak form of the governing equation for magnetic potential is much more appealing to use in

FEM simulations because the corresponding iterative scheme is stable.

Theorem 5.1 If µ = µ0 = const, then the magnetic Schelkunoff potential G satisfies the equation below:
G ∈ (H1(Ω))3, G|∂Ω = H|∂Ω , ∀A∈(H1(Ω))3, n×A|∂Ω

∫
Ω

1
σ̂
(∇×G) · (∇×A) +

∫
Ω

1
σ̂
(∇ ·G)(∇ ·A) + iω

∫
Ω µ0G ·A =

∫
Ω

1
σ̂
J imp · (∇×A)

Moreover ∇ ·G = 0, so in fact the obtained solution G is the magnetic field H. G = H.
If σ̂ is real, 0 < σ0 < σ̂ < σ1 < ∞, than the bilinear form associated with the equation above is

bounded and strongly coercive. The corresponding system matrix is symmetric.
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6 Numerical results

The magnetic field calculated for the model described below, is compared with the field calculated by an
independent finite difference code.

The model considered is a conductive prism of resistivity 5Ω · m in the whole space of resistivity
100Ω ·m. The field is calculated 500m above the prism. Just like on the figure below. Second order nodal
shape functions for hexahedral elements are used.
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The background field is a plane wave traveling in increasing z direction in the whole space of resistivity
100Ω · m at the frequency 1Hz. The field calculated by the model is the scattered field due to the
presence of the prism. Ratio of the scattered field to the background field is calculated. Two situations
are considered:

• plane wave with E field only in X direction

• plane wave with E field only in Y direction
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The results of FD code and FEM code solving for G are very similar. The proposed method gives
proper values for the magnetic field H. The model tested is very simple, with not big conductivity
contrast. It is needed to test the method with bigger contrasts, especially when the boundary air/earth
is present. This is a topic for future work.
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