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Abstract

A geometric multigrid method for solving the convection diffusion
equation with boundary layers to sixth order accuracy is presented.
A nine point finite difference discretization scheme is used to obtain
fourth order accurate solutions on a coarse and a fine grid. Richardson
extrapolation is used to increase the order of accuracy to sixth order on
the coarse. An iterative smoothing technique is then used to obtain
a sixth order solution on the fine grid. The discretization we used
allows the grid to be a graded mesh. This is the first time the post
extrapolation smoothing technique has been applied to a graded mesh.
Numerical results are presented to demonstrate the use of a graded
mesh can significantly decrease the maximum error compared to a
regular mesh.
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1 Introduction

The convection diffusion equation is widely used in many science and engi-
neering problems modeling fluid flows and heat transfer. Numerical solutions
to the convection diffusion equation can be obtained using a variety of meth-
ods. In the present paper, a finite difference discretization and multiscale
multigrid method are used.

The two dimensional (2D) convection diffusion equation with Dirichlet
boundary conditions is given by

Ugz + Uyy +p<x7y)u$ + Q(l‘7y)uy = f($7y>7 (ZE,y) € Qa (1>
u(z,y) =g(x.y), (v,y) €09Q,

where ) is a rectangle or a union of rectangles in R? and 9 is the boundary
of Q. Tt is additionally assumed that p(x,y) and ¢(z,y) are smooth enough
to accommodate the discretization scheme.

The usual choices of finite difference discretization for the convection
diffusion equation are the central difference scheme (CDS) and the upwind
difference scheme (UDS). The CDS has a truncation error of O(h?) but has
convergence problems for large Reynolds numbers [14]. The UDS converges
for problems with large Reynolds number, but the order of accuracy is re-
duced to O(h) [9]. Both of these schemes are compact since every point
depends only on the adjacent grid points.

There are interests in finding higher order compact finite difference dis-
cretizations which provide better accuracy than the discretizations mentioned
above. Many fourth order compact discretizations have been developed for
the 2D [4, 8] and 3D [6, 13] convection diffusion equation. Sixth order schemes
[10, 11, 12] have also been developed. In the present paper, sixth order
schemes which use Richardson extrapolation and post extrapolation interpo-
lation to increase the solution accuracy from fourth order to sixth order are
of interest.

When discretizing a problem, it is desirable to have many points in areas
with high gradient in order to obtain high solution accuracy. Conversely, it
is desirable to have fewer grid points in smooth areas of the domain. This
reduces the computational and storage costs required to obtain the solution.
Many of the higher order discretizations require regular grid spacing which
prevents increasing the number of grid points in regions with high gradient.
In particular, techniques using Richardson extrapolation require grids such



that the truncation error on a fine grid is a known multiple of the truncation
error on a coarser grid.

In the present paper, a sixth order compact scheme that allows graded
computation domains is presented. The scheme uses a coordinate transfor-
mation from [2] to transform the graded mesh into a regular grid. A fourth
order discretization is used on the regular grid. Richardson extrapolation
is applied on the regular grid to obtain a sixth order solution. Finally, the
solution is transfered back to the graded mesh.

An outline of the paper is as follows. In Section 2 the coordinate trans-
formation and the associated discretization scheme is presented. Section 3
describes the Richardson extrapolation technique used to obtain a sixth or-
der solution on a non uniform grid. The multigrid method used to solve the
system is discussed in Section 4. The post extrapolation smoothing used
to obtain a sixth order solution on the fine grid is discussed in Section 5.
Numerical results are presented in Section 6.

2 Coordinate Transform

Let M : (z,y) — (&,1) be a non degenerate map from a graded mesh on
(z,y) € [0,1]* to a uniform mesh on (£,n) € [0,1]%. On the uniform mesh
Equation (1) becomes [3]

&, muge + B(E,n)uny + c(§n)ugy + ME nue + u(&nuy, = f(En)  (2)

where the coefficients are given by

In the case where both the uniform and graded meshes are orthogonal and
have the same unit vectors for each axis, then ¢ = 0 and Equation (2) becomes

(&, m)uge + B(E, M)y + A& mue + (& muy, = f(E,n). (3)



Gupta et al. [5] have obtained a fourth order finite difference scheme for
Equation (3) by substituting Taylor series expansions into Equation (3). The
discretization is given by

8
Z%‘Uz‘ = 6h° foo + h*(fao + fo2 + T1fio + Tafor), (4)
i=0

where the coefficients are given by

g = —(2R1 + 2R2 + 451),

a; = Ry + Ra,
az = Ry + Ry,
az = Ry — Ra,
ay = Ry — Ry,

as = S1 + Sz + S3 + Sy,
ag = S1 + Sz — 53 — Sy,
ay = S1 — Sy + 83 — 84,
ag = 51 — Sy — 53+ Sy,
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The double subscripts on «, 8, A, u, and f denote partial derivatives in the
¢ and n directions respectively. For example,
1 0Ma

Instead of using the analytical solution given in (5) the solution method
presented here uses the central difference scheme to approximate the partial
derivatives.

3 Richardson Extrapolation

Richardson extrapolation [7] uses the relationship between the truncation
error on different scale grids to increase the order of accuracy of the solution.
Suppose the truncation error of a fourth order finite difference discretization
is given by

f=fu+ Kh*+O(1"), (6)
then the truncation error on the 2h grid can be written as
f = Foan+ K(20)* + O(1). (7)

Using (6) and (7) a sixth order solution can be obtained by the substitution

16/, — fon
15

Consider the transformation M and discretization from Section 2. If the
transformed convection diffusion equation is solved on (£, n) the solution is
O(h*). However, this h corresponds to the spacing between grid points on the
(&,m) grid, not the spacing between grid points on the (x,y) grid. To make
this clear denote the grid spacing as h,). Now suppose the approximate
solution at (o, 8) € (€,n) is f and the exact solution is f. Then Equation
(8) becomes

f= +O(RS). 8)

16 f — fon
f=—FF O(hfe)-

An expansion in h for the (z,y) coordinates is not meaningful since the
spacing between points is potentially different in every direction. The scheme
in the present paper is said to be sixth order since the order of accuracy on
the uniform mesh is sixth order.



4 Multigrid Solution Method

Standard iterative methods such as Jacobi or Gauss-Seidel typically require
O(n?) time to converge for a system with n unknowns. This occurs because
these methods are able to eliminate high frequency error quickly but take
many iterations to remove low frequency error. The multigrid method [1] uses
multiple scale grids to alleviate this problem. On coarser grids, error that is
low frequency on fine grids becomes high frequency and can be eliminated
efficiently using iterative methods.

The multigrid method used in the present paper is the V-cycle. A V(i,7)-
cycle starts on the finest grid which is smoothed using an iterative method
7 times. The residual is then restricted onto a coarser grid. This process
is repeated until the coarsest grid level is reached. The residual from the
coarsest grid is projected onto the second coarsest grid and smoothed j times.
This is repeated until the finest grid level is reached. Once the finest grid level
is reached, the V-cycle is complete. Typically, multiple V-cycles are required
to obtain a converged solution, but the number of V-cycles is independent
from the number of unknowns for many problems.

In the present paper V(1,1) cycles are used. The smoothing method
used is line Gauss-Seidel. Full weighting is used as the restriction operator.
Bilinear interpolation is used as the prolongation operator.

5 Post Extrapolation Smoothing

The multigrid method discussed in the previous section is used to compute
fourth order solutions on a fine and coarse grid with grid spacings h and
2h respectively. Richardson extrapolation results in a sixth order solution
on the 2h grid. In order to obtain a sixth order solution on the h grid, the
operator interpolation® technique from [11] is applied.

In order to apply post extrapolation smoothing, the sixth order 2h grid
points are interpolated to the (even,even) grid points of the fourth order
h grid. After interpolation, the (odd, odd) points are updated using Gauss-
Seidel, followed by the (even,odd) and (odd, even) points. The Gauss-Seidel
smoothing continues until the residual norm reaches a specified tolerance.

'In the present paper, operator interpolation is referred to as post extrapolation
smoothing.



Figure 1: Computed solution for Problem 1 after post extrapolation smooth-
ing for € = .01 on the graded mesh with 1/h = 32. Left side shows v = 5,
right side shows v = 20.

6 Numerical Results

The domain for all problems is the unit cube. Standard V(1,1) cycles are
used for the multigrid V-cycles. The initial guess for u is the zero vector.
The stopping condition is a residual norm of 1071°. The reported maximum
error is given by
Emaa: = =sup |ai,j - 'Ufi,j|~
(4,9)€0n

In order to calculate the order of accuracy experimentally, the average error
is used: R

oo Z(i,j)eﬂh |W,j — wigl
e Z(i,j)eﬂh |wi g

The reported order of accuracy is then computed using

_ log E2h /Ec’fvg

avg

log 2



Figure 2: Computed solution for Problem 1 after post extrapolation smooth-
ing for € = .01 on the graded mesh with 1/h = 32. Left side shows 7 = 50,
right side shows v = 200.

6.1 Problem 1

In this section the same test problem as [2, 3, 5] is used for comparison. The
test problem uses the constant convection diffusion equation given by

—€(Ugy + Uyy) + Uy = 0.

The exact solution is then
2¢~1/2¢sinh(ox) 4 sinh[o(1 — z)]
sinh o

u(z,y) = "> sin(my)

)

where 02 = 2 + €2 /4. The following coordinate transformation is used,

v o= (1-e¥)/1-e9),
y =
Q = In(y)/(1-Ag).

Using the same method as Dai et al. [2] the mesh stretching in the z direction
is quantified using v. Where ~ is the ratio between the largest and smallest
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Az in the discretization. Examples of computed values for u(z,y) are shown
in Figures 1 and 2.

Table 1: Problem 1 numerical results for extrapolation. CPU times are not
included because the variance of the measurement was comparible to the
measured value in most cases. In the case v = 50, € = 0.1 the residual when
restricting from fine to coarse grids was scaled by 0.5 to obtain a better
convergence rate.

1/h = 32 1/h =64 1/h = 128
€ ¥ FEmax o] Tter. FEmax (0] Tter. FEmazx o ITter.

1 5 5.02(-8) | 5.74 (9,8) 7.88(-10) | 5.96 (10,9) 1.22(-11) | 6.01 (11,9)

5 8.46(-8) | 6.14 (11,9) 1.30(-9) 6.07 (11,9) 2.02(-11) | 6.03 (11,8)

0.1 10 2.09(-7) | 6.06 | (14,10) 3.23(-9) 6.03 (14,9) 4.94(-11) | 6.03 (14,9)
50 3.35(-6) | 6.53 | (14,13) 4.13(-8) 6.11 | (17,13) 6.46(-10) | 6.04 | (254,256)

5 4.99(-4) | 5.83 | (15,17) 1.12(-5) 5.89 | (21,17) 1.88(-7) 5.99 (23,16)

10 || 8.71(-5) | 6.72 | (17,21) || L.45(-6) | 6.09 | (26,22) || 2.42(-8) | 6.04 | (29,21)

0.01 20 1.66(-5) | 7.08 | (19,23) 2.72(-7) 6.06 | (30,25) 4.45(-9) 6.01 (33,25)

’ 50 8.94(-6) | 6.86 | (21,24) 1.60(-7) 5.62 | (31,33) 2.66(-9) 5.84 (44,35)

100 1.38(-5) | 6.56 | (22,23) 2.82(-7) 5.37 | (30,37) 4.99(-9) 5.71 (50,46)

200 || 2.51(-5) | 6.46 | (25,29) || 5.49(-7) | 5.30 | (36,39) || 1.03(-8) | 5.61 | (54,58)

50 1.08(-1) | 2.34 (6,11) 4.69(-4) 7.26 | (13,29) 1.10(-5) 5.89 (37,39)

100 || 2.28(-3) | 6.62 | (6,12) || 4.72(-5) | 7.13 | (14,28) || 8.24(-7) | 5.81 | (36,42

0.001 [ 200 || 3.92(-4) | 853 | (6,13) || 6.35(-6) | 6.28 | (15,26) || 1.31(-7) | 5.10 | (33,44)

300 [[ 2.31(-4) | 8.82 (6,13) 3.78(-6) 5.79 | (15,25) 1.01(-7) 4.81 (34,45)

400 || 2.01(-4) | 8.71 (6,13) 3.46(-6) 5.58 | (16,27) 1.09(-7) 4.68 (34,46)

The order of accuracy of the extrapolated solution was improved in all
cases; however for small €, the improvment in the order of accuracy is greatly
reduced on large grids. This occurs because the fourth order discretization
produces results less than fourth order. The change in the order of accuracy
of the unextrapolated solution greatly reduces the accuracy gained by extrap-
olation. For small € the number of iterations required to converge increases
with grid size. (This is typical for problems with high Reynolds number.) It
is interesting to note that the iterations required to converge on the 1/h = 32
grid are smaller for higher e. For small grids and high ¢, the problem can ac-
tually be solved in very few iterations by a standard Gauss-Seidel solver [2].
This contributes to the small number of V-cycles required for convergence.



Table 2: Problem 1 numerical results after post extrapolation smoothing.
The iterations reported are the number of Gauss-Seidel iterations required
to reduce the residual norm to 1071° after extrapolation.

1/h =32 1/h =64 1/h = 128
€ ¥ Frmax O Iter. FErmax O Tter. FErnaz O Iter.
1 5 5.09(-7) | 5.78 29 9.12(-9) | 5.93 27 1.52(-10) | 6.04 25
5 | 1.00(-7) | 5.87 | 29 || 1.70(-9) | 5.94 | 29 || 2.87(-11) | 5.96 | 26
0.1 10 7.61(-7) | 5.61 42 1.49(-8) | 5.83 46 2.73(-10) | 5.93 46
50 8.42(-6) | 5.64 | 122 1.74(-7) | 5.73 | 180 3.04(-9) 5.86 | 226
5 | 1.72(-3) | 5.03 | 23 | 6.86(-5) | 5.02 | 33 || 2.27(-6) | 5.38 | 40
10 3.96(-4) | 5.23 28 1.67(-5) | 5.05 52 4.69(-7) 5.43 65
0.01 20 1.09(-4) | 5.36 45 3.96(-6) | 5.13 85 9.78(-8) 5.54 | 113
’ 50 2.23(-5) | 5.92 83 6.72(-7) | 5.18 | 146 2.77(-8) 5.38 | 212
100 || 6.65(-5) | 5.70 | 120 2.74(-6) | 4.83 | 241 8.88(-8) 5.21 | 398
200 1.44(-4) | 5.46 | 153 5.65(-7) | 4.79 | 373 1.75(-7) 5.18 | 693
50 || 2.44(-2) | 4.09 | 561 || 2.17(-3) | 5.65 | 146 || 1.40(-4) | 4.40 | 94
100 || 5.48(-3) | 5.91 | 504 3.87(-4) | 5.17 | 155 2.40(-5) 4.27 | 164
0.001 [ 200 || 1.21(-3) | 7.48 | 447 || 8.12(-5) | 4.80 | 166 || 5.15(-6) | 4.28 | 290
300 [ 5.09(-4) | 7.87 | 422 3.62(-5) | 4.78 | 175 2.28(-6) 4.34 | 396
400 || 2.89(-4) | 7.93 | 425 || 2.10(-5) | 4.82 | 190 || 1.32(-6) | 4.39 | 4%5

6.2 Problem 2

In this section a test problem with a non-zero right hand side and variable p
and ¢ values is used. The problem is as follows,

p(r,y) = Rex(z —1)(1-2y),

q(z,y) = Rey(y—1)(1 - 2z),

u(z,y) = exp(—o(x—3)*—y?),

f(@y) = e+ uyy + p(x,y)us + q(z, y)uy

For large Re the solution to this problem has a very steep slope near x =
0.5. In order to place more points near this line, the following coordinate
transform is used:

r = &+ g-sin(27),

y = n

In Table 3 results for varying degrees of mesh stretching are shown. By

increasing v from 0.1 to 0.7 the maximum error is decreased by three orders
of magnitude. Table 4 shows results for various mesh sizes. The V-cycles
required to converge are independent of grid size. The Gauss-Seidel iterations
required for post extrapolation smoothing actually decrease with grid size in
most cases.
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Table 3: Problem 2 numerical results for different values of +. Higher v
values indicate more mesh stretching.

1/h = 512,0 = 1000, Re = 1000
¥ Fmaz O Vap Cycles | Vi, Cycles | Smoothing Iter.
0.1 | 1.67(-7) | 5.89 10 9 26
0.2 | 9.68(-8) | 5.90 10 9 26
0.3 | 5.30(-8) | 5.90 10 8 28
0.4 | 2.77(-8) | 5.91 10 8 30
0.5 | 1.30(-8) | 5.92 11 9 35
0.6 | 5.52(-9) | 5.93 11 9 44
0.7 | 4.11(-9) | 5.94 11 10 64
0.8 | 4.90(-9) | 5.91 12 11 130

Table 4: Problem 2 numerical results for different grid sizes.

v =0.7,0 = 1000, Re = 1000
1/h Enax O Vop, Cycles | Vj, Cycles | Smoothing Iter.
64 3.72(-4) 6.19 12 13 117
128 1.04(-5) 5.24 11 11 70
256 | 2.35(-7) | 5.73 11 10 69
512 2.77(-8) 5.91 10 8 30
1024 6.67(-11) 5.24 11 9 58

7 Concluding Remarks

A sixth order multigrid solver for the convection diffusion equation was pre-
sented. Numerical results for the first test problem show sixth order solutions
for e =1 to € = 0.1. Solutions for smaller € failed to achieve sixth order so-
lutions, but still show greater than fourth order accuracy. Additionally, the
results show that an appropriately chosen graded mesh can reduce the max-
imum error by over one order of magnitude. For the second test problem
similar results were observed. In this case a graded mesh was able to reduce
the maximum error by three orders of magnitude.
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