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Abstract. Obtaining high resolution images of space objects from ground based telescopes is chal-
lenging, and often requires computational post processing using image deconvolution methods. Good
reconstructions can be obtained if the convolution kernel can be accurately estimated. The convolution
kernel is defined by the wavefront of light, and how it is distorted as it propagates through the atmo-
sphere. In this paper we describe the wavefront reconstruction problem, and more specifically, a new
linear least squares model that exploits information from multiple measurements.
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1. Introduction. When looking up to the sky, we can see stars sparkling. This
phenomenon results when light passes through the turbulent atmosphere. The tur-
bulence is caused by temperature fluctuations in the atmosphere, and consequently
introduces refraction [10]. As a result, observation of spatial objects by ground-based
telescopes will be degraded along the optical path through the atmosphere. Mathe-
matically, this is modeled using a convolution formulation

g(x, y) =
∫

R2
k(x, y; ξ, η) f (ξ, η)dξdη + eg(x, y) (1.1)

where f is the true object, g is the observed image, and eg is additive noise. The
kernel function k models the blurring operation, and is called the point spread function
(PSF). In many applications the kernel satisfies k(x, y; ξ, η) = k(x− ξ, y− η), and the
blur is said to be spatially invariant.

By the Fourier optics model for the atmospheric turbulence [5], the PSF k is ex-
pressed as

k(x, y) = |F−1{P(x, y)eτφ(x,y)}|2 (1.2)

where F−1 is the inverse the Fourier transform, P is the mirror pupil function (a
characteristic function, that is P(x, y) is 1 inside the pupil and 0 outside), τ =

√−1,
and φ is the phase distribution of the wavefront. If φ is known, then deconvolution
(or image deblurring) methods can be used to reconstruct f from equation (1.1). In
this paper the key problem is to reconstruct φ.

In order to obtain an approximation of φ, gradient measurements from a wave-
front sensor (WFS) on the telescope are used. We consider reconstructing the wave-
front phase by the model

[
φx
φy

]
=

[
Dx
Dy

]
φ + eφ (1.3)

where φx and φy are the discrete, noisy measurements of the horizontal and vertical
derivatives of φ, Dx and Dy are discrete, horizontal and vertical derivative operators.
The precise structure of Dx and Dy depend on geometry of the wavefront sensor
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[6, 7, 8]. More details on constructing Dx and Dy and solving equation (1.3) will be
discussed in later sections of this paper.

Once φ is reconstructed, and hence the convolution kernel k is known, we can
then use deconvolution methods, such as those described in [13, 14], to compute
an approximation of the object f . This paper is organized as the following: Sec-
tion 2 discusses the mathematical model and the approach to solve the wavefront
(or, more precisely, the wavefront phase) reconstruction problem; some numerical
experiments are supplied in Section 3; finally conclusion is in Section 4.

2. Mathematical Formulation of Wavefront Reconstruction. As mentioned, in
practice the wavefront phase cannot be directly obtained; instead, a sensor inside the
telescope measures gradients of φ, but only on a relatively coarse grid. The measure-
ments on coarse grids will result in one of the difficulties for image restoration be-
cause direct reconstruction of the wavefront phase by interpolation from the coarse
gradients cannot achieve the required accuracy. This is especially true in cases of
poor seeing conditions, when the atmosphere is highly turbulent. Consequently,
when using this reconstruction to restore the images of spatial objects, the restored
images will probably not be sufficiently clear. To obtain gradient information on a
finer grid, we exploit a Frozen Flow Hypothesis (FFH).

2.1. Frozen Flow Hypothesis. The FFH assumes that the entire spatial pattern
of a random turbulent field is transported along with the wind velocity. Turbulent
eddies do not change significantly as they are carried across the telescope by the
wind. By the FFH, multiple frames of wavefront phase, or their gradients, can be
included for construction of the turbulence on a finer grid. That is, for a short time
interval, the wavefront phase and also the gradients are frozen, and by collecting
multiple frames of gradient measurements that overlap on adjacent frames, we can
obtain additional information for the wavefront reconstruction problem.

Moreover, by the FFH, atmospheric turbulence can be modeled by a series of in-
dependent static layers, each moving across the telescope aperture with the prevail-
ing wind at the altitude of the layer. Because of its simplicity, the FFH is frequently
used as the basis for numerical studies of telescope imaging performance, particu-
larly in the modeling of adaptive optics (AO) systems [12]. While the FFH is observed
not to hold in the real world over long time scales, a number of studies have shown
that it is a reasonable approximation for short but still interesting periods [1, 2, 3].

To use the FFH to reconstruct wavefront gradients, several frames of data are
collected over a short time period, each giving gradient measurements at a different
set of grid points. This is illustrated in Figure 2.1. For ease of presentation, we
consider only one layer; clearly multiple, overlapping layers will provide even more
grid points in regions where the various layers overlap each other. Note that the
composite grid resolution depends on the velocity profile.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Composite Grid

FIG. 2.1. Illustration of building a composite, high resolution grid using gradient grid points from several frames.
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2.2. Linear Model of the Wavefront Motion. Through appropriate coordinates,
we could represent the movement of the wavefront phase and the gradients by shift-
ing their images. Let φ(x, y) be a function describing the values of the wavefront
phase at given positions (x, y), and φ be a discrete sample of φ(x, y). That is,

φ(i, j) = φ(xi, yj), i, j = 1, 2, . . . , n.

By the FFH, the randomly distributed wavefront phase is moved rigidly. Thus,
we could obtain frames of the wavefront phase by shifting the coordinates. The
shifting process can be described by a 3×3 affine transformation matrix constructed
by the velocity of the wavefront. Let φ(m) be the mth discretization of φ(x, y) (the
mth frame) of a rigid movement, then

φ(m)(i, j) = φ(x̂i, ŷj), where




x̂i
ŷj
1


 =




a11 a12 a13
a21 a22 a23
0 0 1







xi
yj
1


 .

Note that after shifting, the new coordinates (x̂i, ŷj) may not exactly fall onto the
original grids, as illustrated in Figure 2.2. That is we may not be able to access the
discrete values of the wavefront phase in φ because only the values on certain grid
points are known. To obtain approximate values, we use bilinear interpolation of the

FIG. 2.2. A single frame of data can be aligned to an underlying, uniform fine grid, as illustrated with the
image on the left. However, additional frames are likely to move to locations that do not fall directly on the uniform
grid; this is illustrated with the image on the right. In this figure, the x’s denote points on the underlying uniform
grid, and the o’s denote points on the coarse grid of each frame of WFS data.

most adjacent points surrounding the value of the wavefront phase, or its gradient,
on the shifted position φ(x̂i, ŷj). If we assume that the distance between pixel centers
is one, then the weights for bilinear interpolation are given as

φ(m)(i, j) = φ(x̂i, ŷj)

≈ (1− ∆xi)(1− ∆yj)φ(xî, y ĵ) + (1− ∆xi)∆yjφ(xî, y ĵ+1)

+ ∆xi(1− ∆yj)φ(xî+1, y ĵ) + ∆xi∆yjφ(xî+1, y ĵ+1)

where ∆xi = x̂i − xi and ∆yj = ŷj − yj. In order to define a matrix-vector multipli-
cation to represent the interpolation above, we need to vectorize φ = vec(φ), and so
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φ(m) = vec(φ(m)). Then we can write

φ(m) = Amφ

where the matrix Am is a sparse matrix that contains the interpolation weights.
Specifically, the kth row of Am contains the weights for the pixel in the kth entry
of φ(m). If we use bilinear interpolation, then there are at most four nonzero entries
in each row,

(1− ∆xi)(1− ∆yj), (1− ∆xi)∆yj, ∆xi(1− ∆yj), ∆xi∆yj.

Note that each interpolation matrix Am contains the velocity information (in-
cluding both the speed and the direction) which defines ∆xi and ∆yj of each frame.

As mentioned above, we do not know the wavefront phase directly, but a mea-
surement of the gradients. Then a linear formulation of the whole process can be
written as

φ
(m)
x = RWAmDxφ and φ

(m)
y = RWAmDyφ

where W is an sparse indicator matrix that grabs a certain section of φ, and R is a
sparse downsampling matrix that transforms high resolution data to a lower resolu-
tion. Suppose the number of frames is m, then we have

[
φ

(1:m)
x

φ
(1:m)
y

]
=

[
(I ⊗ RW)ADx
(I ⊗ RW)ADy

]
φ

where R, W , Dx, Dy were previously defined, ⊗ denotes Kronecker product, I is an
m×m identity matrix, and

φ
(1:m)
x =




φ
(1)
x

φ
(2)
x
...

φ
(m)
x




, φ
(1:m)
y =




φ
(1)
y

φ
(2)
y
...

φ
(m)
y




, A =




A1
A2
...

Am


 .

In this model, φ represents a large, global wavefront phase; but at the time each
frame of data is collected, the telescope detects only a small subregion of information,
which is modeled by the matrix W .

Note that it is impossible to reconstruct the whole global wavefront phase φ
because we cannot collect enough gradient data to cover the whole wavefront phase
region. However, we can construct a composite of the collected information on a
high resolution grid by two steps: first, solve two underdetermined least squares
problems for the composite x-gradients and y-gradients

φ
composite
z = arg min

φz

∥∥∥φ
(1:m)
z − (I ⊗ RW)Aφz

∥∥∥
2

2
(2.1)

where z = x, y; next, use the computed gradients φ̂
(i)
x and φ̂

(i)
y , i = 1, · · · , m, from the

last step to solve the underdetermined least squares problems for φ of each frame

φ(i) = arg min
φ

∥∥∥∥∥

[
φ̂

(i)
x

φ̂
(i)
y

]
−

[
Dx
Dy

]
φ

∥∥∥∥∥
2

2

. (2.2)
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We remark that both (2.1) and (2.2) are underdetermined, and can be sensitive
to noise in the measured data. It is often the case that Tikhonov regularization [14,
15] is incorporated into the least squares formulation, but it is also possible to use
truncated iteration methods as well.

2.3. Multi-Layered Atmospheric Model. The previous section focused on the
single layer wavefront phase problem. Specifically, the atmosphere above the tele-
scope can be split into several dominant layers, which move with different velocities,
and this is a more precise model in practice. For the multi-layered problem, we as-
sume that the composite high resolution wavefront phase at the telescope is the sum
of the high resolution wavefront phase at each altitude. Then we have

φ =
L

∑
n=1

cjφj (2.3)

where L is the number of turbulent layers, φ is the wavefront phase at the telescope,
φj is the wavefront phase of the jth layer, and cj is a constant such that ∑L

j=1 cj = 1
and are used to specify relative dominance in the contribution of each layer to the
total turbulent field. For example, if it is assumed that all layers contribute equally
to the total wavefront phase hitting the telescope, then c1 = c2 = · · · = cL. On the
other hand, if it is assumed that the kth layer is the dominant layer of the atmospheric
turbulence, then ck À cj, j = 1, · · · , k− 1, k + 1, · · · , L.

Similar to the single layer turbulent model, in the multi-layered case, we model
this problem by two steps



φ
composite
z,1

...
φ

composite
z,L


 = arg min

φz,1,··· ,φz,L

∥∥∥∥∥∥∥∥
φ

(1:m)
z − (I ⊗ RW)A1Dx · · · (I ⊗ RW)AL




c1φz,1

...

cLφz,L




∥∥∥∥∥∥∥∥

2

2

,

(2.4)

φ(i) = arg min
φ

∥∥∥∥∥

[
φ̂

(i)
x

φ̂
(i)
y

]
−

[
Dx
Dy

]
φ

∥∥∥∥∥
2

2

(2.5)

where z = x, y, φ
composite
z,j represents the composite gradients of the jth layer, j = 1 :

L, φ
(1:m)
x , φ

(1:m)
y , φ̂

(1:m)
x , φ̂

(1:m)
y , I, R, W , Dx and Dy are defined as before; Aj denotes

the matrix that defines the motion of the atmosphere for layer j. In particular,

Aj =




A1,j
A2,j

...
Am,j


 , j = 1, 2, · · · , L

where Ai,j is the motion matrix for the ith frame of the jth layer. Here we assume
there are L layers and m frames for each layer. Again, (2.4) and (2.5) are underdeter-
mined.

3. Numerical Results. For the numerical experiments in this paper, we set some
parameters according to practical situations as following: the diameter of the tele-
scope is 3.7 m, the wavelength is 0.744×10−6 m, and the propagation distance is 25
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km. We only illustrate the efficiency of the multi-layered FFH approach because the
single layer approach is a special (and simple) case of it. We assume there are three
different turbulent layers in total, and for each layer we assume 50 frames data. The
associated data is listed in Table 3.1.

TABLE 3.1
Turbulent layers

layer location (km) wind velocity (pixel/frame) wind direction
1 0 0.1730 horizontally
2 11 0.9686 vertically
3 15 0.5189 diagonally

The size of the least squares system depends on the image size, wind velocity,
which decides the size of the composite image, and the downsample size. The image
size of each frame is 256 by 256. Using the above wind velocity, the composite size
is 304 by 304. The size of the downsampling image is 64 by 64. Therefore, the size of
the least squares problem in (2.4) is 204800 by 277248.

Another important parameter to measure the severity of the blurring is the ratio
between the telescope diameter D and the Fried parameter r0. In physics, the smaller
the ratio D

r0
is, the less turbulence is involved in the captured images. In general if D

r0
is less than 20, then the captured images are not too blurred as shown in Figure 3.3;
otherwise, the wavefront is highly oscillatory, and so the captured images are much
more blurred, as shown in Figure 3.9.

We apply Tikhonov regularization to solve (2.4) by setting regularization param-
eter 1000

√
ε, where ε is the machine precision, and LSQR as the solver.

3.1. Experiment 1. First, we consider the case when D
r0

= 5, and thus the wave-
front is very smooth, and there is very little blur in observed image. Three differ-
ent approaches are used: the multi-layered FFH approach, the single layer FFH ap-
proach and a naive approach which is simply to resize the gradients information.
The reconstructed composite gradients and phase is shown in Figure 3.1. Figure 3.2
shows the comparison of the relative errors of the reconstructed PSF, and Figure 3.3
is the true image and the reconstructed image by the three approaches.
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FIG. 3.1. From left to right (by multi-layered FFH approach, D
r0

= 5): the 1st layer of composite x-gradients,
the 1st layer of composite y-gradients, the 1st frame of the true phase, and the 1st frame of the reconstructed phase.
The regions of the composite gradients are consistent with the turbulent direction (horizontally) of the first layer.

3.2. Experiment 2. Next, we consider D
r0

= 20, which means that the wavefront
has nontrivial oscillations, and the observed image contains a significant amount of
blurring. Again, the above three different approaches are used. The reconstructed
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FIG. 3.2. Compare the relative error of the reconstructed PSF from the three different approaches when D
r0

= 5.
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FIG. 3.3. Top: the true object. From left to right ( D
r0

= 5) : the 1st frame of the observed blurred image (the
blur is not too significant), the reconstructed image by multi-layered FFH model, the reconstructed image by single
layer FFH model, the reconstructed image by naive approach.

composite gradients and phase is shown in Figure 3.4. Figure 3.5 shows the compar-
ison of the relative errors of the reconstructed PSF, and Figure 3.6 is the true image
and the reconstructed image by the three approaches.

3.3. Experiment 3. Finally, we consider D
r0

= 45. In this case, the wavefront
is highly oscillatory and the observed images are severely blurred. Three different
approaches are used. The reconstructed composite gradients and phase is shown
in Figure 3.7. Figure 3.8 shows the comparison of the relative errors in PSF, and
Figure 3.9 is the true image and the reconstructed image by the three approaches.

4. Conclusions. Note that the least squares problem (2.4) only depends on the
wind velocity. Thus the structure of the coefficient matrix, such as the number of
non-zero entries does not change with D

r0
. In fact, the number of non-zeros in (2.4)
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FIG. 3.4. From left to right (by multi-layered FFH approach, D
r0

= 20): the 1st layer of composite x-gradients,
the 1st layer of composite y-gradients, the 1st frame of the true phase, and the 1st frame of the reconstructed phase.
The regions of the composite gradients are consistent with the turbulent direction (horizontally) of the first layer.
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FIG. 3.5. Compare the relative error of the reconstructed PSF from the three different approaches when D
r0

= 20.
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FIG. 3.6. Top: the true object. From left to right ( D
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= 20) : the 1st frame of the observed blurred image (the
blur is quite significant), the reconstructed image by multi-layered FFH model, the reconstructed image by single
layer FFH model, the reconstructed image by naive approach.
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FIG. 3.7. From left to right (by multi-layered FFH approach, D
r0

= 45): the 1st layer of composite x-gradients,
the 1st layer of composite y-gradients, the 1st frame of the true phase, and the 1st frame of the reconstructed phase.
The regions of the composite gradients are consistent with the turbulent direction (horizontally) of the first layer.
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FIG. 3.8. Compare the relative error of the reconstructed PSF from the three different approaches when D
r0

= 45.
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FIG. 3.9. Top: the true object. From left to right ( D
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= 45) : the 1st frame of the observed blurred image (the
blur is very significant), the reconstructed image by multi-layered FFH model, the reconstructed image by single
layer FFH model, the reconstructed image by naive approach.



10 Q. CHU

is 2616204. Since the size and the number of non-zeros do not change over D
r0

, the
number of iterations does not change:

TABLE 4.1
Iterative Information

φz ( D
r0

) number of iterations relative residual
φx (5) 20 0.0266
φy (5) 20 0.0255

φx (20) 20 0.0211
φy (20) 20 0.0241
φx (45) 20 0.0200
φy (45) 20 0.0228

Based on the experiments, the multi-layered FFH is robust in different cases of D
r0

.
Especially when D

r0
is relatively large, the relative error in PSF and the reconstruction

of object using our multi-layered FFH approach is much better than the the standard
naive interpolation approach, as well as the single layer model.

We observe that the relative error of the reconstructed PSF depends on the frame
number (note the oscillations in the relative error plots). This behavior can be ex-
plained as follows. Because of the movement of the turbulent eddies, the overlap
regions may vary, and thus the corresponding contributions vary.
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