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Abstract. In this paper, we study a nanoparticle suspended in water within a channel with a
complex wall geometry in a laminar flow regime. We combine two independent iterative methods
into one multiscale approach to compute the movement of the particle: a Lattice Boltzmann fluid-
structure interaction code and a Navier-Stokes solver with the Faxén particle force estimation. A new
switching strategy between these two methods is developed. On the one hand, the computationally
expensive Lattice Boltzmann fluid-structure code is used in time intervals when short-time effects
may yield a strong impact on the particle simulation. On the other hand, the Navier-Stokes solver
with the Faxén correction is used to compute the particle movement when long-time predictions to
the particle motion are possible and sufficient. We describe our coupling strategy, the mapping of
unknowns between the two solvers and provide results for different particulate flow scenarios. Due
to coupling of the two systems and the automatic switching we reduce the total computing time by
magnitudes.

1. Introduction. Particle transport phenomena are of interest in industry and
science. Motion of nanoparticles in blood attracts a considerable attention in pharma-
cology [6], and in the environmental sciences it is important to determine the location
of contaminant sediments [17]. Other interesting examples include hydrodynamic
Brownian motors or drift ratchets [9, 14]. The latter microscopic device type has
proven to be very efficient for sorting molecules depending on their size and weight.

Referring to the simulation of the underlying process, a fluid-structure interaction
(FSI) problem needs to be solved. However, not all experiments require the full model
to trace the particles accurately. If fluid flow is laminar, if the particle is far away
from outer boundaries, and if there is no particle-particle interplay, a unidirectional
coupling neglecting the influence of the particle on the flow yields already accurate
results [20]. Several approaches exist which allow to compute the hydrodynamic force
for compressible and incompressible fluids, different flow types, and different shapes
of particles in such simplified settings [3, 8, 13, 15, 16, 18, 23]. Amongst others, Faxén
theorems [5] provide means to compute translational and rotational hydrodynamic
forces acting on a particle in the Stokes flow regime.

There are relevant effects of interest such as particle drifts [2] that require simu-
lation runs tackling long time intervals and capturing physical transport phenomena
on different time scales. We focus on laminar flows with one particle, and we propose
an iterative procedure of switching back and forth between two different flow solvers.
One FSI solver addresses settings where the Faxén theorem cannot be applied owing
to complicated domain shapes that affect the motion of the particles. Due to the long
time scale involved, it is, however, not possible to compute the underlying problem
by the FSI code all alone. It is computationally too expensive as it requires an accu-
rate spatial resolution, and the interaction imposes severe constraints on the biggest
timestep size that may be chosen. While FSI yields accurate results for all settings,
the particle nevertheless may spend considerable time far away from any wall. There-
fore, we propose to combine the two approaches, full FSI and the Faxén method, and
to switch to the appropriate model depending on the current situation. The force
postprocessing computations required by Faxén approach are fast and allow big time
steps; the FSI method is precise (Figure 1.1).
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FIGURE 1.1. Left: two different simulation modes: Faxén postprocessing can be applied on a
coarse grid using big timesteps (top) whereas the particle motion can be solved by full FSI using finer
grids and timesteps (bottom). Right: bilinear interpolation of Navier-Stokes equations quantities on
a staggered grid from the Lattice-Boltzmann values. Only four values in the small squares are
required for each interpolation.

Choosing the appropriate method — FSI or Faxén — requires a detection system
that automatically decides when to switch between the methods. In the present pa-
per, we propose to switch when the particle is close to walls or the flow field around
the particle shows severe changes over time. Our FSI code is based on the Lattice-
Boltzmann method and a simple spherical particle model, as its mesoscale description
allows precise computations of forces [10, 11] and the incorporation of thermal fluctu-
ations [4]. Furthermore, Lattice-Boltzmann codes are known to fit well to massively
parallel supercomputers. For the Faxén force computations we apply a finite differ-
ence solver of the Navier-Stokes equations. It uses explicit timestepping. For the
Navier-Stokes equations solver, we further use a significantly coarser grid than for the
Lattice-Boltzmann method (Figure 1.1). Besides, during the Navier-Stokes equations
simulations we do not refine the grid near the particle. The resulting grid is thus
regular and a good starting point to use geometric or geometrically inspired multigrid
solvers such as [24] for the underlying pressure Poisson equations.

The idea presented in the paper is motivated by the drift ratchet device from [9].
In [19], the author proposes to study exclusively the postprocessing forces for such
a setting, and he uses the Faxén theorems to compute the hydrodynamic interaction
forces and a Langevin description for the involved Brownian motion. Without a
quantification, he states that this model is not accurate in general. A full FST model
for the drift ratchet on the other hand is elaborated in [2]. According to this work,
even today’s supercomputers are far from able to resolve this problem on long time
scales with reasonable spatial resolutions. We hence combine these two approaches to
improve performance of simulations without a significant loss of accuracy.

The remainder of this paper is organized as follows: In Section 2, we provide a
detailed description of the two numerical methods that we use in our simulations. The
coupling of the two particle transport methods is introduced in Section 3. We compare
the forces obtained from the two approaches and present results of the drift ratchet
simulations in Section 4. A short outlook and recapitulation close the discussion in
Section 5.
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FIGURE 2.1. Particle transport simulation state diagram. The Faxén mode is running with big
timesteps on a coarse grid, and the FSI mode is running with small timesteps on a finer grid.

2. Two fluid-particle interaction models. In this paper, we start from regu-
lar Cartesian grid representing the computational domain without any particle. Into
this Cartesian grid, we embed a second adaptive Cartesian grid resolving the par-
ticle. Each coarse grid point also is a fine grid point besides those interfering with
the particle (Figure 1.1). This notion of embedded grids follows [21, 22] and both
fluid codes rely on the same data structures. On the coarse grid, we realize a simple
Navier-Stokes solver with a totally staggered degree of freedom layout and explicit
time stepping [7]. On top of this solver, we implement Faxén’s description discussed
on the following pages, while, on the fine grid, we realize a Lattice-Boltzmann FSI
code. As the Faxén description is not accurate if the particle is close to the walls or
the flow field around the particle is undergoing strong temporal changes, we propose
to use an expert system which decides when to switch and which simulation to run.

From the derivation in [19] of the Faxén theorems, we know that it is difficult to
estimate good thresholds, such as the distance of the particle from the wall and the
dynamic behavior of the fluid flow, which are required for the switching process. For
that reason, during switching, we run the two models simultaneously for a given time
interval AtFstFaxen)  Then we compare the particle positions of the FSI code X*sD
with the one of the Faxén approach X === TIf they differ significantly, i.e. || X®*s) —
X(Faxen)|| >, g(FSLFaxen) - we continue with the FSI code only for a given time interval
AtFS) before we compare again. If they do not differ significantly, we continue with
the Faxén code until a given time span At™>*® has passed, or until the particle
approaches the wall, or until the difference of the particle speed compared to the
virtually surrounding flow exceeds a given threshold e®*» (Figure 2.1).

2.1. Lattice-Boltzmann Method. The Lattice-Boltzmann method delivers a
mesoscopic description of the physical properties and, hence, is well suited for nano-
and microscale simulations. The method we use is based on a discretization of the
Boltzmann equation on a cubic lattice. The time evolution of the distribution func-
tions fx(r,t), which describe the probabilities to find molecules within the center point
of a lattice cell r at time ¢, consists of two main steps. We start with a collision step
which models molecular interactions on the statistical mesoscale:

Ft) = fulet) + Ay (Flet) = 0 (x,1)) (2.1)

where f](r,t) is the distribution function after collision, Ay is the collision operator,
and (9 (r,t) is the discrete Maxwell-Boltzmann equilibrium distribution function.
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The operator Ay is approximated by the Bhatnagar-Gross-Krook (BGK) [1] or the
multiple relaxation time scheme from [4] incorporating Brownian effects. After the
collision step, the distributions are propagated to the neighboring cells according to

Jr(r + dtvg, t + 0t) = fr.(r,t), (2.2)

modeling the convective behavior of the system. During this step, the molecules move
to the neighboring cells at discrete velocities vy.

The computation of the force acting on a spherical particle in the Lattice-Boltzmann
FSI code is based on the momentum exchange method [10, 11, 25]. The total force
acting on the particle is given by

WEsD — szinv(k) [fiw ey (@) + fr(@)] Vinv(k) = —Vk, (2.3)

zy k

where the outer sum is taken over all fluid cells near the moving sphere, and the inner
sum involves all velocity directions v that connect the boundary cell z; with the fluid
cell zj.

After evaluating the force, we update the particle position XD and velocity
V&FSD ysing a staggered explicit timestepping scheme:

VED(E 4 5dt) = VOD(t = 5dt) + SEWE (1),

(2.4)
XED(t 4 dt) = XE() 4 2 [dtVE(E— 2 dt) + VEI(t+ L dt)].

Based on the new position, the obstacle and fluid cells are reflagged and initialized
correspondingly. The whole scheme is implemented on top of an adaptive Cartesian
grid.

2.2. Navier-Stokes Equations with Faxén Correction. If we decide that
the Faxén approach is accurate enough, we solve the Navier-Stokes equations for an
incompressible flow:

OJu 1
E+(UoV)uf -Vp+ ﬁAquF, (2.5)
V-u=0,

where u is the fluid velocity, p the pressure, Re the Reynolds number, and F an
external volume force. The first set of equations corresponds to the law of momentum
conservation, the last equation represents mass conservation.

We apply the predictor-corrector scheme to solve the equations on a regular Carte-
sian grid [7]. From given fluid velocities u(¢) at timestep ¢ we predict a fluid velocity
for the new timestep ¢ + 1. Then we compute the pressure at ¢t + 1 from a Poisson
equation that arises from the assumption of mass conservation and the predicted ve-
locities u(t 4 1). The predicted velocities are corrected using the new pressure values
at t+ 1.

The forces acting on a suspended particle are computed in a postprocessing step
at the end of each timestep. They stem from Faxén theorems [5] and read

4l anla® _,
W(Faxen): . 2
" = /e ¢ NN (26)

W(Faxcn) — 67777a(u _ V(Faxcn)) 4 7T77a3v2 -, (27)

(3D)

u— V(Faxen)) +
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where W3 is the force acting on a cylindrical particle of length [ and radius a,
and WE;‘;’;Q“) is the force acting on a spherical particle of radius a. In both formulas,
V Faxen) g the velocity of the particle and u is the fluid velocity in the center of the
particle.

The new particle position X®**» and velocity V&> are computed in each
timestep from semi-explicit Euler updates for Newton’s laws of motion:

VFaxen) (4 dqt) = VFaxem(g) 4 %W(Faxen)(t)’ (2.8)
» 2.8
XEaxen) (p 4 ) = XF=en)(¢) 4 dEVEn) (¢ 4 dt).

The particle here is not associated with an obstacle. It does not influence the
fluid.

3. Coupling between Lattice-Boltzmann and Navier-Stokes solvers. Our
overall simulation is a time stepping algorithm built on top of an iterative solver for
the pressure equation. Transitions

((;lee)n) {fk (FSI)’ V(FSI)} N {u, P, )((Faxen)7 V(Faxen)}’

(3.1)
PEFFg;c)eu) . {u’ p, X(Faxen)’ V(Faxeu)} — {fk‘, X(FSI)’ V(FSI)}’

are required in order to switch from the Faxén to the FSI approach and vice versa.

3.1. Transition to the Faxén approach. We distinguish two types of transi-
tions: one for the fluid {fx} — {u,p} and another for the particle {X®D VFSH1
{X(Faxen) , V(Faxen) }'

With Pie™, the transition for the particle corresponds to the scaling to the
dimensionless units of the Navier-Stokes equations

X (Faxem) — X(FSD - apnd  VFmen) — VSD /g (3.2)

where @ is the characteristic fluid velocity (in a channel flow, for example, its value
corresponds to the fluid velocity at the inlet). For the transition P((}f;}‘f ™. we use the
inverse of the last equation.

During the transition for the fluid, we estimate macroscopic quantities (velocity

and pressure) at each grid point from the probability distribution functions:

Q
p(LB) (LB)CQ _ C2 Z frs pu(LB) — Z fevi, (33)
k=1

where p™®  p™® and u™® are the dimensionless LB pressure, density and velocity;
Cs 1= % is the dimensionless speed of sound on the lattice. The dimensional quantities

are given by
dz da?

u= u(LB)E’ % p(LB) P ditQ , (3.4)

where dz and dt are the mesh size and timestep of the LB simulation and p the
density of the fluid. Next, we rescale these quantities to the dimensionless NSE, see
amongst others [7].

We run the Lattice-Boltzmann code on a finer grid than the Navier-Stokes equa-
tions solver. Therefore, to estimate the macroscopic parameters we use only the



Lattice-Boltzmann cells adjacent to the pressure and velocity nodes of the staggered
Navier-Stokes grid (Figure 1.1).

In the FSI mode, the particle is represented by a spherical obstacle, but in the
Faxén mode, it is virtual. Consequently, during P, we do not have the fluid
velocities specified in the cells that are located within the particle geometry. In these
locations, we assign the particle velocity and zero pressure to the fluid. The correct
pressure is recovered when solving the first pressure Poisson equation.

Due to the differences between the flow models, the fluid flow carries undesired
perturbations after switching. Therefore, we do not run simulations immediately after
the transition. Instead, we fix the particle, stop time counters and let the system
recover over several iterations.

3.2. Transition to the FSI mode. There is no unique way for PGar™, because
the degrees of freedom of the Navier-Stokes system — i.e. the pressure and velocity
values — do not provide enough information for the statistical mesoscale description
of the LB approach. Furthermore, we have to recover values on the finer grid from
the coarse one (in all experiments described in the paper, the LB grid resolution is
six times finer than the NSE grid).

During ’P((lf;}‘f‘”, we interpolate the fluid velocities and pressures in each Lattice-
Boltzmann cell center. Afterwards, we apply inverse functions of (3.4) to obtain the
dimensionless quantities on the Lattice-Boltzmann grid. However, the pressure in the
Navier-Stokes equations may vary by a constant offset. Therefore, before converting
the pressure to the Lattice-Boltzmann units, we shift the pressure according to [12]:

P P
= [cz - <c3> * 1} ’ (3.5)

where (...) denotes the average value over all LB cells.

From the macroscopic velocities and densities in the LB cells, we determine the
distribution functions. In our application, we recover the equilibrium part of the
distribution function f,geq) from the macroscopic quantities.

As in the transition case PfFF::gn), we need to eliminate perturbations caused by
switching during a recovery period in the LB simulation where the boundary condi-

tions are fixed and a steady state is assumed.
4. Simulation Results.

4.1. Transition Analysis. The number of iterations of Gauss-Seidel (GS) type
solvers necessary to remove pollution effects due to P((gf}fin) can be estimated from
Figure 4.1. In these experiments, we used a two-dimensional channel scenario. The
number of timesteps does not strongly depend on the Reynolds number for the regimes
under consideration. It is only five to six steps for the GS solver and three to four
timesteps for the SOR solver that are sufficient to reach steady state, demonstrating
the efficiency of our switching from the LB to the NSE solver.

To analyze the transition process from perturbed to steady perturbation-reduced
flow after Pflf;}‘f“), we compute the average change of the fluid density between two
subsequent LB iterations:

N

N
o 1 (new) (old) 2
Ap = N [ . (Pi P ) ) (4.1)

=1
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FIGURE 4.1. Left: Number of the Gauss-Seidel (GS) and successive over-relazation (SOR)
solvers iterations after switching from the LB to NSE simulations. Right: Schematic representation
of the particle trajectory. Particle is moving in the center along the channel axis. The switching
occurs approximately in the gray circles.
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FIGURE 4.2. Density change over time in a LB simulation. The results are shown for LB grids
of size 360 x 72 (left) and 720 x 144 (right).

where we take the sum over all LB fluid cells. In Figure 4.2 we provide plots of
the average density change Ap depending on the number of timesteps. During the
transition process, the density change decays exponentially over time.

4.2. Comparison of Forces. To investigate the range of applicability of Faxén
theorems, we compare the postprocessing forces acting on a particle with the ones
obtained from the full FSI simulations.

In our experiments, we use a channel scenario and initially fix the particle in
the center of the channel. We let the fluid flow stabilize and then release the particle.
The particle is accelerated by the surrounding flow until it reaches a constant velocity.
During the transition process, we measure force dependencies on the particle velocity.

The flow field for the two-dimensional channel is described via

% =—-G, and u(y) = % ‘Re-G-y(d—y), (4.2)
where d is the distance between the walls or the diameter of the tube. However, for
three dimensions the formula is multiplied by factor 1/4 instead of 1/2.
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FIGURE 4.3. Force dependencies on the particles velocity for the two- (left plot) and three-
dimensional (right plot) channels. The gray solid lines correspond to simulation measurements, the
dashed black lines are Faxén forces. The force is decreasing by reducing the radius of the particle.

If we directly apply (2.6) and (2.7) correspondingly to the two- and three-dimensional
channels, we obtain the analytical expressions for the Faxén forces:

4l 1
(NSE) _ 42, . _ 4
Wz, In (1)) {(u 2% Re G> V] , (4.3)
1
WSy = 6mna [(u — Eaz -Re - G) — V] . (4.4)

We compare these linear dependencies on the particle velocity with the results
from the full FSI simulations using particles with density p = 2.0 and a characteristic
velocity u. = 0.00001 at the channel inlet. We provide measurements results for the
two-dimensional and three-dimensional channels with particles of different radii in
Figure 4.3.

The difference between the FSI and Faxén force is due to the inertia force term,
which is neglected in the Faxén theorems. There are alternative force postprocessing
formulas for tiny particles that take the missing terms into consideration [23].

4.3. Drift Ratchet Simulations. We conducted an experiment with the drift
ratchet to get an insight into the performance gain due to the expert system. The
particle trajectory during the simulations is schematically demonstrated in Figure 4.1.

The evolution of the simulation is demonstrated in Figure 4.4. In the plot, there
are four different simulation states: FSI, Faxén, and transitions from FSI to Faxén
mode and back. The slope of the line corresponds to the speed of the simulations,
i.e. the ratio of elapsed simulation time to simulated time. In the case of the FSI
simulations, the speed is 0.24, for the simulations with Faxén forces computation 2.5,
and for the whole application 0.57. From these results, we notice that our simulation
is accelerated by 0.57/0.24 ~ 2.36 in comparison to the pure FSI interactions run.
During the Navier-Stokes simulation, we speed up the application by 2.5/0.24 ~ 10.42.
The gain in performance is basically due to the coarser resolution in the Navier-Stokes
case, compared to the fine grid in the Lattice-Boltzmann simulations.
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FIGURE 4.4. Simulated time dependence on simulation or wall time; A — FSI mode, B — Faxén
mode, C and D — transition from FSI to Faxzén mode and back.

5. Conclusion. An efficient multiscale approach to simulate a particle transport
scenario with low Reynolds numbers has been developed. We show that the simulation
running under control of an expert system outperforms a classical FSI approach if
the Faxén postprocessing force computations are accurate enough, while the choice
of a proper model (either full FSI or the simplified setting) is hidden in a black-box
algorithm. The approach promises to help to overcome both the accuracy and runtime
problems reported in [2, 19].

Future work comprises to replace the simple Gauss-Seidel type solvers used for
the Navier-Stokes equations by a geometric multigrid solver [24]. Also, the paral-
lel performance of the presented methodology has to be studied in particular with
respect to load balancing issues tied to the multiscale formulation. For both endeav-
ors, it will prove to be an advantage that all implementation components already are
implemented within one computational framework [21, 22].

Finally, both this methodology, extensions of the present work, and improve-
ments of the individual ingredients such as adaptive mesh refinement for the Lattice-
Boltzmann FSI code have to lead to new scientific insight about the particle move-
ments on the long time term. So far, our approach has been tested only for relatively
short time periods and coarse grids.
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